Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

溶瘤腺病毒 H101 与宫颈癌细胞中的辐射协同作用

卷 21, 期 7, 2021

发表于: 08 March, 2021

页: [619 - 630] 页: 12

弟呕挨: 10.2174/1568009621666210308103541

价格: $65

摘要

背景:宫颈癌放射治疗的一个主要挑战是有效地调整辐射剂量以消除恶性细胞并减少正常组织的副作用。最近测试并批准溶瘤腺病毒药物 H101 作为几种恶性肿瘤的局部辅助治疗。 目的:本研究旨在通过测试 H101 联合放疗在不同宫颈癌细胞中的抑制功能来评估 H101 的潜在新辅助放疗益处。 方法:人宫颈癌细胞系 C33a、SiHa、CaSki 和 HeLa 用不同浓度的 H101 单独或与辐射(2 Gy 或 4 Gy)联合治疗。在指定的时间间隔测量细胞活力和细胞凋亡。通过qRT-PCR测量HPV16 E6和细胞p53 mRNA表达改变。原位 RNA 范围用于确定 HPV E6 状态。通过蛋白质印迹检测 P53 蛋白的改变。 结果:细胞活力和细胞凋亡分析表明,高剂量 H101(MOI=1000、10000)与辐射组合在所有测试的宫颈癌细胞系中产生了协同抗癌作用(P<0.05),其中在HPV 阴性 C33a 细胞中效果最好(P<0.05)。低 HPV16 病毒载量的 SiHa 细胞比高 HPV16 病毒载量的 CaSki 细胞对联合治疗更敏感(P<0.05)。与单独使用放射治疗在 SiHa 和 CaSki 细胞中观察到的相比,联合治疗降低了 HPV16 E6 表达并增加了细胞 P53 水平(P<0.05)。 结论:溶瘤腺病毒H101可有效增强放疗对宫颈癌细胞的抗肿瘤作用,可作为一种新型的宫颈癌联合疗法。

关键词: COVID-19、肾素-血管紧张素系统、ACE2、血管紧张素、类SARS冠状病毒、宫颈癌。

« Previous
图形摘要

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Koh, W-J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Clark, R.; Cohn, D.; Crispens, M.A.; Damast, S.; Dorigo, O.; Eifel, P.J.; Fisher, C.M.; Frederick, P.; Gaffney, D.K.; Han, E.; Huh, W.K.; Lurain, J.R.; Mariani, A.; Mutch, D.; Nagel, C.; Nekhlyudov, L.; Fader, A.N.; Remmenga, S.W.; Reynolds, R.K.; Tillmanns, T.; Ueda, S.; Wyse, E.; Yashar, C.M.; McMillian, N.R.; Scavone, J.L. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2019, 17(1), 64-84.
[http://dx.doi.org/10.6004/jnccn.2019.0001] [PMID: 30659131]
[3]
Green, J.A.; Kirwan, J.M.; Tierney, J.F.; Symonds, P.; Fresco, L.; Collingwood, M.; Williams, C.J. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet, 2001, 358(9284), 781-786.
[http://dx.doi.org/10.1016/S0140-6736(01)05965-7] [PMID: 11564482]
[4]
Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: A global health crisis. Cancer, 2017, 123(13), 2404-2412.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[5]
Wang, Y.; Master, W. H.; Che, S.; Master, Y. Z.; Meng, D.; Master, F. S.; Master, J. S.; Master, Y. Y.; Ma, H.; Liu, R. Outcomes for hyperthermia combined with concurrent radiochemotherapy for patients with cervical cancer. Int. J. Radiation Oncol. Biol. Phys., 2020.
[6]
Raja, J.; Ludwig, J.M.; Gettinger, S.N.; Schalper, K.A.; Kim, H.S. Oncolytic virus immunotherapy: future prospects for oncology. J. Immunother. Cancer, 2018, 6(1), 140.
[http://dx.doi.org/10.1186/s40425-018-0458-z] [PMID: 30514385]
[7]
Yu, W.; Fang, H. Clinical trials with oncolytic adenovirus in China. Curr. Cancer Drug Targets, 2007, 7(2), 141-148.
[http://dx.doi.org/10.2174/156800907780058817] [PMID: 17346105]
[8]
Dix, B.R.; Edwards, S.J.; Braithwaite, A.W. Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J. Virol., 2001, 75(12), 5443-5447.
[http://dx.doi.org/10.1128/JVI.75.12.5443-5447.2001] [PMID: 11356950]
[9]
Dobner, T.; Horikoshi, N.; Rubenwolf, S.; Shenk, T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science, 1996, 272(5267), 1470-1473.
[http://dx.doi.org/10.1126/science.272.5267.1470] [PMID: 8633237]
[10]
Bischoff James, R.; Kirn.; David, H., An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 1996.
[11]
Werness, B.A.; Levine, A.J.; Howley, P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 1990, 248(4951), 76-79.
[http://dx.doi.org/10.1126/science.2157286] [PMID: 2157286]
[12]
Leung, T.H.; Tang, H.W.; Siu, M.K.; Chan, D.W.; Chan, K.K.; Cheung, A.N.; Ngan, H.Y. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness. J. Pathol., 2018, 244(2), 151-163.
[http://dx.doi.org/10.1002/path.4991] [PMID: 28944962]
[13]
Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet, 2013, 382(9895), 889-899.
[http://dx.doi.org/10.1016/S0140-6736(13)60022-7] [PMID: 23618600]
[14]
Del Río-Ospina, L.; Soto-De León, S.C.; Camargo, M.; Moreno-Pérez, D.A.; Sánchez, R.; Pérez-Prados, A.; Patarroyo, M.E.; Patarroyo, M.A. The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer, 2015, 15, 100.
[http://dx.doi.org/10.1186/s12885-015-1126-z] [PMID: 25885207]
[15]
Wiethoff, C.M.; Nemerow, G.R. Adenovirus membrane penetration: Tickling the tail of a sleeping dragon. Virology, 2015, 479(480), 591-599.
[http://dx.doi.org/10.1016/j.virol.2015.03.006] [PMID: 25798531]
[16]
Adcock, R.; Cuzick, J.; Hunt, W.C.; McDonald, R.M.; Wheeler, C.M. Role of HPV genotype, multiple infections, and viral load on the risk of high-grade cervical neoplasia. Cancer Epidemiol. Biomarkers Prev., 2019, 28(11), 1816-1824.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0239] [PMID: 31488417]
[17]
Moberg, M.; Gustavsson, I.; Wilander, E.; Gyllensten, U. High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. Br. J. Cancer, 2005, 92(5), 891-894.
[http://dx.doi.org/10.1038/sj.bjc.6602436] [PMID: 15756259]
[18]
Santin, A.D.; Hermonat, P.L.; Ravaggi, A.; Chiriva-Internati, M.; Pecorelli, S.; Parham, G.P. Radiation-enhanced expression of E6/E7 transforming oncogenes of human papillomavirus-16 in human cervical carcinoma. Cancer, 1998, 83(11), 2346-2352.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981201)83:11<2346::AID-CNCR14>3.0.CO;2-G] [PMID: 9840534]
[19]
Hampson, L.; El Hady, E.S.; Moore, J.V.; Kitchener, H.; Hampson, I.N. The HPV16 E6 and E7 proteins and the radiation resistance of cervical carcinoma. FASEB J., 2001, 15(8), 1445-1447.
[http://dx.doi.org/10.1096/fj.00-0728fje] [PMID: 11387252]
[20]
Hanna, T.P.; Shafiq, J.; Delaney, G.P.; Barton, M.B. The population benefit of radiotherapy for cervical cancer: local control and survival estimates for optimally utilized radiotherapy and chemoradiation. Radiother. Oncol., 2015, 114(3), 389-394.
[http://dx.doi.org/10.1016/j.radonc.2015.02.005] [PMID: 25733007]
[21]
Milrot, E.; Jackman, A.; Flescher, E.; Gonen, P.; Kelson, I.; Keisari, Y.; Sherman, L. Enhanced killing of cervical cancer cells by combinations of methyl jasmonate with cisplatin, X or alpha radiation. Invest. New Drugs, 2013, 31(2), 333-344.
[http://dx.doi.org/10.1007/s10637-012-9870-2] [PMID: 22956285]
[22]
Fei, P.; El-Deiry, W.S. P53 and radiation responses. Oncogene, 2003, 22(37), 5774-5783.
[http://dx.doi.org/10.1038/sj.onc.1206677] [PMID: 12947385]
[23]
Scheffner, M.; Münger, K.; Byrne, J.C.; Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5523-5527.
[http://dx.doi.org/10.1073/pnas.88.13.5523] [PMID: 1648218]
[24]
Cheng, P-H.; Wechman, S.L.; McMasters, K.M.; Zhou, H.S. Oncolytic replication of e1b-deleted adenoviruses. Viruses, 2015, 7(11), 5767-5779.
[http://dx.doi.org/10.3390/v7112905] [PMID: 26561828]
[25]
Garber, K. China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl. Cancer Inst., 2006, 98(5), 298-300.
[http://dx.doi.org/10.1093/jnci/djj111] [PMID: 16507823]
[26]
Liang, M. Oncorine, the World first oncolytic virus medicine and its update in China. Curr. Cancer Drug Targets, 2018, 18(2), 171-176.
[http://dx.doi.org/10.2174/1568009618666171129221503] [PMID: 29189159]
[27]
He, Q.; Liu, Y.; Zou, Q.; Guan, Y-S. Transarterial injection of H101 in combination with chemoembolization overcomes recurrent hepatocellular carcinoma. World J. Gastroenterol., 2011, 17(18), 2353-2355.
[http://dx.doi.org/10.3748/wjg.v17.i18.2353] [PMID: 21633603]
[28]
Okegawa, T.; Li, Y.; Pong, R.C.; Bergelson, J.M.; Zhou, J.; Hsieh, J.T. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res., 2000, 60(18), 5031-5036.
[PMID: 11016624]
[29]
Bauerschmitz, G.J.; Kanerva, A.; Wang, M.; Herrmann, I.; Shaw, D.R.; Strong, T.V.; Desmond, R.; Rein, D.T.; Dall, P.; Curiel, D.T.; Hemminki, A. Evaluation of a selectively oncolytic adenovirus for local and systemic treatment of cervical cancer. Int. J. Cancer, 2004, 111(2), 303-309.
[http://dx.doi.org/10.1002/ijc.20217] [PMID: 15197787]
[30]
Kuroda, S.; Fujiwara, T.; Shirakawa, Y.; Yamasaki, Y.; Yano, S.; Uno, F.; Tazawa, H.; Hashimoto, Y.; Watanabe, Y.; Noma, K.; Urata, Y.; Kagawa, S.; Fujiwara, T. Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery. Cancer Res., 2010, 70(22), 9339-9348.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2333] [PMID: 21045143]
[31]
Querido, E.; Marcellus, R.C.; Lai, A.; Charbonneau, R.; Teodoro, J.G.; Ketner, G.; Branton, P.E. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J. Virol., 1997, 71(5), 3788-3798.
[http://dx.doi.org/10.1128/JVI.71.5.3788-3798.1997] [PMID: 9094654]
[32]
Li, X.; Yuan, L.; Zhao, J.; Yang, H.; Yang, Y.; Zhang, Y.; Cun, B. Adenovirus-based strategies enhance antitumor capability through p53-mediated downregulation of MGMT in uveal melanoma. Cancer Biol. Ther., 2017, 18(3), 194-199.
[http://dx.doi.org/10.1080/15384047.2017.1294287] [PMID: 28278076]
[33]
Cao, M.; Wang, Y.; Wang, D.; Duan, Y.; Hong, W.; Zhang, N.; Shah, W.; Wang, Y.; Chen, H. Increased high-risk human papillomavirus viral load Is associated With immunosuppressed microenvironment and predicts a worse long-term survival in cervical cancer patients. Am. J. Clin. Pathol., 2020, 153(4), 502-512.
[PMID: 31819948]
[34]
Qian, G.; Wang, D.; Magliocca, K.R.; Hu, Z.; Nannapaneni, S.; Kim, S.; Chen, Z.; Sun, S-Y.; Shin, D.M.; Saba, N.F.; Chen, Z.G. Human papillomavirus oncoprotein E6 upregulates c-Met through p53 downregulation. Eur. J. Cancer, 2016, 65, 21-32.
[http://dx.doi.org/10.1016/j.ejca.2016.06.006] [PMID: 27451021]
[35]
Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis - the p53 network. J. Cell Sci., 2003, 116(Pt 20), 4077-4085.
[http://dx.doi.org/10.1242/jcs.00739] [PMID: 12972501]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy