Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Characterization of Piezoelectric Properties of Ag-NPs Doped PVDF Nanocomposite Fibres Membrane Prepared by Near Field Electrospinning

Author(s): Cheng-Tang Pan*, Karishma Dutt, Chung-Kun Yen, Ajay Kumar, Aman Chandra Kaushik, Dong-Qing Wei, Amit Kumar, Zhi-Hong Wen, Wen-Hsin Hsu* and You-Ling Shiue*

Volume 25, Issue 4, 2022

Published on: 02 March, 2021

Page: [720 - 729] Pages: 10

DOI: 10.2174/1386207324666210302100728

Price: $65

Abstract

Background: In this study, Near-field electrospinning (NFES) technique is used with a cylindrical collector to fabricate a large area permanent piezoelectric micro and nanofibers by a prepared solution. NFES requires a small electric field to fabricate fibers

Objective: The objective of this paper to investigate silver nanoparticle (Ag-NP)/ Polyvinylidene fluoride (PVDF) composite as the best piezoelectric material with improved properties to produced tremendously flexible and sensitive piezoelectric material with pertinent conductance

Methods: In this paper, we used controllable electrospinning technique based on Near-field electrospinning (NFES). The process parameter for Ag-NP/PVDF composite electrospun fiber based on pure PVDF fiber. A PVDF solution concentration of 18 wt.% and 6 wt.% silver nitrate, which is relative to the weight of PVDF wt.% with 1058 μS conductivity fibers, have been directly written on a rotating cylindrical collector for aligned fiber PVDF/Ag-NP fibers are patterned on fabricated copper (Cu) interdigitated electrodes were implemented on a thin flexible polyethylene terephthalate (PET) substrate and Polydimethylsiloxane (PDMS) used as a package to enhance the durability of the PVDF/ Ag-NP device.

Results: A notable effect on the piezoelectric response has been observed after Ag-NP addition, confirmed by XRD characterization and tapping test of Ag-NP/PVDF composite fiber. The morphology of the PVDF/Ag-NP fibers and measure diameter by scanning electron microscopy (SEM) and Optical micrograph (OM), of fiber. Finally, a diameter of PVDF/Ag-NP fibers up to ~7 μm. The high diffraction peak at 2θ = 20.5˚ was investigated by X-ray diffraction (XRD) in the piezoelectric crystal β-phase structure. Further addition of silver nanoparticles (Ag- NPs) in the PVDF solution resulted in enhancing the electromechanical conversion of the fibers from ~0.1 V to ~1 V.

Conclusion: In conclusion, we can say that confirmed and validated the addition of Ag-NP in PVDF could enhance the piezoelectric property by using NFES technique with improved crystalline phase content can be useful for a wide range of power and sensing applications like biomedical devices and energy harvesting, among others.

Keywords: PVDF, Ag-NP, polymer solution, NFES, piezoelectricity, XRD, SEM.

Graphical Abstract

[1]
Hou, Y.; Wang, L.; Wang, D.; Yang, H.; Guo, M.; Ye, Z.; Tong, X. A preliminary study on the IoT-based pavement monitoring platform based on the piezoelectric-cantilever-beam powered sensor. Adv. Mater. Sci. Eng., 2017, 2017, 1-6.
[http://dx.doi.org/10.1155/2017/4576026]
[2]
Shah, S.H.; Yaqoob, I. IEEE Smart Energy Grid Engineering (SEGE); IEEE, 2016, pp. 381-385.
[http://dx.doi.org/10.1109/SEGE.2016.7589556]
[3]
Kocakulak, M.; Butun, I. IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) IEEE, 2017, p. 1-6.
[4]
Khan, A.A.; Rana, M.M.; Huang, G.; Mei, N.; Saritas, R.; Wen, B.; Zhang, S.; Voss, P.; Rahman, E-A.; Leonenko, Z.J.J.M.C.A. Maximizing piezoelectricity by self-assembled highly porous perovskite–polymer composite films to enable the internet of things. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(27), 13619-13629.
[http://dx.doi.org/10.1039/D0TA03416A]
[5]
Bogue, R. Energy harvesting and wireless sensors: a review of recent developments. Sens. Rev., 2009, 194-199.
[http://dx.doi.org/10.1108/02602280910967594]
[6]
Sohraby, K.; Minoli, D.; Znati, T. Wireless sensor networks: technology, protocols, and applications; John wiley & sons, 2007.
[http://dx.doi.org/10.1002/047011276X]
[7]
Fang, S.; Shen, L.; Zheng, H.; Zhang, X. Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(4), 1498-1503.
[http://dx.doi.org/10.1039/C4TA04350B]
[8]
Dehghani-Sanij, A.; Tharumalingam, E.; Dusseault, M.; Fraser, R.J.R.; Reviews, S.E. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev., 2019, 104, 192-208.
[http://dx.doi.org/10.1016/j.rser.2019.01.023]
[9]
Pan, C-T.; Wang, S-Y.; Yen, C-K.; Kumar, A.; Kuo, S-W.; Zheng, J-L.; Wen, Z-H.; Singh, R.; Singh, S.P.; Khan, M.T.; Chaudhary, R.K.; Dai, X.; Chandra Kaushik, A.; Wei, D.Q.; Shiue, Y.L.; Chang, W.H. Polyvinylidene Fluoride-Added Ceramic Powder Composite Near-Field Electrospinned Piezoelectric Fiber-Based Low-Frequency Dynamic Sensors. ACS Omega, 2020, 5(28), 17090-17101.
[http://dx.doi.org/10.1021/acsomega.0c00805] [PMID: 32715194]
[10]
Hong, C-H.; Ki, S-J.; Jeon, J-H.; Che, H-l.; Park, I-K.; Kee, C-D.; Oh, I-K.J.C.s. technology, Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos. Sci. Technol., 2013, 87, 135-141.
[http://dx.doi.org/10.1016/j.compscitech.2013.08.006]
[11]
Zampetti, E.; Bearzotti, A.; Macagnano, A.J.P.E. Flexible piezoelectric transducer based on electrospun PVDF nanofibers for sensing applications. Procedia Eng., 2014, 87, 1509-1512.
[http://dx.doi.org/10.1016/j.proeng.2014.11.585]
[12]
Liu, C.; Jiang, X.; Zhao, Y.; Jiang, W.; Zhang, Z.; Yu, L.J.E.A. A solid-contact Pb2+-selective electrode based on electrospun polyaniline microfibers film as ion-to-electron transducer. Electrochim. Acta, 2017, 231, 53-60.
[http://dx.doi.org/10.1016/j.electacta.2017.01.162]
[13]
Liu, Z.; Pan, C.; Lin, L.; Huang, J.; Ou, Z.J.S.m. structures, Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater. Struct., 2013, 23(2), 025003.
[http://dx.doi.org/10.1088/0964-1726/23/2/025003]
[14]
Guan, X.; Xu, B.; Wu, M.; Jing, T.; Yang, Y.; Gao, Y.J.N.E. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy, 2020, 80, 105549.
[http://dx.doi.org/10.1016/j.nanoen.2020.105549]
[15]
Huang, Y.; You, X.; Fan, X.; Wong, C.P.; Guo, P.; Zhao, N.J.A.M.T. Near-Field Electrospinning Enabled Highly Sensitive and Anisotropic Strain Sensors. Advanced Materials Technologies, 2020, 2000550.
[16]
Pan, C-T.; Chang, C-C.; Yang, Y-S.; Yen, C-K.; Kao, Y-H.; Shiue, Y-L.J.S.; Physical, A.A. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuators A Phys., 2020, 301, 111708.
[http://dx.doi.org/10.1016/j.sna.2019.111708]
[17]
Kumar, V.; Mirzaei, A.; Bonyani, M.; Kim, K-H.; Kim, H.W.; Kim, S.S.J.T.T.A.C. Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. Trends Analyt. Chem., 2020, 115938.
[http://dx.doi.org/10.1016/j.trac.2020.115938]
[18]
Dong, L.; Jin, C.; Closson, A.B.; Trase, I.; Richards, H.R.; Chen, Z.; Zhang, J.X.J.N.E. Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs. Nano Energy, 2020, 105076.
[http://dx.doi.org/10.1016/j.nanoen.2020.105076]
[19]
Zaarour, B.; Zhu, L.; Huang, C.; Jin, X.; Alghafari, H.; Fang, J.; Lin, T.J.J.I.T. A review on piezoelectric fibers and nanowires for energy harvesting. J. Ind. Text., 2019, 1528083719870197.
[http://dx.doi.org/10.1177/1528083719870197]
[20]
Zheng, Q.; Shi, B.; Li, Z.; Wang, Z.L.J.A.S. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci. (Weinh.), 2017, 4(7), 1700029.
[http://dx.doi.org/10.1002/advs.201700029] [PMID: 28725529]
[21]
Salim, S.M.; Abdulrazig, O.D. Using Smart-Piezoelectric Materials to Generate ElectricityBRIGHT STAR JOURNAL FOR SCIENTIS RESEARCH; , 2020, 1, p. 00-01.
[22]
Xiong, J.; Chen, J.; Lee, P.S.J.A.M. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human-Robot Interface. Adv. Mater., 2020, e2002640.
[http://dx.doi.org/10.1002/adma.202002640] [PMID: 33025662]
[23]
Trigona, C.; Graziani, S.; Baglio, S.J.I.I.; Magazine, M. Changes in sensors technologies during the last ten years: Evolution or revolution? IEEE Instrum. Meas. Mag., 2020, 23(6), 18-22.
[http://dx.doi.org/10.1109/MIM.2020.9200876]
[24]
Ou, Z.; Liu, Z.; Pan, C.; Lin, L.; Chen, Y.; Lai, H. 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) IEEE, 2012, p. 125-128.
[25]
Liu, Z.; Pan, C.; Lin, L.; Lai, H. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuators A Phys., 2013, 193, 13-24.
[http://dx.doi.org/10.1016/j.sna.2013.01.007]
[26]
Sultana, A.; Sadhukhan, P.; Alam, M.M.; Das, S.; Middya, T.R.; Mandal, D. interfaces, Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: an excellent material for photoactive piezoelectric energy harvester and photodetector. ACS Appl. Mater. Interfaces, 2018, 10(4), 4121-4130.
[http://dx.doi.org/10.1021/acsami.7b17408] [PMID: 29308647]
[27]
Mokhtari, F.; Latifi, M.; Shamshirsaz, M.J.T.J.T.T.I. Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. J. Textil. Inst., 2016, 107(8), 1037-1055.
[28]
Sukumaran, S.; Chatbouri, S.; Rouxel, D.; Tisserand, E.; Thiebaud, F.; Ben Zineb, T.J.J.o.I.M.S. Structures, Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. Journal of Intelligent Material Systems and Structures, 2020, 1045389X20966058.
[29]
Ibtehaj, K.; Jumali, M.H.H.; Al-Bati, S.J.P. A novel facile preparation method of self-polarized Poly (vinylidene fluorides) nanofiber for high-performance piezoelectric nanogenerator. Polymer (Guildf.), 2020, 208, 122956.
[http://dx.doi.org/10.1016/j.polymer.2020.122956]
[30]
Roy, K.; Ghosh, S.K.; Sultana, A.; Garain, S.; Xie, M.; Bowen, C.R.; Henkel, K.; Schmeißer, D.; Mandal, D.J.A.A.N.M. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Applied Nano Materials, 2019, 2(4), 2013-2025.
[http://dx.doi.org/10.1021/acsanm.9b00033]
[31]
Hoe, Z-Y.; Chang, C-C.; Chen, J-J.J.; Yen, C-K.; Wang, S-Y.; Kao, Y-H.; Li, W-M.; Chen, W-F.; Pan, C-T.J.S. Enhancement of PVDF Sensing Characteristics by Retooling the Near-Field Direct-Write Electrospinning System. Sensors (Basel), 2020, 20(17), 4873.
[http://dx.doi.org/10.3390/s20174873] [PMID: 32872202]
[32]
Chang, C.; Fuh, Y-K.; Lin, L. TRANSDUCERS 2009-2009 International Solid-State Sensors Actuators and Microsystems Conference, 2009, p. 1485-1488.
[33]
Issa, A.A.; Al-Maadeed, M.A.; Luyt, A.S.; Ponnamma, D.; Hassan, M.K.J.C.J.o.C.R. Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C—Journal of Carbon Research, 2017, 3(4), 30.
[34]
Correia, D.M.; Costa, C.M.; Lizundia, E.; Sabater i Serra, R.; Gómez-Tejedor, J.A.; Biosca, L.T.; Meseguer-Dueñas, J.M.; Gomez Ribelles, J.L.; Lanceros-Méndez, S.J.T.J.P.C.C. Influence of cation and anion type on the formation of the electroactive β-phase and thermal and dynamic mechanical properties of poly (vinylidene fluoride)/ionic liquids blends. The Journal of Physical Chemistry, 2019, 123(45), 27917-27926.
[35]
Gebrekrstos, A.; Madras, G.; Bose, S.J.C.G. Design, Journey of Electroactive β-Polymorph of Poly (vinylidenefluoride) from Crystal Growth to Design to Applications. Cryst. Growth Des., 2019, 19(9), 5441-5456.
[36]
Gong, G.; Wu, J. Novel polyimide materials produced by electrospinning.High performance polymers-polyimides based-from chemistry to applications. High Performance Polymers: Polyimides Based—From Chemistry to Applications; InTech: Rijeka, 2012, pp. 127-144.
[37]
Lei, T.; Xu, L.; Zhan, Z.; Du, J.; Jiang, Y.; Zheng, G.; Wang, L.; Sun, D. Direct fabrication of polymer nanofiber membrane for piezoelectric vibration sensor.SENSORS; IEEE, 2011, pp. 1367-1370.
[http://dx.doi.org/10.1109/ICSENS.2011.6127198]
[38]
Rainer, A.; Forte, G.; Gargioli, C. Physico-chemical control of cell function. Front. Physiol., 2019, 10, 355.
[http://dx.doi.org/10.3389/fphys.2019.00355] [PMID: 31001139]
[39]
Bellchambers, P.; Lee, J.; Varagnolo, S.; Amari, H.; Walker, M.; Hatton, R.A.J.F.M. Elucidating the Exceptional Passivation Effect of 0.8 nm Evaporated Aluminium on Transparent Copper Films. Frontiers in Materials, 2018, 5, 71.
[http://dx.doi.org/10.3389/fmats.2018.00071]
[40]
Holmberg, S. Functionalizing C-MEMS: From Surface Modification to Structural Modification; University of California: Irvine, 2018.
[41]
Sun, D.; Chang, C.; Li, S.; Lin, L. Near-field electrospinning. Nano Lett., 2006, 6(4), 839-842.
[http://dx.doi.org/10.1021/nl0602701] [PMID: 16608294]
[42]
Bisht, G.S.; Canton, G.; Mirsepassi, A.; Kulinsky, L.; Oh, S.; Dunn-Rankin, D.; Madou, M.J. Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett., 2011, 11(4), 1831-1837.
[http://dx.doi.org/10.1021/nl2006164] [PMID: 21446719]
[43]
Meng-Meng, L.; Yun-Ze, L.; Jin-Shan, T.; Hong-Xing, Y.; Wan-Mei, S.; Zhi-Ming, Z.J.C.P.B. Dielectric properties of electrospun titanium compound/polymer composite nanofibres. Chin. Phys. B, 2010, 19(2), 028102.
[http://dx.doi.org/10.1088/1674-1056/19/2/028102]
[44]
Bisht, G.; Nesterenko, S.; Kulinsky, L.; Madou, M. A computer-controlled near-field electrospinning setup and its graphic user interface for precision patterning of functional nanofibers on 2D and 3D substrates. J. Lab. Autom., 2012, 17(4), 302-308.
[http://dx.doi.org/10.1177/2211068212446372] [PMID: 22580953]
[45]
Huang, Z-M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[46]
Khajavi, R.; Abbasipour, M.J.S.I. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica, 2012, 19(6), 2029-2034.
[http://dx.doi.org/10.1016/j.scient.2012.10.037]
[47]
Huang, Z-M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S.J.C.s. technology, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[48]
Greiner, A.; Wendorff, J.H.J.A.C.I.E. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. Engl., 2007, 46(30), 5670-5703.
[http://dx.doi.org/10.1002/anie.200604646] [PMID: 17585397]
[49]
Park, S.; Park, K.; Yoon, H.; Son, J.; Min, T.; Kim, G.J.P.I. Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication. Polym. Int., 2007, 56(11), 1361-1366.
[http://dx.doi.org/10.1002/pi.2345]
[50]
Ramakrishna, S.; Fujihara, K.; Teo, W-E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun nanofibers: solving global issues. Mater. Today, 2006, 9(3), 40-50.
[http://dx.doi.org/10.1016/S1369-7021(06)71389-X]
[51]
Torres-Giner, S.; Gimenez, E.; Lagaron, J.M.J.F.H. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocoll., 2008, 22(4), 601-614.
[http://dx.doi.org/10.1016/j.foodhyd.2007.02.005]
[52]
He, X-X.; Zheng, J.; Yu, G-F.; You, M-H.; Yu, M.; Ning, X.; Long, Y-Z.J.T.J.P.C.C. Near-field electrospinning: progress and applications. J. Phys. Chem. C, 2017, 121(16), 8663-8678.
[http://dx.doi.org/10.1021/acs.jpcc.6b12783]
[53]
Al Lawati, M.J.; Jafary, T.; Baawain, M.S.; Al-Mamun, A.J.B.; Biotechnology, A. A mini review on biofouling on air cathode of single chamber microbial fuel cell; prevention and mitigation strategies. Biocatal. Agric. Biotechnol., 2019, 22, 101370.
[http://dx.doi.org/10.1016/j.bcab.2019.101370]
[54]
Lim, J.Y.; Kim, S.; Seo, Y. Enhancement of β-phase in PVDF by electrospinning.AIP Conference Proceedings; AIP Publishing LLC, 2015, 1664, p. 070006.
[http://dx.doi.org/10.1063/1.4918441]
[55]
Chanmal, C.V.; Jog, J.P.J.I.J.P.T. Electrospun PVDF/BaTiO 3 nanocomposites: polymorphism and thermal emissivity studies. International Journal of Plastics Technology, 2011, 15(1), 1.
[http://dx.doi.org/10.1007/s12588-011-9001-5]
[56]
Kalani, S.; Kohandani, R.; Bagherzadeh, R.J.R.A. Flexible electrospun PVDF–BaTiO 3 hybrid structure pressure sensor with enhanced efficiency. RSC Advances, 2020, 10(58), 35090-35098.
[57]
Lund, A.; Gustafsson, C.; Bertilsson, H.; Rychwalski, R.W.J.C.s. technology, Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol., 2011, 71(2), 222-229.
[58]
Tiwari, S.; Gaur, A.; Kumar, C.; Maiti, P.J.E. Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy, 2019, 171, 485-492.
[http://dx.doi.org/10.1016/j.energy.2019.01.043]
[59]
Ribeiro, C.; Panadero, J.A.; Sencadas, V.; Lanceros-Méndez, S.; Tamaño, M.N.; Moratal, D.; Salmerón-Sánchez, M.; Gómez Ribelles, J.L. Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomed. Mater., 2012, 7(3), 035004.
[http://dx.doi.org/10.1088/1748-6041/7/3/035004] [PMID: 22356773]
[60]
Osman, C.B.; Nowak, S.; Garcia-Sanchez, A.; Charles, Y.; Ammar, S.; Mercone, S.; Mammeri, F.J.E.P.J. In situ monitored stretching induced α to β allotropic transformation of flexible poly (vinylidene fluoride)-CoFe2O4 hybrid films: the role of nanoparticles inclusion. Eur. Polym. J., 2016, 84, 602-611.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.09.056]
[61]
Lei, T.; Zhu, P.; Cai, X.; Yang, L.; Yang, F.J.A.P.A. Electrospinning of PVDF nanofibrous membranes with controllable crystalline phases. Appl. Phys., A Mater. Sci. Process., 2015, 120(1), 5-10.
[http://dx.doi.org/10.1007/s00339-015-9197-x]
[62]
Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly(vinylidene fluoride). Polymers (Basel), 2018, 10(3), 228.
[http://dx.doi.org/10.3390/polym10030228] [PMID: 30966263]
[63]
Sabry, R.S.; Hussein, A.D.J.M.R.E. Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations. Mater. Res. Express, 2019, 6(10), 105549.
[http://dx.doi.org/10.1088/2053-1591/ab4296]
[64]
Salimi, A.; Yousefi, A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test., 2003, 22(6), 699-704.
[http://dx.doi.org/10.1016/S0142-9418(03)00003-5]
[65]
Kakimoto, K-i.; Fukata, K.; Ogawa, H. Fabrication of fibrous BaTiO3-reinforced PVDF composite sheet for transducer application. Sens. Actuators A Phys., 2013, 200, 21-25.
[http://dx.doi.org/10.1016/j.sna.2013.03.007]
[66]
Chen, D.; Sharma, T.; Zhang, J.X. Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation. Sens. Actuators A Phys., 2014, 216, 196-201.
[http://dx.doi.org/10.1016/j.sna.2014.05.027]
[67]
Andrew, J.S.; Clarke, D.R. Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir, 2008, 24(3), 670-672.
[http://dx.doi.org/10.1021/la7035407] [PMID: 18189433]
[68]
Chang, J.; Dommer, M.; Chang, C.; Lin, L.J.N.e. Piezoelectric nanofibers for energy scavenging applications. Nano Energy, 2012, 1(3), 356-371.
[http://dx.doi.org/10.1016/j.nanoen.2012.02.003]
[69]
Wu, C.; Chou, M. Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes. Express Polym. Lett., 2020, 14(2)
[http://dx.doi.org/10.3144/expresspolymlett.2020.10]
[70]
Wu, C.M.; Chou, M.H.J.C.S. Technology, Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos. Sci. Technol., 2016, 127, 127-133.
[http://dx.doi.org/10.1016/j.compscitech.2016.03.001]
[71]
Surmenev, R.A.; Chernozem, R.V.; Pariy, I.O.; Surmeneva, M.A.J.N.E. A review on piezo-and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy, 2021, 79, 105442.
[http://dx.doi.org/10.1016/j.nanoen.2020.105442]
[72]
Eichhorn, S.J.; Sampson, W.W. Relationships between specific surface area and pore size in electrospun polymer fibre networks. J. R. Soc. Interface, 2010, 7(45), 641-649.
[http://dx.doi.org/10.1098/rsif.2009.0374] [PMID: 19812071]
[73]
Matsumoto, H.; Tanioka, A.J.M. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes, 2011, 1(3), 249-264.
[http://dx.doi.org/10.3390/membranes1030249]
[74]
Samree, K.; Srithai, P.U.; Kotchaplai, P.; Thuptimdang, P.; Painmanakul, P.; Hunsom, M.; Sairiam, S. Enhancing the Antibacterial Properties of PVDF Membrane by Hydrophilic Surface Modification Using Titanium Dioxide and Silver Nanoparticles. Membranes (Basel), 2020, 10(10), 289.
[http://dx.doi.org/10.3390/membranes10100289] [PMID: 33076583]
[75]
Li, D.; Xia, Y.J.A.m. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater., 2004, 16(14), 1151-1170.
[http://dx.doi.org/10.1002/adma.200400719]
[76]
Chakravorty, A.; Biswas, B.; Sana, S.S.; Rayan, R.A.; Lala, N.L.; Ramakrishna, S.J.M.T.P. A review on toxicity of turmeric derived Nano-Formulates against bacterial and fungal cells with special emphasis on electrospun nanofibers. Materials Today: Proceedings; , 2020, pp. 1-5.
[77]
Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release, 2014, 185, 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[78]
Pan, C-T.; Yen, C-K.; Lin, L.; Lu, Y-S.; Li, H-W.; Huang, J.C-C.; Kuo, S-W.J.R.A. Energy harvesting with piezoelectric poly (γ-benzyl-L-glutamate) fibers prepared through cylindrical near-field electrospinning. RSC Advances, 2014, 4(41), 21563-21570.
[http://dx.doi.org/10.1039/c4ra01452a]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy