Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Art of Total Synthesis of Bioactive Natural Products via Microwaves

Author(s): Sasadhar Majhi*

Volume 25, Issue 9, 2021

Published on: 03 March, 2021

Page: [1047 - 1069] Pages: 23

DOI: 10.2174/1385272825666210303112302

Price: $65

Abstract

Natural products are the most effective source of potential drug leads. The total synthesis of bioactive natural products plays a crucial role in confirming the hypothetical complex structure of natural products in the laboratory. The total synthesis of rare bioactive natural products is one of the great challenges for the organic synthetic community due to their complex structures, biochemical specificity, and difficult stereochemistry. Subsequently, the total synthesis is a long process in several cases, and it requires a substantial amount of time. Microwave irradiation has emerged as a greener tool in organic methodologies to reduce reaction time from days and hours to minutes and seconds. Moreover, this non-classical methodology increases product yields and purities, improves reproducibility, modifications of selectivity, simplification of work-up methods, and reduces unwanted side reactions. Such beneficial qualities have stimulated this review to cover the application of microwave irradiation in the field of the total synthesis of bioactive natural products for the first time during the last decade. An overview of the use of microwave irradiation, natural sources, structures, and biological activities of secondary metabolites is presented elegantly, focusing on the involvement of at least one or more steps by microwave irradiation as a green technique.

Keywords: Bioactive natural products, drug discovery, microwave irradiation, pharmacological aspects, sustainable Chemistry, total synthesis.

Graphical Abstract

[1]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[2]
Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy; Swedish Pharmaceutical Press: Stockholm, 2004.
[3]
Majhi, S. Diterpenoids: natural distribution, semisynthesis at room temperature and pharmacological aspects - a decade update. ChemistrySelect, 2020, 5, 12450-12464.
[http://dx.doi.org/10.1002/slct.202002836]
[4]
Majhi, S.; Das, D. Chemical derivatization of natural products: semisynthesis and pharmacological aspects - a decade update. Tetrahedron, 2020, 78131801
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[5]
Sinha, K.; Chowdhury, S.; Banerjee, S.; Mandal, B.; Mandal, M.; Majhi, S.; Brahmachari, G.; Ghosh, J.; Sil, P.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon, 2019, 5(8)e02107
[http://dx.doi.org/10.1016/j.heliyon.2019.e02107] [PMID: 31417967]
[6]
Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 2014, 31(11), 1612-1661.
[http://dx.doi.org/10.1039/C4NP00064A] [PMID: 25204227]
[7]
Xiao, Z.; Morris-Natschke, S.L.; Lee, K.H. Strategies for the optimization of natural leads to anticancer drugs or drug candidates. Med. Res. Rev., 2016, 36(1), 32-91.
[http://dx.doi.org/10.1002/med.21377] [PMID: 26359649]
[8]
Spiteller, P. Chemical ecology of fungi. Nat. Prod. Rep., 2015, 32(7), 971-993.
[http://dx.doi.org/10.1039/C4NP00166D] [PMID: 26038303]
[9]
Raguso, R.A.; Thompson, J.N.; Campbell, D.R. Improving our chemistry: challenges and opportunities in the interdisciplinary study of floral volatiles. Nat. Prod. Rep., 2015, 32(7), 893-903.
[http://dx.doi.org/10.1039/C4NP00159A] [PMID: 25882132]
[10]
Schulz, S.; Hötling, S. The use of the lactone motif in chemical communication. Nat. Prod. Rep., 2015, 32(7), 1042-1066.
[http://dx.doi.org/10.1039/C5NP00006H] [PMID: 25976887]
[11]
Flórez, L.V.; Biedermann, P.H.; Engl, T.; Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep., 2015, 32(7), 904-936.
[http://dx.doi.org/10.1039/C5NP00010F] [PMID: 25891201]
[12]
Clardy, J.; Fischbach, M.A.; Currie, C.R. The natural history of antibiotics. Curr. Biol., 2009, 19(11), R437-R441.
[http://dx.doi.org/10.1016/j.cub.2009.04.001] [PMID: 19515346]
[13]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[14]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[15]
Meinwald, J. Natural products as molecular messengers. J. Nat. Prod., 2011, 74(3), 305-309.
[http://dx.doi.org/10.1021/np100754j] [PMID: 21190370]
[16]
Mulzer, J. Trying to rationalize total synthesis. Nat. Prod. Rep., 2014, 31(4), 595-603.
[http://dx.doi.org/10.1039/c3np70105k] [PMID: 24589568]
[17]
Nicolaou, K.C.; Rigol, S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat. Prod. Rep., 2020, 37(11), 1404-1435.
[http://dx.doi.org/10.1039/D0NP00003E] [PMID: 32319494]
[18]
Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev., 2018, 118(7), 3752-3832.
[http://dx.doi.org/10.1021/acs.chemrev.7b00653] [PMID: 29516724]
[19]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[20]
Li, G.; Lou, H-X. Strategies to diversify natural products for drug discovery. Med. Res. Rev., 2018, 38(4), 1255-1294.
[http://dx.doi.org/10.1002/med.21474] [PMID: 29064108]
[21]
Brahmachari, G. Total Synthesis of Bioactive Natural Products; Elsevier: Amsterdam, 2019.
[22]
Díaz-Ortiz, A.; Prieto, P.; de la Hoz, A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 2019, 19, 85-97.
[http://dx.doi.org/10.1002/tcr.201800059]
[23]
Appukkuttan, P. Van der,; Eycken, E. Microwave-assisted natural product chemistry. Top. Curr. Chem., 2006, 266, 1-47.
[http://dx.doi.org/10.1007/128_051]
[24]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43, 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655]
[25]
Um, L.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—a review. Tetrahedron, 2001, 57, 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[26]
Bose, A.K.; Manhas, M.S.; Ganguly, S.N.; Sharma, A.H.; Banik, B.K. More chemistry for less pollution: applications for process development. Synthesis, 2002, 1578-1591.
[http://dx.doi.org/10.1055/s-2002-33344]
[27]
Besson, T.; Brain, CT 2004 in Microwave-Assisted Organic Synthesis; Blackwell: Oxford, 2004.
[28]
Bariwal, J.B.; Trivedi, J.C.; Van der Eycken, E.V. Topics in Heterocyclic Chemistry; Springer: Berlin, 2010, pp. 169-230.
[29]
Corey, E.J.; Cheng, X.M. The Logic of Chemical Synthesis; John Wiley & Sons: New York, 1989.
[30]
Stefanidakis, G.; Gwyn, J.E. Alkylation. In: Chemical Processing Handbook; McKetta, J.J., Ed.; CRC Press: Florida, 1993.
[31]
Röper, M.; Gehrer, E.; Narbeshuber, T.; Siegel, W. Acylation and Alkylation in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000.
[32]
Li, T.; Huo, L.; Pulley, C.; Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem., 2012, 43, 2-14.
[http://dx.doi.org/10.1016/j.bioorg.2012.03.001] [PMID: 22534166]
[33]
Weaver, J.D.; Recio, A., III; Grenning, A.J.; Tunge, J.A. Transition metal-catalyzed decarboxylative allylation and benzylation reactions. Chem. Rev., 2011, 111(3), 1846-1913.
[http://dx.doi.org/10.1021/cr1002744] [PMID: 21235271]
[34]
Guo, L.; Plietker, B. β-Ketoesters as mono- or bisnucleophiles: a concise enantioselective total synthesis of (-)-englerin A and B. Angew. Chem. Int. Ed. Engl., 2019, 58(25), 8346-8350.
[http://dx.doi.org/10.1002/anie.201900401] [PMID: 30938023]
[35]
Wu, Z.; Zhao, S.; Fash, D.M.; Li, Z.; Chain, W.J.; Beutler, J.A. Englerins: a comprehensive review. J. Nat. Prod., 2017, 80(3), 771-781.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01167] [PMID: 28170253]
[36]
Ratnayake, R.; Covell, D.; Ransom, T.T.; Gustafson, K.R.; Beutler, J.A. Englerin A, a selective inhibitor of renal cancer cell growth, from Phyllanthus engleri. Org. Lett., 2009, 11(1), 57-60.
[http://dx.doi.org/10.1021/ol802339w] [PMID: 19061394]
[37]
Sulzmaier, F.J.; Li, Z.; Nakashige, M.L.; Fash, D.M.; Chain, W.J.; Ramos, J.W.; Englerin, A. Englerin a selectively induces necrosis in human renal cancer cells. PLoS One, 2012, 7(10), e48032.
[http://dx.doi.org/10.1371/journal.pone.0048032] [PMID: 23144724]
[38]
Rodrigues, T.; Sieglitz, F.; Somovilla, V.J.; Cal, P.M.; Galione, A.; Corzana, F.; Bernardes, G.J. Unveiling (-)-englerin A as a modulator of L-type calcium channels. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 11077-11081.
[http://dx.doi.org/10.1002/anie.201604336] [PMID: 27391219]
[39]
Takao, K.; Munakata, R.; Tadano, K. Recent advances in natural product synthesis by using intramolecular Diels-Alder reactions. Chem. Rev., 2005, 105(12), 4779-4807.
[http://dx.doi.org/10.1021/cr040632u] [PMID: 16351062]
[40]
Oikawa, H.; Tokiwano, T. Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products. Nat. Prod. Rep., 2004, 21(3), 321-352.
[http://dx.doi.org/10.1039/B305068H] [PMID: 15162222]
[41]
Anastas., P.; Warner, J.C. Green chemistry: Theory and Practice; University Press: Oxford, 1998.
[42]
Huang, G.; Dong, Ya. Application of cope rearrangement in synthesis. Synth. Commun., 2019, 49, 3101-3111.
[http://dx.doi.org/10.1080/00397911.2019.1657460]
[43]
Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. Enantioselective total syntheses of various amphilectane and serrulatane diterpenoids via cope rearrangements. J. Am. Chem. Soc., 2016, 138(19), 6261-6270.
[http://dx.doi.org/10.1021/jacs.6b02624] [PMID: 27115064]
[44]
Chen, I.T.; Baitinger, I.; Schreyer, L.; Trauner, D. Total synthesis of sandresolide B and amphilectolide. Org. Lett., 2014, 16(1), 166-169.
[http://dx.doi.org/10.1021/ol403156r] [PMID: 24308854]
[45]
Incerti-Pradillos, C.A.; Kabeshov, M.A.; O’Hora, P.S.; Shipilovskikh, S.A.; Rubtsov, A.E.; Drobkova, V.A.; Balandina, S.Y.; Malkov, A.V. Asymmetric total synthesis of (-)-erogorgiaene and its C-11 epimer and investigation of their antimycobacterial activity. Chemistry, 2016, 22(40), 14390-14396.
[http://dx.doi.org/10.1002/chem.201602440] [PMID: 27529822]
[46]
Rodriguez, A.D.; Ramirez, C. Medina. V.; Shi, Y.P. Novel lactones from Pseudopterogorgia elisabethae (Bayer). Tetrahedron Lett., 2000, 41(27), 5177-5180.
[http://dx.doi.org/10.1016/S0040-4039(00)00767-X]
[47]
Kamyar, A.; Victoria, V.; Todd, D.N.; Gary, H.P. Diels-Alder cycloadditions of 2-pyrones and 2-pyridones. Tetrahedron, 1985, 48, 9111-9171.
[http://dx.doi.org/10.1016/S0040-4020(01)85607-6]
[48]
Fürstner, A. Metathesis in total synthesis. Chem. Commun. (Camb.), 2011, 47(23), 6505-6511.
[http://dx.doi.org/10.1039/c1cc10464k] [PMID: 21519622]
[49]
Miyatake-Ondozabal, H.; Kaufmann, E.; Gademann, K. Total synthesis of the protected aglycon of fidaxomicin (tiacumicin B, lipiarmycin A3). Angew. Chem. Int. Ed. Engl., 2015, 54(6), 1933-1936.
[http://dx.doi.org/10.1002/anie.201409464] [PMID: 25431322]
[50]
Kurabachew, M.; Lu, S.H.J.; Krastel, P.; Schmitt, E.K.; Suresh, B.L.; Goh, A.; Knox, J.E.; Ma, N.L.; Jiricek, J.; Beer, D.; Cynamon, M.; Petersen, F.; Dartois, V.; Keller, T.; Dick, T.; Sambandamurthy, V.K. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2008, 62(4), 713-719.
[http://dx.doi.org/10.1093/jac/dkn269] [PMID: 18587134]
[51]
Erb, W.; Zhu, J. From natural product to marketed drug: the tiacumicin odyssey. Nat. Prod. Rep., 2013, 30(1), 161-174.
[http://dx.doi.org/10.1039/C2NP20080E] [PMID: 23111588]
[52]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. Engl., 2005, 44(29), 4490-4527.
[http://dx.doi.org/10.1002/anie.200500369] [PMID: 16003791]
[53]
Nett, M.; Gulder, T.A.; Kale, A.J.; Hughes, C.C.; Moore, B.S. Function-oriented biosynthesis of β-lactone proteasome inhibitors in Salinispora tropica. J. Med. Chem., 2009, 52(19), 6163-6167.
[http://dx.doi.org/10.1021/jm901098m] [PMID: 19746976]
[54]
Tang, M-C.; Zou, Y.; Watanabe, K.; Walsh, C.T.; Tang, Y. Oxidative cyclization in natural product biosynthesis. Chem. Rev., 2017, 117(8), 5226-5333.
[http://dx.doi.org/10.1021/acs.chemrev.6b00478] [PMID: 27936626]
[55]
Guo, J.; Li, B.; Ma, W.; Pitchakuntla, M.; Jia, Y. Total Synthesis of (-)-glaucocalyxin A. Angew. Chem. Int. Ed. Engl., 2020, 132, 15307-15310.
[http://dx.doi.org/10.1002/ange.202005932] [PMID: 32427394]
[56]
Li, W.; Tang, X.; Yi, W.; Li, Q.; Ren, L.; Liu, X.; Chu, C.; Ozaki, Y.; Zhang, J.; Zhu, L.; Glaucocalyxin, A. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway. PLoS One, 2013, 8(12)e85120
[http://dx.doi.org/10.1371/journal.pone.0085120] [PMID: 24386454]
[57]
Xiao, X.; Cao, W.; Jiang, X.; Zhang, W.; Zhang, Y.; Liu, B.; Cheng, J.; Huang, H.; Huo, J.; Zhang, X. Glaucocalyxin A, a negative Akt regulator, specifically induces apoptosis in human brain glioblastoma U87MG cells. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(11), 946-952.
[http://dx.doi.org/10.1093/abbs/gmt097] [PMID: 24041957]
[58]
Qian, D.; Zhang, J. Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox. Chem. Soc. Rev., 2015, 44(3), 677-698.
[http://dx.doi.org/10.1039/C4CS00304G] [PMID: 25522173]
[59]
Leng, L.; Zhou, X.; Liao, Q.; Wang, F.; Song, H.; Zhang, D.; Liu, X-Y.; Qin, Y. Asymmetric total syntheses of kopsia indole alkaloids. Angew. Chem. Int. Ed. Engl., 2017, 56(13), 3703-3707.
[http://dx.doi.org/10.1002/anie.201700831] [PMID: 28230294]
[60]
Kam, T-S.K-H. Lim. The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Elsevier: New York, 2008.
[61]
Lim, K-H.; Hiraku, O.; Komiyama, K.; Koyano, T.; Hayashi, M.; Kam, T-S. Biologically active indole alkaloids from Kopsia arborea. J. Nat. Prod., 2007, 70(8), 1302-1307.
[http://dx.doi.org/10.1021/np0702234] [PMID: 17665953]
[62]
Jia, X.; Lei, H.; Han, F.; Zhang, T.; Chen, Y.; Xu, Z.; Nakliang, P.; Choi, S.; Guo, Y.; Ye, T. Asymmetric Total Syntheses of Kopsane Alkaloids via a PtCl2 –catalyzed intramolecular [3+2] cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(31), 12832-12836.
[http://dx.doi.org/10.1002/anie.202005048] [PMID: 32329945]
[63]
Siegfried, R. Waldvogel, Lips S.; Selt, M.; Riehl, B.; Kampf, C.J. Electrochemical arylation reaction. Chem. Rev., 2018, 118, 6706-6765.
[64]
Day, J.J.; McFadden, R.M.; Virgil, S.C.; Kolding, H.; Alleva, J.L.; Stoltz, B.M. The catalytic enantioselective total synthesis of (+)-liphagal. Angew. Chem. Int. Ed. Engl., 2011, 50(30), 6814-6818.
[http://dx.doi.org/10.1002/anie.201101842] [PMID: 21671325]
[65]
Marion, F.; Williams, D.E.; Patrick, B.O.; Hollander, I.; Mallon, R.; Kim, S.C.; Roll, D.M.; Feldberg, L.; Van Soest, R.; Andersen, R.J. Liphagal, a selective inhibitor of PI3 kinase alpha isolated from the sponge akacoralliphaga: structure elucidation and biomimetic synthesis. Org. Lett., 2006, 8(2), 321-324.
[http://dx.doi.org/10.1021/ol052744t] [PMID: 16408905]
[66]
Woodward, R.B.; Hoffmann, R. Stereochemistry of electrocyclic reactions. J. Am. Chem. Soc., 1965, 87, 395-397.
[http://dx.doi.org/10.1021/ja01080a054]
[67]
Thompson, S.; Coyne, A.G.; Knipe, P.C.; Smith, M.D. Asymmetric electrocyclic reactions. Chem. Soc. Rev., 2011, 40(7), 4217-4231.
[http://dx.doi.org/10.1039/c1cs15022g] [PMID: 21566810]
[68]
Beaudry, C.M.; Malerich, J.P.; Trauner, D. Biosynthetic and biomimetic electrocyclizations. Chem. Rev., 2005, 105, 4757-4778.
[http://dx.doi.org/10.1021/cr0406110]]
[69]
Kwon, S.H.; Seo, H-A.; Cheon, C-H. Total synthesis of luotonin A and rutaecarpine from an aldimine via the designed cyclization. Org. Lett., 2016, 18(20), 5280-5283.
[http://dx.doi.org/10.1021/acs.orglett.6b02597] [PMID: 27700107]
[70]
Xiao, P-G. A Pictorial Encyclopedia of Chinese Medical Herbs; Chuokoron-sha Inc: Tokyo, 1992, Vol. 3, p. 125.
[71]
Ma, Z.Z. Hano. Y.; Nomura, T.; Chen, Y-J. Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum. Heterocycles, 1997, 46, 541-546.
[http://dx.doi.org/10.3987/COM-97-S65]
[72]
Cagir, A.; Jones, S.H.; Gao, R.; Eisenhauer, B.M.; Hecht, S.M. Luotonin A. A naturally occurring human DNA topoisomerase I poison. J. Am. Chem. Soc., 2003, 125(45), 13628-13629.
[http://dx.doi.org/10.1021/ja0368857] [PMID: 14599178]
[73]
Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C-H Activation. Chem. Rev., 2019, 119(4), 2192-2452.
[http://dx.doi.org/10.1021/acs.chemrev.8b00507] [PMID: 30480438]
[74]
Panish, R.A.; Chintala, S.R.; Fox, J.M. A mixed-ligand chiral rhodium(II) catalyst enables the enantioselective total synthesis of piperarborenine B. Angew. Chem. Int. Ed. Engl., 2016, 55(16), 4983-4987.
[http://dx.doi.org/10.1002/anie.201600766] [PMID: 26991451]
[75]
Tsai, I-L.; Lee, F.P.; Wu, C.C.; Duh, C.Y.; Ishikawa, T.; Chen, J.J.; Chen, Y.C.; Seki, H.; Chen, I.S. New cytotoxic cyclobutanoid amides, a new furanoid lignan and anti-platelet aggregation constituents from Piper arborescens. Planta Med., 2005, 71(6), 535-542.
[http://dx.doi.org/10.1055/s-2005-864155] [PMID: 15971125]
[76]
Lee, F.P.; Chen, Y.C.; Chen, J.J.; Tsai, I.L.; Chen, I-S. Cyclobutanoid amides from Piper arborescens. Helv. Chim. Acta, 2004, 87, 463-468.
[http://dx.doi.org/10.1002/hlca.200490044]
[77]
Gutekunst, W.R.; Baran, P.S. Total synthesis and structural revision of the piperarborenines via sequential cyclobutane C-H arylation. J. Am. Chem. Soc., 2011, 133(47), 19076-19079.
[http://dx.doi.org/10.1021/ja209205x] [PMID: 22066860]
[78]
Vollhardt, K.; Peter, C. Cobalt-vermittelte [2+2+2]-Cycloadditionen: eine ausgereifte Synthesestrategie. Angew. Chem. Int, 1984, 96, 525-541.
[http://dx.doi.org/10.1002/ange.19840960804]
[79]
Goh, S.S.; Chaubet, G.; Gockel, B.; Cordonnier, M-C.A.; Baars, H.; Phillips, A.W.; Anderson, E.A. Total synthesis of (+)-rubriflordilactone A. Angew. Chem. Int. Ed. Engl., 2015, 54(43), 12618-12621.
[http://dx.doi.org/10.1002/anie.201506366] [PMID: 26337920]
[80]
Xiao, W-L.; Yang, L-M.; Gong, N-B.; Wu, L.; Wang, R-R.; Pu, J-X.; Li, X-L.; Huang, S-X.; Zheng, Y-T.; Li, R-T.; Lu, Y.; Zheng, Q-T.; Sun, H-D. Rubriflordilactones A and B, two novel bisnortriterpenoids from Schisandra rubriflora and their biological activities. Org. Lett., 2006, 8(5), 991-994.
[http://dx.doi.org/10.1021/ol060062f] [PMID: 16494492]
[81]
Goh, S.S.; Baars, H.; Gockel, B.; Anderson, E.A. Metal-catalyzed syntheses of abridged CDE rings of rubriflordilactones A and B. Org. Lett., 2012, 14(24), 6278-6281.
[http://dx.doi.org/10.1021/ol303041j] [PMID: 23210932]
[82]
Bariwal, J.; Van der Eycken, E. C-N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2013, 42(24), 9283-9303.
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[83]
Johansson Seechurn, C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V.; Victor, S. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5062-5085.
[http://dx.doi.org/10.1002/anie.201107017] [PMID: 22573393]
[84]
Lutz, C.; Simon, W.; Werner-Simon, S.; Pahl, A.; Müller, C. Total synthesis of α- and β-amanitin. Angew. Chem. Int. Ed. Engl., 2020, 59(28), 11390-11393.
[http://dx.doi.org/10.1002/anie.201914935] [PMID: 32091645]
[85]
Kostansek, E.C.; Lipscomb, W.N.; Yocum, R.R.; Thiessen, W.E. Conformation of the mushroom toxin β-amanitin in the crystalline state. Biochemistry, 1978, 17(18), 3790-3795.
[http://dx.doi.org/10.1021/bi00611a019] [PMID: 698197]
[86]
Matinkhoo, K.; Pryyma, A.; Todorovic, M.; Patrick, B.O.; Perrin, D.M. Synthesis of the death-cap mushroom toxin α-amanitin. J. Am. Chem. Soc., 2018, 140(21), 6513-6517.
[http://dx.doi.org/10.1021/jacs.7b12698] [PMID: 29561592]
[87]
Zhao, L.; May, J.P.; Blanc, A.; Dietrich, D.J.; Loonchanta, A.; Matinkhoo, K.; Pryyma, A.; Perrin, D.M. Synthesis of a cytotoxic amanitin for biorthogonal conjugation. ChemBioChem, 2015, 16(10), 1420-1425.
[http://dx.doi.org/10.1002/cbic.201500226] [PMID: 26043184]
[88]
Majid, M.H.; Zadsirjan, V.; Saedi, P.; Momeni, T. Applications of Friedel–Crafts reactions in total synthesis of natural products. RSC Adv, 2018, 8, 40061-40163.
[http://dx.doi.org/10.1039/C8RA07325B]
[89]
Furst, L.; Narayanam, J.M.R.; Stephenson, C.R.J. Total synthesis of (+)-gliocladin C enabled by visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9655-9659.
[http://dx.doi.org/10.1002/anie.201103145] [PMID: 21751318]
[90]
Usami, Y.; Yamaguchi, J.; Numata, A.; Gliocladins, A. C and Glioperazine; Cytotoxic dioxo- or trioxopiperazine metabolites from a Gliocladium Sp. separated from a sea hare. Heterocycles, 2004, 63, 1123-1129.
[http://dx.doi.org/10.3987/COM-04-10037]
[91]
Schmidt, M.A.; Movassaghi, M. New strategies for the synthesis of hexahydropyrroloindole alkaloids inspired by biosynthetic hypotheses. Synlett, 2008, 3, 313-324.
[http://dx.doi.org/10.1055/s-2008-1032060]
[92]
Arbor, S.; Kao, J.; Wu, Y. c[D-pro-Pro-D-pro-N-Methyl-Ala] adopts a rigid conformation that serves as a scaffold to mimic reverse-turns. Biopolymers, 2008, 90, 384-393.
[http://dx.doi.org/10.1039/c1cs15022g] [PMID: 21566810]
[93]
Itoh, H.; Miura, K.; Kamiya, K.; Yamashita, T.; Inoue, M. Solid-phase total synthesis of Yaku’amide B enabled by traceless staudinger ligation. Angew. Chem. Int. Ed. Engl., 2020, 59(11), 4564-4571.
[http://dx.doi.org/10.1002/anie.201916517] [PMID: 31943639]
[94]
Mäde, V.; Els-Heindl, S.; Beck-Sickinger, A.G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem., 2014, 10, 1197-1212.
[http://dx.doi.org/10.3762/bjoc.10.118] [PMID: 24991269]
[95]
Ueoka, R.; Ise, Y.; Ohtsuka, S.; Okada, S.; Yamori, T.; Matsunaga, S. Yaku’amides A and B, cytotoxic linear peptides rich in dehydroamino acids from the marine sponge Ceratopsion sp. J. Am. Chem. Soc., 2010, 132(50), 17692-17694.
[http://dx.doi.org/10.1021/ja109275z] [PMID: 21121605]
[96]
Kitamura, K.; Itoh, H.; Sakurai, K.; Dan, S.; Inoue, M. Target identification of Yaku’amide B and its two distinct activities against mitochondrial FoF1-ATP synthase. J. Am. Chem. Soc., 2018, 140(38), 12189-12199.
[http://dx.doi.org/10.1021/jacs.8b07339] [PMID: 30156840]
[97]
Goel, A.; Kumar, A.; Raghuvanshi, A. Synthesis, stereochemistry, structural classification, and chemical reactivity of natural pterocarpans. Chem. Rev., 2013, 113(3), 1614-1640.
[http://dx.doi.org/10.1021/cr300219y] [PMID: 23214501]
[98]
Basu, P. Satam. Synthesis of indenofurans, benzofurans and spiro-lactones via Hauser–Kraus annulation involving 1,6-addition of phthalide to quinone methides. Org. Biomol. Chem., 2020, 18, 5677-5687.
[http://dx.doi.org/10.1039/D0OB01115K] [PMID: 32662476]
[99]
Yang, J.; Knueppel, D.; Cheng, B.; Mans, D.; Martin, S.F. Approaches to polycyclic 1,4-dioxygenated xanthones. Application to total synthesis of the aglycone of IB-00208. Org. Lett., 2015, 17(1), 114-117.
[http://dx.doi.org/10.1021/ol503336t] [PMID: 25513888]
[100]
Malet-Cascon, L.; Romero, F.; Espliego-Vazquez, F.; Gravalos, D.; Fernandez-Puentes, J.L. IB-00208, a new cytotoxic polycyclic xanthone produced by a marine-derived Actinomadura. I. Isolation of the strain, taxonomy and biological ac-tivites. J. Antibiot. (Tokyo), 2003, 56, 219-225.
[PMID: 12760677]
[101]
Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J.H.; Capon, R.J. Isokibdelones: novel heterocyclic polyketides from a Kibdelosporangium sp. Org. Lett., 2006, 8(23), 5267-5270.
[http://dx.doi.org/10.1021/ol062113e] [PMID: 17078694]
[102]
Nichols, A.L.; Zhang, P.; Martin, S.F. General and expedient synthesis of 1,4-dioxygenated xanthones. Org. Lett., 2011, 13(17), 4696-4699.
[http://dx.doi.org/10.1021/ol201910v] [PMID: 21812455]
[103]
Reeves, J.T.; Visco, M.D.; Marsini, M.A.; Grinberg, N.; Busacca, C.A.; Mattson, A.E.; Enanayake, C.H. A general method for imine formation using B(OCH2CF3)3. Org. Lett., 2015, 17, 2442-2445.
[http://dx.doi.org/10.1021/acs.orglett.5b00949]
[104]
Johnson, R.E.; Ree, H.; Hartmann, M.; Lang, L.; Sawano, S.; Sarpong, R. Total synthesis of pentacyclic (-)-ambiguine P using sequential indole functionalizations. J. Am. Chem. Soc., 2019, 141(6), 2233-2237.
[http://dx.doi.org/10.1021/jacs.8b13388] [PMID: 30702879]
[105]
Mo, S.; Krunic, A.; Santarsiero, B.D.; Franzblau, S.G.; Orjala, J. Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua. Phytochemistry, 2010, 71(17-18), 2116-2123.
[http://dx.doi.org/10.1016/j.phytochem.2010.09.004] [PMID: 20965528]
[106]
Jimenez, J.I.; Huber, U.; Moore, R.E.; Patterson, G.M.L. Oxidized welwitindolinones from terrestrial fischerella spp. J. Nat. Prod., 1999, 62(4), 569-572.
[http://dx.doi.org/10.1021/np980485t] [PMID: 10217710]
[107]
Dunbar, K.L.; Scharf, D.H.; Litomska, A.; Hertweck, C. Enzymatic carbon-sulfur bond formation in natural product biosynthesis. Chem. Rev., 2017, 117, 5521-5577.
[http://dx.doi.org/10.1021/acs.chemrev.6b00697]
[108]
Chen, X.; Shao, X.; Li, W.; Zhang, X.; Yu, B. Total synthesis of echinoside A, a representative triterpene glycoside of sea cucumbers. Angew. Chem. Int. Ed. Engl., 2017, 56(26), 7648-7652.
[http://dx.doi.org/10.1002/anie.201703610] [PMID: 28481429]
[109]
Kitagawa, I.; Inamoto, T.; Fuchida, M.; Okada, S.; Kobayashi, M.; Nishino, T.; Kyogoku, Y. Structures of echinoside A and B, two antifungal oligoglycosides from the sea cucumber Actinopyga echinites (JAEGER). Chem. Pharm. Bull. (Tokyo), 1980, 28, 1651-1653.
[http://dx.doi.org/10.1248/cpb.28.1651]
[110]
Li, M.; Miao, Z.H.; Chen, Z.; Chen, Q.; Gui, M.; Lin, L.P.; Sun, P.; Yi, Y.H.; Ding, J. Echinoside A, a new marine-derived anticancer saponin, targets topoisomerase2α by unique interference with its DNA binding and catalytic cycle. Ann. Oncol., 2010, 21(3), 597-607.
[http://dx.doi.org/10.1093/annonc/mdp335] [PMID: 19773249]
[111]
Rueping, M.; Haack, K.; Ieawsuwan, W.; Sundén, H.; Blanco, M.; Schoepke, F.R. Nature-inspired cascade catalysis: reaction control through substrate concentration--double vs. quadruple domino reactions. Chem. Commun. (Camb.), 2011, 47(13), 3828-3830.
[http://dx.doi.org/10.1039/c1cc10245a] [PMID: 21359352]
[112]
Sugimoto, K.; Toyoshima, K.; Nonaka, S.; Kotaki, K.; Ueda, H.; Tokuyama, H. Protecting-group-free total synthesis of (-)-rhazinilam and (-)-rhazinicine using a gold-catalyzed cascade cyclization. Angew. Chem. Int. Ed. Engl., 2013, 52(28), 7168-7171.
[http://dx.doi.org/10.1002/anie.201303067] [PMID: 23744784]
[113]
Baudoin, O. Gu nard, D.; Gu rite, F. The chemistry and biology of rhazinilam and analogues. Mini Rev. Org. Chem., 2004, 1, 333-341.
[http://dx.doi.org/10.2174/1570193043403226]
[114]
Lambert, K.M.; Cox, J.B.; Liu, L.; Jackson, A.C.; Yruegas, S.; Wiberg, K.B.; Wood, J.L. Total synthesis of (±)-phyllantidine: development and mechanistic evaluation of a ring expansion for installation of embedded nitrogen-oxygen bonds. Angew. Chem. Int. Ed. Engl., 2020, 59(24), 9757-9766.
[http://dx.doi.org/10.1002/anie.202003829] [PMID: 32271982]
[115]
Parello, J.; Munavalli, S. Phyllantin and phyllantidin, alkaloids of Phyllantus Discouides Muell. Arg. (Euphorbiaceae). Compt. C. R. Hebd. Seances Acad. Sci., 1965, 260, 337-340.
[PMID: 14305444]
[116]
Park, K.J.; Kim, C.S.; Khan, Z.; Oh, J.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Securinega alkaloids from the twigs of Securinega suffruticosa and their biological activities. J. Nat. Prod., 2019, 82(5), 1345-1353.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00142] [PMID: 31082231]
[117]
Wu, Z-L.; Huang, X.J.; Xu, M-T.; Ma, X.; Li, L.; Shi, L.; Wang, W-J.; Jiang, R-W.; Ye, W-C.; Wang, Y. Flueggeacosines A-C, dimeric securinine-type alkaloid analogues with neuronal differentiation activity from Flueggea suffruticosa. Org. Lett., 2018, 20(23), 7703-7707.
[http://dx.doi.org/10.1021/acs.orglett.8b03432] [PMID: 30484660]
[118]
Ferrier, R.J. Unsaturated carbohydrates. Part 21. A carbocyclic ring closure of a hex-5-enopyranoside derivative. J. Chem. Soc. Perkin Trans, 1979, 1, 1455-1458.
[http://dx.doi.org/10.1039/p19790001455]
[119]
Lebsack, A.D.; Link, J.T.; Overman, L.E.; Stearns, B.A. Enantioselective total synthesis of quadrigemine C and psycholeine. J. Am. Chem. Soc., 2002, 124(31), 9008-9009.
[http://dx.doi.org/10.1021/ja0267425] [PMID: 12148978]
[120]
Sieber, S.; Carlier, A.; Neuburger, M.; Grabenweger, G.; Eberl, L.; Gademann, K. Isolation and total synthesis of kirkamide, an aminocyclitol from an obligate leaf nodule symbiont. Angew. Chem. Int. Ed. Engl., 2015, 54(27), 7968-7970.
[http://dx.doi.org/10.1002/anie.201502696] [PMID: 26033226]
[121]
Sieber, S.; Hsiao, C-C.; Emmanouilidou, D.; Debowski, A.W.; Stubbs, K.A.; Gademann, K. Syntheses and biological investigations of kirkamide and oseltamivir hybrid derivatives. Tetrahedron, 2020, 76131386
[http://dx.doi.org/10.1016/j.tet.2020.131386]
[122]
Ko, K-S.; Zea, C.J.; Pohl, N.L. Surprising bacterial nucleotidyltransferase selectivity in the conversion of carbaglucose-1-phosphate. J. Am. Chem. Soc., 2004, 126(41), 13188-13189.
[http://dx.doi.org/10.1021/ja045522j] [PMID: 15479049]
[123]
Li, G.; Padwa, A. Intramolecular Diels-Alder cycloaddition/rearrangement cascade of an amidofuran derivative for the synthesis of (±)-minfiensine. Org. Lett., 2011, 13(15), 3767-3769.
[http://dx.doi.org/10.1021/ol201320v] [PMID: 21696195]
[124]
Zheng, X.A.; Kong, R.H.; Huang, S.; Wei, J-Y.; Chen, J.Z.; Gong, S.S. Sin. Q. Hafnium triflate as a highly potent catalyst for regio- and chemoselective deprotection of silyl ethers. Synthesis, 2019, 51, 944-952.
[http://dx.doi.org/10.1055/s-0037-1610307]
[125]
Sparling, B.A.; Moebius, D.C.; Shair, M.D. Enantioselective total synthesis of hyperforin. J. Am. Chem. Soc., 2013, 135(2), 644-647.
[http://dx.doi.org/10.1021/ja312150d] [PMID: 23270309]
[126]
Beerhues, L. Hyperforin. Phytochemistry, 2006, 67(20), 2201-2207.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.017] [PMID: 16973193]
[127]
Chatterjee, S.S.; Bhattacharya, S.K.; Wonnemann, M.; Singer, A.; Müller, W.E. Hyperforin as a possible antidepressant component of hypericum extracts. Life Sci., 1998, 63(6), 499-510.
[http://dx.doi.org/10.1016/S0024-3205(98)00299-9] [PMID: 9718074]
[128]
Quiney, C.; Billard, C.; Salanoubat, C.; Fourneron, J.D.; Kolb, J.P. Hyperforin, a new lead compound against the progression of cancer and leukemia? Leukemia, 2006, 20(9), 1519-1525.
[http://dx.doi.org/10.1038/sj.leu.2404301] [PMID: 16791262]
[129]
Singh, I.P.; Sidana, J.; Bharate, S.B.; Foley, W.J. Phloroglucinol compounds of natural origin: synthetic aspects. Nat. Prod. Rep., 2010, 27(3), 393-416.
[http://dx.doi.org/10.1039/b914364p] [PMID: 20179878]
[130]
Cook, A.M.; Laue, H.; Junker, F. Microbial desulfonation. FEMS Microbiol. Rev., 1998, 22(5), 399-419.
[http://dx.doi.org/10.1111/j.1574-6976.1998.tb00378.x] [PMID: 9990724]
[131]
Nicolaou, K.C.; Shah, A.A.; Korman, H.; Khan, T.; Shi, L.; Worawalai, W.; Theodorakis, E.A. Total synthesis and structural revision of antibiotic CJ-16,264. Angew. Chem. Int. Ed. Engl., 2015, 54(32), 9203-9208.
[http://dx.doi.org/10.1002/anie.201504337] [PMID: 26096055]
[132]
Sugie, Y.; Hirai, H.; Kachi-Tonai, H.; Kim, Y-J.; Kojima, Y.; Shiomi, Y.; Sugiura, A.; Sugiura, A.; Suzuki, Y.; Yoshikawa, N.; Brennan, L.; Duignan, J.; Huang, L.H.; Sutcliffe, J.; Kojima, N. New pyrrolizidinone antibiotics CJ-16,264 and CJ-16,367. J. Antibiot. (Tokyo), 2001, 54(11), 917-925.
[http://dx.doi.org/10.7164/antibiotics.54.917] [PMID: 11827034]
[133]
Goswami, S.; Harada, K.; El-Mansy, M.F.; Lingampally, R.; Carter, R.G. Enantioselective synthesis of (-)-halenaquinone. Angew. Chem. Int. Ed. Engl., 2018, 57(29), 9117-9121.
[http://dx.doi.org/10.1002/anie.201805370] [PMID: 29920904]
[134]
Wipf, P.; Halter, R.J. Chemistry and biology of wortmannin. Org. Biomol. Chem., 2005, 3(11), 2053-2061.
[http://dx.doi.org/10.1039/b504418a] [PMID: 15917886]
[135]
Roll, D.M.; Scheuer, P.J.; Matsumoto, G.K.; Clardy, J. Halenaquinone, a pentacyclic polyketide from a marine sponge. J. Am. Chem. Soc., 1983, 105, 6177-6178.
[http://dx.doi.org/10.1021/ja00357a049]
[136]
Deguest, G.; Bischoff, L.; Fruit, C.; Marsais, F. Anionic, in situ generation of formaldehyde: a very useful and versatile tool in synthesis. Org. Lett., 2007, 9(6), 1165-1167.
[http://dx.doi.org/10.1021/ol070145b] [PMID: 17309276]
[137]
Alrumman, S.A. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz. J. Microbiol., 2016, 47(1), 110-119.
[http://dx.doi.org/10.1016/j.bjm.2015.11.015] [PMID: 26887233]
[138]
Zu, L.; Boal, B.W.; Garg, N.K. Total synthesis of (±)-aspidophylline A. J. Am. Chem. Soc., 2011, 133(23), 8877-8879.
[http://dx.doi.org/10.1021/ja203227q] [PMID: 21553860]
[139]
Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T.S. Biologically active aspidofractinine, rhazinilam, akuammiline, and vincorine alkaloids from Kopsia. J. Nat. Prod., 2007, 70(11), 1783-1789.
[http://dx.doi.org/10.1021/np0703747] [PMID: 17939738]
[140]
Snow, R.A.; Degenhardt, C.R.; Paquette, L.A. Oxidative decarboxylation of vicinal dicarboxylic acids as promoted by cuprous oxide in quinolone. Tetrahedron Lett., 1976, 17(49), 4447-4450.
[http://dx.doi.org/10.1016/0040-4039(76)80139-6]
[141]
Healy, A.R.; Vinale, F.; Lorito, M.; Westwood, N.J. Total synthesis and biological evaluation of the tetramic acid based natural product harzianic acid and its stereoisomers. Org. Lett., 2015, 17(3), 692-695.
[http://dx.doi.org/10.1021/ol503717r] [PMID: 25629709]
[142]
Vinale, F.; Flematti, G.; Sivasithamparam, K.; Lorito, M.; Marra, R.; Skelton, B.W.; Ghisalberti, E.L. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod., 2009, 72(11), 2032-2035.
[http://dx.doi.org/10.1021/np900548p] [PMID: 19894739]
[143]
Kotha, S.; Banerjee, S. Recent developments in the retro-Diels–Alder reaction. RSC Adv, 2013, 21(3), 7642-7666.
[http://dx.doi.org/10.1039/C3RA22762F]
[144]
Kim, G.; Kim, M.J.; Chung, G.; Lee, H-Y.; Han, S. (+)-Dimericbiscognienyne A: total synthesis and mechanistic investigations of the key heterodimerization. Org. Lett., 2018, 20(21), 6886-6890.
[http://dx.doi.org/10.1021/acs.orglett.8b03025] [PMID: 30350671]
[145]
Matsuda, Y.; Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep., 2016, 33(1), 26-53.
[http://dx.doi.org/10.1039/C5NP00090D] [PMID: 26497360]
[146]
Geris, R.; Simpson, T.J. Meroterpenoids produced by fungi. Nat. Prod. Rep., 2009, 26(8), 1063-1094.
[http://dx.doi.org/10.1039/b820413f] [PMID: 19636450]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy