Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Review Article

Diagnostic and Therapeutic Applications of Exosome Nanovesicles in Lung Cancer: State-of-The-Art

Author(s): Rezvan Mohammadi, Seyede A. Hosseini, Somaye Noruzi, Ailin Ebrahimzadeh and Amirhossein Sahebkar*

Volume 22, Issue 1, 2022

Published on: 01 March, 2021

Page: [83 - 100] Pages: 18

DOI: 10.2174/1871520621666210301085318

Price: $65

Abstract

Abstract: Lung cancer is a malignant disease with high morbidity, mortality, and poor prognosis since conventional therapeutic approaches are not sufficient. Recently, with the discovery of exosomes, researchers have implemented new approaches in the diagnosis and treatment of various malignancies such as lung cancer. Investigation of lung cancer cell-derived exosomes and analysis of their profile by advanced techniques will assist researchers to take advantage of the specific properties of these multivesicular bodies. Also, scientists have presented various encouraging methods in the treatment of lung cancer with loading drugs, proteins, microRNAs, and siRNAs inside specific antigen-targeted exosomes. This review discusses the role of exosomes as novel prognostic biomarkers (containing lipids, surface and internal proteins, miRNAs, and lncRNAs) and therapeutic agents (e.g. vaccine and targeted drug delivery systems) in lung cancer.

Keywords: Exosomes, lung cancer, exosome extraction, imaging, diagnostic biomarkers, drug delivery vehicles, cancer vaccines.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Rabinowits, G.; Gerçel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer, 2009, 10(1), 42-46.
[http://dx.doi.org/10.3816/CLC.2009.n.006] [PMID: 19289371]
[3]
Kadota, T.; Yoshioka, Y.; Fujita, Y.; Kuwano, K.; Ochiya, T. Extracellular vesicles in lung cancer-From bench to bedside. Semin. Cell Dev. Biol., 2017, 67, 39-47.
[http://dx.doi.org/10.1016/j.semcdb.2017.03.001] [PMID: 28267596]
[4]
Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol., 2013, 8(9), 1156-1162.
[5]
Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Eastern Cooperative Oncology Group. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med., 2002, 346(2), 92-98.
[http://dx.doi.org/10.1056/NEJMoa011954] [PMID: 11784875]
[6]
Morabito, A.; Carillio, G.; Daniele, G.; Piccirillo, M.C.; Montanino, A.; Costanzo, R.; Sandomenico, C.; Giordano, P.; Normanno, N.; Perrone, F.; Rocco, G.; Di Maio, M. Treatment of small cell lung cancer. Crit. Rev. Oncol. Hematol., 2014, 91(3), 257-270.
[http://dx.doi.org/10.1016/j.critrevonc.2014.03.003] [PMID: 24767978]
[7]
Rolfo, C.; Giallombardo, M.; Reclusa, P.; Sirera, R.; Peeters, M. Exosomes in lung cancer liquid biopsies: Two sides of the same coin? Lung Cancer, 2017, 104, 134-135.
[http://dx.doi.org/10.1016/j.lungcan.2016.11.014] [PMID: 27894607]
[8]
Zhou, C.; Huang, C.; Wang, J.; Huang, H.; Li, J.; Xie, Q.; Liu, Y.; Zhu, J.; Li, Y.; Zhang, D.; Zhu, Q.; Huang, C. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation. Oncogene, 2017, 36(27), 3878-3889.
[http://dx.doi.org/10.1038/onc.2017.14] [PMID: 28263966]
[9]
Alipoor, S.D.; Mortaz, E.; Varahram, M.; Movassaghi, M.; Kraneveld, A.D.; Garssen, J.; Adcock, I.M. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer. Front. Immunol., 2018, 9(819), 819.
[http://dx.doi.org/10.3389/fimmu.2018.00819] [PMID: 29720982]
[10]
Whiteside, T.L. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines (Basel), 2016, 4(4), 35.
[http://dx.doi.org/10.3390/vaccines4040035] [PMID: 27775593]
[11]
Whiteside, T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest., 2016, 126(4), 1216-1223.
[http://dx.doi.org/10.1172/JCI81136] [PMID: 26927673]
[12]
Zhang, X.; Yuan, X.; Shi, H.; Wu, L.; Qian, H.; Xu, W. Exosomes in cancer: Small particle, big player. J. Hematol. Oncol., 2015, 8(1), 83.
[http://dx.doi.org/10.1186/s13045-015-0181-x] [PMID: 26156517]
[13]
Sun, Y.; Liu, S.; Qiao, Z.; Shang, Z.; Xia, Z.; Niu, X.; Qian, L.; Zhang, Y.; Fan, L.; Cao, C-X.; Xiao, H. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal. Chim. Acta, 2017, 982, 84-95.
[http://dx.doi.org/10.1016/j.aca.2017.06.005] [PMID: 28734369]
[14]
Tickner, J.A.; Urquhart, A.J.; Stephenson, S-A.; Richard, D.J.; O’Byrne, K.J. Functions and therapeutic roles of exosomes in cancer. Front. Oncol., 2014, 4(127), 127.
[http://dx.doi.org/10.3389/fonc.2014.00127] [PMID: 24904836]
[15]
Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res. Int., 2018, 2018Article ID 8545347
[http://dx.doi.org/10.1155/2018/8545347]
[16]
Salih, M.; Zietse, R.; Hoorn, E.J. Urinary extracellular vesicles and the kidney: Biomarkers and beyond. Am. J. Physiol. Renal Physiol., 2014, 306(11), F1251-F1259.
[http://dx.doi.org/10.1152/ajprenal.00128.2014] [PMID: 24694589]
[17]
Taylor, D.D.; Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods, 2015, 87, 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2015.02.019] [PMID: 25766927]
[18]
Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol., 2006, 30(1), 3.22.1-3.22.29.,
[http://dx.doi.org/10.1002/0471143030.cb0322s30]
[19]
Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012, 56(2), 293-304.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.002] [PMID: 22285593]
[20]
Taylor, D.D.; Zacharias, W.; Gercel-Taylor, C. Exosome Isolation for Proteomic Analyses and RNA Profiling.Serum/Plasma Proteomics; Springer: Berlin, Germany, 2011, pp. 235-246.
[http://dx.doi.org/10.1007/978-1-61779-068-3_15]
[21]
Cheng, H.; Fang, H.; Xu, R.D.; Fu, M.Q.; Chen, L.; Song, X.Y.; Qian, J.Y.; Zou, Y.Z.; Ma, J.Y.; Ge, J.B. Development of a rinsing separation method for exosome isolation and comparison to conventional methods. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5074-5083.
[PMID: 31298362]
[22]
Ghosh, A.; Davey, M.; Chute, I.C.; Griffiths, S.G.; Lewis, S.; Chacko, S.; Barnett, D.; Crapoulet, N.; Fournier, S.; Joy, A.; Caissie, M.C.; Ferguson, A.D.; Daigle, M.; Meli, M.V.; Lewis, S.M.; Ouellette, R.J. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One, 2014, 9(10)e110443
[http://dx.doi.org/10.1371/journal.pone.0110443] [PMID: 25329303]
[23]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[24]
Zhou, M.; Weber, S.R.; Zhao, Y.; Chen, H.; Sundstrom, J.M. Methods for Exosome Isolation and Characterization.Exosomes; Elsevier: Amsterdam, The Netherlands, 2020, pp. 23-38.
[http://dx.doi.org/10.1016/B978-0-12-816053-4.00002-X]
[25]
Verweij, F.J.; Revenu, C.; Arras, G.; Dingli, F.; Loew, D.; Pegtel, D.M.; Follain, G.; Allio, G.; Goetz, J.G.; Zimmermann, P. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev. Cell, 2019, 48(4), 573-589.
[http://dx.doi.org/10.1016/j.devcel.2019.01.004]
[26]
Betzer, O.; Barnoy, E.; Sadan, T.; Elbaz, I.; Braverman, C.; Liu, Z.; Popovtzer, R. Advances in imaging strategies for in vivo tracking of exosomes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(2)e1594
[http://dx.doi.org/10.1002/wnan.1594] [PMID: 31840427]
[27]
Srivastava, A.; Amreddy, N.; Razaq, M.; Towner, R.; Zhao, Y.D.; Ahmed, R.A.; Munshi, A.; Ramesh, R. Exosomes as theranostics for lung cancer. Adv. Cancer Res., 2018, 139, 1-33.
[http://dx.doi.org/10.1016/bs.acr.2018.04.001] [PMID: 29941101]
[28]
Shen, L-M.; Quan, L.; Liu, J. Tracking exosomes in vitro and in vivo to elucidate their physiological functions: Implications for diagnostic and therapeutic nanocarriers. ACS Appl. Nano Mater., 2018, 1(6), 2438-2448.
[http://dx.doi.org/10.1021/acsanm.8b00601]
[29]
Walling, M.A.; Novak, J.A.; Shepard, J.R. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci., 2009, 10(2), 441-491.
[http://dx.doi.org/10.3390/ijms10020441] [PMID: 19333416]
[30]
Zong, S.; Zong, J.; Chen, C.; Jiang, X.; Zhang, Y.; Wang, Z.; Cui, Y. Single molecule localization imaging of exosomes using blinking silicon quantum dots. Nanotechnology, 2018, 29(6)065705
[http://dx.doi.org/10.1088/1361-6528/aaa375] [PMID: 29265007]
[31]
Jiang, X.; Zong, S.; Chen, C.; Zhang, Y.; Wang, Z.; Cui, Y. Gold-carbon dots for the intracellular imaging of cancer-derived exosomes. Nanotechnology, 2018, 29(17)175701
[http://dx.doi.org/10.1088/1361-6528/aaaf14] [PMID: 29438102]
[32]
Shimomura, T.; Seino, R.; Umezaki, K.; Shimoda, A.; Ezoe, T.; Ishiyama, M.; Akiyoshi, K. New lipophilic fluorescent dyes for exosome labeling: Monitoring of cellular uptake of exosomes. bioRxiv, 2020, 02931295
[33]
Park, J.; Hwang, M.; Choi, B.; Jeong, H.; Jung, J.H.; Kim, H.K.; Hong, S.; Park, J.H.; Choi, Y. Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal. Chem., 2017, 89(12), 6695-6701.
[http://dx.doi.org/10.1021/acs.analchem.7b00911] [PMID: 28541032]
[34]
Merdalimova, A.; Chernyshev, V.; Nozdriukhin, D.; Rudakovskaya, P.; Gorin, D.; Yashchenok, A. Identification and analysis of exosomes by surface-enhanced Raman spectroscopy. Appl. Sci. (Basel), 2019, 9(6), 1135.
[http://dx.doi.org/10.3390/app9061135]
[35]
Zhu, Y.; Pick, H.; Gasilova, N.; Li, X.; Lin, T-E.; Laeubli, H.P.; Zippelius, A.; Ho, P-C.; Girault, H.H. MALDI detection of exosomes: A potential tool for cancer studies. Chem, 2019, 5(5), 1318-1336.
[http://dx.doi.org/10.1016/j.chempr.2019.04.007]
[36]
Peterka, O.; Jirásko, R.; Chocholoušková, M.; Kuchař, L.; Wolrab, D.; Hájek, R.; Vrána, D.; Strouhal, O.; Melichar, B.; Holčapek, M. Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(5)158634
[http://dx.doi.org/10.1016/j.bbalip.2020.158634] [PMID: 31978556]
[37]
Grasso, L.; Wyss, R.; Weidenauer, L.; Thampi, A.; Demurtas, D.; Prudent, M.; Lion, N.; Vogel, H. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal. Bioanal. Chem., 2015, 407(18), 5425-5432.
[http://dx.doi.org/10.1007/s00216-015-8711-5] [PMID: 25925862]
[38]
Li, J.; Gong, W.; Zhu, W.; Shao, X.; Zhang, C. The functional role of exosome microRNAs in lung cancer. Open Life Sci., 2017, 12, 223.
[http://dx.doi.org/10.1515/biol-2017-0026]
[39]
Melo, S.A.; Sugimoto, H.; O’Connell, J.T.; Kato, N.; Villanueva, A.; Vidal, A.; Qiu, L.; Vitkin, E.; Perelman, L.T.; Melo, C.A.; Lucci, A.; Ivan, C.; Calin, G.A.; Kalluri, R. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 2014, 26(5), 707-721.
[http://dx.doi.org/10.1016/j.ccell.2014.09.005] [PMID: 25446899]
[40]
Trivedi, M.; Talekar, M.; Shah, P.; Ouyang, Q.; Amiji, M. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogenesis, 2016, 5(8)e250
[http://dx.doi.org/10.1038/oncsis.2016.52] [PMID: 27500388]
[41]
Ning, W.; Li, X. Diagnostic and therapeutic applications of tumor‐associated exosomes. Prescis. Radiat. Oncol., 2017, 1(1), 34-39.
[http://dx.doi.org/10.1002/pro6.13]
[42]
Lai, X.; Friedman, A. Exosomal miRs in lung cancer: A mathematical model. PLoS One, 2016, 11(12)e0167706
[http://dx.doi.org/10.1371/journal.pone.0167706] [PMID: 28002496]
[43]
Lobb, R.J.; Hastie, M.L.; Norris, E.L.; Amerongen, R.; Gorman, J.J.; Moller, A. Oncogenic transformation of lung cells results in distinct exosome protein profile similar to the cell of origin. Proteomics, 2017, 17(23-24)1600432
[http://dx.doi.org/10.1002/pmic.201600432]
[44]
Li, J.; Yu, J.; Zhang, H.; Wang, B.; Guo, H.; Bai, J.; Wang, J.; Dong, Y.; Zhao, Y.; Wang, Y. Exosomes-derived MiR-302b suppresses lung cancer cell proliferation and migration via TGFbetaRII inhibition. Cell. Physiol. Biochem., 2016, 38(5), 1715-1726.
[45]
Greening, D.W.; Gopal, S.K.; Mathias, R.A.; Liu, L.; Sheng, J.; Zhu, H.J.; Simpson, R.J. Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin. Cell Dev. Biol., 2015, 40, 60-71.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.008] [PMID: 25721809]
[46]
Greening, D.W.; Ji, H.; Chen, M.; Robinson, B.W.S.; Dick, I.M.; Creaney, J.; Simpson, R.J. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci. Rep., 2016, 6, 32643.
[http://dx.doi.org/10.1038/srep32643] [PMID: 27605433]
[47]
Blackwell, R.H.; Foreman, K.E.; Gupta, G.N. The role of cancer-derived exosomes in tumorigenicity & epithelial-to-mesenchymal transition. Cancers (Basel), 2017, 9(8), 105.
[http://dx.doi.org/10.3390/cancers9080105] [PMID: 28796150]
[48]
Cui, H.; Seubert, B.; Stahl, E.; Dietz, H.; Reuning, U.; Moreno-Leon, L.; Ilie, M.; Hofman, P.; Nagase, H.; Mari, B.; Krüger, A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 2015, 34(28), 3640-3650.
[http://dx.doi.org/10.1038/onc.2014.300] [PMID: 25263437]
[49]
Hsu, Y.L.; Hung, J.Y.; Chang, W.A.; Lin, Y.S.; Pan, Y.C.; Tsai, P.H.; Wu, C.Y.; Kuo, P.L. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene, 2017, 36(34), 4929-4942.
[http://dx.doi.org/10.1038/onc.2017.105] [PMID: 28436951]
[50]
Ludwig, N.; Whiteside, T.L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin. Ther. Targets, 2018, 22(5), 409-417.
[http://dx.doi.org/10.1080/14728222.2018.1464141] [PMID: 29634426]
[51]
Hu, J.; Cheng, Y.; Li, Y.; Jin, Z.; Pan, Y.; Liu, G.; Fu, S.; Zhang, Y.; Feng, K.; Feng, Y. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur. J. Cancer, 2014, 50(13), 2336-2350.
[http://dx.doi.org/10.1016/j.ejca.2014.06.005] [PMID: 25001183]
[52]
Ribeiro, M.F.; Zhu, H.; Millard, R.W.; Fan, G-C. Exosomes function in pro- and anti-angiogenesis. Curr. Angiogenes., 2013, 2(1), 54-59.
[PMID: 25374792]
[53]
Wilson, C.M.; Naves, T.; Vincent, F.; Melloni, B.; Bonnaud, F.; Lalloué, F.; Jauberteau, M.O. Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. J. Cell Sci., 2014, 127(Pt 18), 3983-3997.
[http://dx.doi.org/10.1242/jcs.149336] [PMID: 25037567]
[54]
Zhang, C.; Ji, Q.; Yang, Y.; Li, Q.; Wang, Z. Exosome: Function and role in cancer metastasis and drug resistance. Technol. Cancer Res. Treat., 2018, 171533033818763450
[http://dx.doi.org/10.1177/1533033818763450] [PMID: 29681222]
[55]
Rahman, M.A.; Barger, J.F.; Lovat, F.; Gao, M.; Otterson, G.A.; Nana-Sinkam, P. Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget, 2016, 7(34), 54852-54866.
[http://dx.doi.org/10.18632/oncotarget.10243] [PMID: 27363026]
[56]
Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; Zanesi, N.; Crawford, M.; Ozer, G.H.; Wernicke, D.; Alder, H.; Caligiuri, M.A.; Nana-Sinkam, P.; Perrotti, D.; Croce, C.M. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA, 2012, 109(31), E2110-E2116.
[http://dx.doi.org/10.1073/pnas.1209414109] [PMID: 22753494]
[57]
Hoshino, A.; Costa-Silva, B.; Shen, T-L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[58]
Liu, Y.; Gu, Y.; Han, Y.; Zhang, Q.; Jiang, Z.; Zhang, X.; Huang, B.; Xu, X.; Zheng, J.; Cao, X. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 2016, 30(2), 243-256.
[http://dx.doi.org/10.1016/j.ccell.2016.06.021] [PMID: 27505671]
[59]
Liu, Y.; Luo, F.; Wang, B.; Li, H.; Xu, Y.; Liu, X.; Shi, L.; Lu, X.; Xu, W.; Lu, L.; Qin, Y.; Xiang, Q.; Liu, Q. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett., 2016, 370(1), 125-135.
[http://dx.doi.org/10.1016/j.canlet.2015.10.011] [PMID: 26525579]
[60]
Barsoum, I.B.; Koti, M.; Siemens, D.R.; Graham, C.H. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res., 2014, 74(24), 7185-7190.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2598] [PMID: 25344227]
[61]
Hinz, M.; Lemke, P.; Anagnostopoulos, I.; Hacker, C.; Krappmann, D.; Mathas, S.; Dörken, B.; Zenke, M.; Stein, H.; Scheidereit, C. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med., 2002, 196(5), 605-617.
[http://dx.doi.org/10.1084/jem.20020062] [PMID: 12208876]
[62]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[63]
Hirata, T.; Yamamoto, H.; Taniguchi, H.; Horiuchi, S.; Oki, M.; Adachi, Y.; Imai, K.; Shinomura, Y. Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J. Pathol., 2007, 211(5), 516-523.
[http://dx.doi.org/10.1002/path.2142] [PMID: 17318812]
[64]
Cheng, J.; Li, L.; Liu, Y.; Wang, Z.; Zhu, X.; Bai, X. Interleukin-1α induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Mol. Med. Rep., 2012, 6(5), 955-960.
[http://dx.doi.org/10.3892/mmr.2012.1019] [PMID: 22895682]
[65]
Soriano, C.; Mukaro, V.; Hodge, G.; Ahern, J.; Holmes, M.; Jersmann, H.; Moffat, D.; Meredith, D.; Jurisevic, C.; Reynolds, P.N.; Hodge, S. Increased Proteinase Inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: Mechanism for immune evasion? Lung Cancer, 2012, 77(1), 38-45.
[http://dx.doi.org/10.1016/j.lungcan.2012.01.017] [PMID: 22387007]
[66]
Bhatia, A.; Kumar, Y. Cellular and molecular mechanisms in cancer immune escape: A comprehensive review. Expert Rev. Clin. Immunol., 2014, 10(1), 41-62.
[http://dx.doi.org/10.1586/1744666X.2014.865519] [PMID: 24325346]
[67]
Ichim, T.E.; Zhong, Z.; Kaushal, S.; Zheng, X.; Ren, X.; Hao, X.; Joyce, J.A.; Hanley, H.H.; Riordan, N.H.; Koropatnick, J.; Bogin, V.; Minev, B.R.; Min, W-P.; Tullis, R.H. Exosomes as a tumor immune escape mechanism: Possible therapeutic implications. J. Transl. Med., 2008, 6(1), 37.
[http://dx.doi.org/10.1186/1479-5876-6-37] [PMID: 18644158]
[68]
Fujita, Y.; Kadota, T.; Araya, J.; Ochiya, T.; Kuwano, K. Extracellular vesicles: New players in lung immunity. Am. J. Respir. Cell Mol. Biol., 2018, 58(5), 560-565.
[http://dx.doi.org/10.1165/rcmb.2017-0293TR] [PMID: 29115853]
[69]
Taylor, D.D.; Gerçel-Taylor, C.; Lyons, K.S.; Stanson, J.; Whiteside, T.L. T-cell apoptosis and suppression of T-cell receptor/CD3-ζ by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin. Cancer Res., 2003, 9(14), 5113-5119.
[PMID: 14613988]
[70]
Gobbo, J.; Marcion, G.; Cordonnier, M.; Dias, A.M.M.; Pernet, N.; Hammann, A.; Richaud, S.; Mjahed, H.; Isambert, N.; Clausse, V.; Rébé, C.; Bertaut, A.; Goussot, V.; Lirussi, F.; Ghiringhelli, F.; de Thonel, A.; Fumoleau, P.; Seigneuric, R.; Garrido, C. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J. Natl. Cancer Inst., 2015, 108(3)
[http://dx.doi.org/10.1093/jnci/djv330] [PMID: 26598503]
[71]
Ning, Y.; Shen, K.; Wu, Q.; Sun, X.; Bai, Y.; Xie, Y.; Pan, J.; Qi, C. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol. Lett., 2018, 199, 36-43.
[http://dx.doi.org/10.1016/j.imlet.2018.05.002] [PMID: 29800589]
[72]
Morin, P.J. Drug resistance and the microenvironment: Nature and nurture. Drug Resist. Updat., 2003, 6(4), 169-172.
[73]
Shanker, M.; Willcutts, D.; Roth, J.A.; Ramesh, R. Drug resistance in lung cancer. Lung Cancer (Auckl.), 2010, 1, 23-36.
[PMID: 28210104]
[74]
Zhao, L.; Liu, W.; Xiao, J.; Cao, B. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett., 2015, 356(2 Pt B), 339-346.
[http://dx.doi.org/10.1016/j.canlet.2014.10.027] [PMID: 25449429]
[75]
Xiao, X.; Yu, S.; Li, S.; Wu, J.; Ma, R.; Cao, H.; Zhu, Y.; Feng, J. Exosomes: Decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One, 2014, 9(2)e89534
[http://dx.doi.org/10.1371/journal.pone.0089534] [PMID: 24586853]
[76]
Jing, C.; Cao, H.; Qin, X.; Yu, S.; Wu, J.; Wang, Z.; Ma, R.; Feng, J. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol. Lett., 2018, 15(6), 9811-9817.
[http://dx.doi.org/10.3892/ol.2018.8604] [PMID: 29928355]
[77]
Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom Proteom Bioinform, 2015, 13(1), 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[78]
Kuroiwa, T.; Lee, E.G.; Danning, C.L.; Illei, G.G.; McInnes, I.B.; Boumpas, D.T. CD40 ligand-activated human monocytes amplify glomerular inflammatory responses through soluble and cell-to-cell contact-dependent mechanisms. J. Immunol., 1999, 163(4), 2168-2175.
[PMID: 10438958]
[79]
Chevillet, J.R.; Kang, Q.; Ruf, I.K.; Briggs, H.A.; Vojtech, L.N.; Hughes, S.M.; Cheng, H.H.; Arroyo, J.D.; Meredith, E.K.; Gallichotte, E.N.; Pogosova-Agadjanyan, E.L.; Morrissey, C.; Stirewalt, D.L.; Hladik, F.; Yu, E.Y.; Higano, C.S.; Tewari, M. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14888-14893.
[http://dx.doi.org/10.1073/pnas.1408301111] [PMID: 25267620]
[80]
Yang, M.; Shen, H.; Qiu, C.; Ni, Y.; Wang, L.; Dong, W.; Liao, Y.; Du, J. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur. J. Cancer, 2013, 49(3), 604-615.
[http://dx.doi.org/10.1016/j.ejca.2012.09.031] [PMID: 23099007]
[81]
Sun, Y.; Bai, Y.; Zhang, F.; Wang, Y.; Guo, Y.; Guo, L. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem. Biophys. Res. Commun., 2010, 391(3), 1483-1489.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.098] [PMID: 20034472]
[82]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[http://dx.doi.org/10.1038/nm.2537] [PMID: 22064426]
[83]
Ribeiro, M.F.; Zhu, H.; Millard, R.W.; Fan, G.C.R.; Fan, G-C. Exosomes function in pro-and anti-angiogenesis. Curr. Angiogenes., 2013, 2(1), 54-59.
[PMID: 25374792]
[84]
Wu, H.; Zhou, J.; Mei, S.; Wu, D.; Mu, Z.; Chen, B.; Xie, Y.; Ye, Y.; Liu, J. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J. Cell. Mol. Med., 2017, 21(6), 1228-1236.
[http://dx.doi.org/10.1111/jcmm.13056] [PMID: 28026121]
[85]
Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; Su, M.; Pan, H.; Shen, L.; Xie, D.; Xie, C. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin. Cancer Res., 2017, 23(17), 5311-5319.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0577] [PMID: 28606918]
[86]
Dejima, H.; Iinuma, H.; Kanaoka, R.; Matsutani, N.; Kawamura, M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol. Lett., 2017, 13(3), 1256-1263.
[http://dx.doi.org/10.3892/ol.2017.5569] [PMID: 28454243]
[87]
Grimolizzi, F.; Monaco, F.; Leoni, F.; Bracci, M.; Staffolani, S.; Bersaglieri, C.; Gaetani, S.; Valentino, M.; Amati, M.; Rubini, C.; Saccucci, F.; Neuzil, J.; Tomasetti, M.; Santarelli, L. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci. Rep., 2017, 7(1), 15277.
[http://dx.doi.org/10.1038/s41598-017-15475-6] [PMID: 29127370]
[88]
Hydbring, P.; De Petris, L.; Zhang, Y.; Brandén, E.; Koyi, H.; Novak, M.; Kanter, L.; Hååg, P.; Hurley, J.; Tadigotla, V.; Zhu, B.; Skog, J.; Viktorsson, K.; Ekman, S.; Lewensohn, R. Exosomal RNA-profiling of pleural effusions identifies adenocarcinoma patients through elevated miR-200 and LCN2 expression. Lung Cancer, 2018, 124, 45-52.
[http://dx.doi.org/10.1016/j.lungcan.2018.07.018] [PMID: 30268479]
[89]
Wei, F.; Ma, C.; Zhou, T.; Dong, X.; Luo, Q.; Geng, L.; Ding, L.; Zhang, Y.; Zhang, L.; Li, N.; Li, Y.; Liu, Y. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol. Cancer, 2017, 16(1), 132.
[http://dx.doi.org/10.1186/s12943-017-0694-8] [PMID: 28743280]
[90]
Chuah, Y.J.; Peck, Y.; Lau, J.E.J.; Hee, H.T.; Wang, D-A. Hydrogel based cartilaginous tissue regeneration: Recent insights and technologies. Biomater. Sci., 2017, 5(4), 613-631.
[http://dx.doi.org/10.1039/C6BM00863A] [PMID: 28233881]
[91]
Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol., 2013, 8(9), 1156-1162.
[http://dx.doi.org/10.1097/JTO.0b013e318299ac32] [PMID: 23945385]
[92]
Yuwen, D.L.; Sheng, B.B.; Liu, J.; Wenyu, W.; Shu, Y.Q. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(11), 2650-2658.
[PMID: 28678319]
[93]
Giallombardo, M.; Borrás, J.C.; Castiglia, M.; Van Der Steen, N.; Mertens, I.; Pauwels, P.; Peeters, M.; Rolfo, C. Exosomal miRNA analysis in Non-Small Cell Lung Cancer (NSCLC) patients’ plasma through qPCR: A feasible liquid biopsy tool. J. Vis. Exp., 2016, 111e53900
[94]
Lin, J.; Wang, Y.; Zou, Y-Q.; Chen, X.; Huang, B.; Liu, J.; Xu, Y-M.; Li, J.; Zhang, J.; Yang, W-M.; Min, Q.H.; Sun, F.; Li, S.Q.; Gao, Q.F.; Wang, X.Z. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol., 2016, 37(12), 15835-15845.
[http://dx.doi.org/10.1007/s13277-016-5410-6] [PMID: 27743380]
[95]
Liu, Q.; Yu, Z.; Yuan, S.; Xie, W.; Li, C.; Hu, Z.; Xiang, Y.; Wu, N.; Wu, L.; Bai, L.; Li, Y. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget, 2017, 8(8), 13048-13058.
[http://dx.doi.org/10.18632/oncotarget.14369] [PMID: 28055956]
[96]
Yuwen, D.; Ma, Y.; Wang, D.; Gao, J.; Li, X.; Xue, W.; Fan, M.; Xu, Q.; Shen, Y.; Shu, Y. Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol. Biomarkers Prev., 2019, 28(1), 163-173.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0569] [PMID: 30228154]
[97]
Yanaihara, N.; Caplen, N.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; Stephens, R.M.; Okamoto, A.; Yokota, J.; Tanaka, T.; Calin, G.A.; Liu, C.G.; Croce, C.M.; Harris, C.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9(3), 189-198.
[http://dx.doi.org/10.1016/j.ccr.2006.01.025] [PMID: 16530703]
[98]
Dinh, T-K.T.; Fendler, W.; Chałubińska-Fendler, J.; Acharya, S.S.; O’Leary, C.; Deraska, P.V.; D’Andrea, A.D.; Chowdhury, D.; Kozono, D. Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer. Radiat. Oncol., 2016, 11(1), 61.
[http://dx.doi.org/10.1186/s13014-016-0636-4] [PMID: 27117590]
[99]
Qin, X.; Yu, S.; Zhou, L.; Shi, M.; Hu, Y.; Xu, X.; Shen, B.; Liu, S.; Yan, D.; Feng, J. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int. J. Nanomedicine, 2017, 12, 3721-3733.
[http://dx.doi.org/10.2147/IJN.S131516] [PMID: 28553110]
[100]
Zhang, X.; Sai, B.; Wang, F.; Wang, L.; Wang, Y.; Zheng, L.; Li, G.; Tang, J.; Xiang, J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol. Cancer, 2019, 18(1), 40.
[http://dx.doi.org/10.1186/s12943-019-0959-5] [PMID: 30866952]
[101]
Kanaoka, R.; Iinuma, H.; Dejima, H.; Sakai, T.; Uehara, H.; Matsutani, N.; Kawamura, M. Usefulness of plasma exosomal microRNA-451a as a noninvasive biomarker for early prediction of recurrence and prognosis of non-small cell lung cancer. Oncology, 2018, 94(5), 311-323.
[http://dx.doi.org/10.1159/000487006] [PMID: 29533963]
[102]
He, S.; Li, Z.; Yu, Y.; Zeng, Q.; Cheng, Y.; Ji, W.; Xia, W.; Lu, S. Exosomal miR-499a-5p promotes cell proliferation, migration and EMT via mTOR signaling pathway in lung adenocarcinoma. Exp. Cell Res., 2019, 379(2), 203-213.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.035] [PMID: 30978341]
[103]
Zhang, Y.; Zhang, Y.; Yin, Y.; Li, S. Detection of circulating exosomal miR-17-5p serves as a novel non-invasive diagnostic marker for non-small cell lung cancer patients. Pathol. Res. Pract., 2019, 215(8)152466
[http://dx.doi.org/10.1016/j.prp.2019.152466] [PMID: 31146974]
[104]
Adi Harel, S.; Bossel Ben-Moshe, N.; Aylon, Y.; Bublik, D.R.; Moskovits, N.; Toperoff, G.; Azaiza, D.; Biagoni, F.; Fuchs, G.; Wilder, S.; Hellman, A.; Blandino, G.; Domany, E.; Oren, M. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ., 2015, 22(8), 1328-1340.
[http://dx.doi.org/10.1038/cdd.2014.221] [PMID: 25591738]
[105]
Silva, J.; García, V.; Zaballos, Á.; Provencio, M.; Lombardía, L.; Almonacid, L.; García, J.M.; Domínguez, G.; Peña, C.; Diaz, R.; Herrera, M.; Varela, A.; Bonilla, F. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Respir. J., 2011, 37(3), 617-623.
[http://dx.doi.org/10.1183/09031936.00029610] [PMID: 20595154]
[106]
Rodríguez, M.; Silva, J.; López-Alfonso, A.; López-Muñiz, M.B.; Peña, C.; Domínguez, G.; García, J.M.; López-Gónzalez, A.; Méndez, M.; Provencio, M.; García, V.; Bonilla, F. Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer, 2014, 53(9), 713-724.
[http://dx.doi.org/10.1002/gcc.22181] [PMID: 24764226]
[107]
Vlassov, A.V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta, 2012, 1820(7), 940-948.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.017] [PMID: 22503788]
[108]
Dvorak, H.F.; Quay, S.C.; Orenstein, N.S.; Dvorak, A.M.; Hahn, P.; Bitzer, A.M.; Carvalho, A.C. Tumor shedding and coagulation. Science, 1981, 212(4497), 923-924.
[http://dx.doi.org/10.1126/science.7195067] [PMID: 7195067]
[109]
Alipoor, S.D.; Mortaz, E.; Garssen, J.; Movassaghi, M.; Mirsaeidi, M.; Adcock, I.M. Exosomes and exosomal miRNA in respiratory diseases. Mediators Inflamm., 2016, 2016Article ID 5628404
[http://dx.doi.org/10.1155/2016/5628404]
[110]
Li, W.; Li, C.; Zhou, T.; Liu, X.; Liu, X.; Li, X.; Chen, D. Role of exosomal proteins in cancer diagnosis. Mol. Cancer, 2017, 16(1), 145.
[http://dx.doi.org/10.1186/s12943-017-0706-8] [PMID: 28851367]
[111]
Penfornis, P.; Vallabhaneni, K.C.; Whitt, J.; Pochampally, R. Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. Int. J. Cancer, 2016, 138(1), 14-21.
[http://dx.doi.org/10.1002/ijc.29417] [PMID: 25559768]
[112]
Boukouris, S.; Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin. Appl., 2015, 9(3-4), 358-367.
[http://dx.doi.org/10.1002/prca.201400114] [PMID: 25684126]
[113]
Frydrychowicz, M.; Kolecka-Bednarczyk, A.; Madejczyk, M.; Yasar, S.; Dworacki, G. Exosomes-structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol., 2015, 81(1), 2-10.
[http://dx.doi.org/10.1111/sji.12247] [PMID: 25359529]
[114]
Rolfo, C.; Castiglia, M.; Hong, D.; Alessandro, R.; Mertens, I.; Baggerman, G.; Zwaenepoel, K.; Gil-Bazo, I.; Passiglia, F.; Carreca, A.P. Liquid biopsies in lung cancer: The new ambrosia of researchers. Biochim. Biophys. Acta (BBA)-. Rev. Can., 2014, 1846(2), 539-546.
[115]
Clark, D.J.; Fondrie, W.E.; Yang, A.; Mao, L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J. Proteomics, 2016, 133, 161-169.
[http://dx.doi.org/10.1016/j.jprot.2015.12.023] [PMID: 26739763]
[116]
Giallombardo, M.; Jorge Chacartegui, J.; Reclusa, P.; Van Meerbeeck, J.P.; Alessandro, R.; Peeters, M.; Pauwels, P.; Rolfo, C.D. Follow up analysis by exosomal miRNAs in EGFR mutated Non-Small Cell Lung Cancer (NSCLC) patients during osimertinib (AZD9291) treatment: A potential prognostic biomarker tool. J. Clin. Oncol., 2016, 34(15)
[117]
Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[118]
Wang, N.; Song, X.; Liu, L.; Niu, L.; Wang, X.; Song, X.; Xie, L. Circulating exosomes contain protein biomarkers of metastatic non-small-cell lung cancer. Cancer Sci., 2018, 109(5), 1701-1709.
[http://dx.doi.org/10.1111/cas.13581] [PMID: 29573061]
[119]
Sandfeld-Paulsen, B.; Jakobsen, K.R.; Bæk, R.; Folkersen, B.H.; Rasmussen, T.R.; Meldgaard, P.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal proteins as diagnostic biomarkers in lung cancer. J. Thorac. Oncol., 2016, 11(10), 1701-1710.
[http://dx.doi.org/10.1016/j.jtho.2016.05.034] [PMID: 27343445]
[120]
Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Bæk, R.; Jakobsen, K.R.; Meldgaard, P.; Folkersen, B.H.; Rasmussen, T.R.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol. Oncol., 2016, 10(10), 1595-1602.
[http://dx.doi.org/10.1016/j.molonc.2016.10.003] [PMID: 27856179]
[121]
Jakobsen, K.R.; Paulsen, B.S.; Bæk, R.; Varming, K.; Sorensen, B.S.; Jørgensen, M.M. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J. Extracell. Vesicles, 2015, 4(1), 26659.
[http://dx.doi.org/10.3402/jev.v4.26659] [PMID: 25735706]
[122]
Gao, J.; Qiu, X.; Li, X.; Fan, H.; Zhang, F.; Lv, T.; Song, Y. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2018, 498(3), 409-415.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.114] [PMID: 29452091]
[123]
Vykoukal, J.; Sun, N.; Aguilar-Bonavides, C.; Katayama, H.; Tanaka, I.; Fahrmann, J.F.; Capello, M.; Fujimoto, J.; Aguilar, M.; Wistuba, I.I.; Taguchi, A.; Ostrin, E.J.; Hanash, S.M. Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma. Oncotarget, 2017, 8(56), 95466-95480.
[http://dx.doi.org/10.18632/oncotarget.20748] [PMID: 29221141]
[124]
Li, Y.; Zhang, Y.; Qiu, F.; Qiu, Z. Proteomic identification of exosomal LRG1: A potential urinary biomarker for detecting NSCLC. Electrophoresis, 2011, 32(15), 1976-1983.
[http://dx.doi.org/10.1002/elps.201000598] [PMID: 21557262]
[125]
Ueda, K.; Ishikawa, N.; Tatsuguchi, A.; Saichi, N.; Fujii, R.; Nakagawa, H. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci. Rep., 2014, 4, 6232.
[http://dx.doi.org/10.1038/srep06232] [PMID: 25167841]
[126]
Yamashita, T.; Kamada, H.; Kanasaki, S.; Maeda, Y.; Nagano, K.; Abe, Y.; Inoue, M.; Yoshioka, Y.; Tsutsumi, Y.; Katayama, S.; Inoue, M.; Tsunoda, S. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie, 2013, 68(12), 969-973.
[PMID: 24400444]
[127]
Munagala, R.; Aqil, F.; Gupta, R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Biol., 2016, 37(8), 10703-10714.
[http://dx.doi.org/10.1007/s13277-016-4939-8] [PMID: 26867772]
[128]
Niu, L.; Song, X.; Wang, N.; Xue, L.; Song, X.; Xie, L. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci., 2019, 110(1), 433-442.
[http://dx.doi.org/10.1111/cas.13862] [PMID: 30407700]
[129]
Huang, W-T.; Chong, I-W.; Chen, H-L.; Li, C-Y.; Hsieh, C-C.; Kuo, H-F.; Chang, C-Y.; Chen, Y-H.; Liu, Y-P.; Lu, C-Y.; Liu, Y.R.; Liu, P.L. Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett., 2019, 442, 287-298.
[http://dx.doi.org/10.1016/j.canlet.2018.10.031] [PMID: 30439539]
[130]
Pan, D.; Chen, J.; Feng, C.; Wu, W.; Wang, Y.; Tong, J.; Zhou, D. Preferential localization of MUC1 glycoprotein in exosomes secreted by non-small cell lung carcinoma cells. Int. J. Mol. Sci., 2019, 20(2), 323.
[http://dx.doi.org/10.3390/ijms20020323] [PMID: 30646616]
[131]
Zaugg, K.; Yao, Y.; Reilly, P.T.; Kannan, K.; Kiarash, R.; Mason, J.; Huang, P.; Sawyer, S.K.; Fuerth, B.; Faubert, B.; Kalliomäki, T.; Elia, A.; Luo, X.; Nadeem, V.; Bungard, D.; Yalavarthi, S.; Growney, J.D.; Wakeham, A.; Moolani, Y.; Silvester, J.; Ten, A.Y.; Bakker, W.; Tsuchihara, K.; Berger, S.L.; Hill, R.P.; Jones, R.G.; Tsao, M.; Robinson, M.O.; Thompson, C.B.; Pan, G.; Mak, T.W. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev., 2011, 25(10), 1041-1051.
[http://dx.doi.org/10.1101/gad.1987211] [PMID: 21576264]
[132]
Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis, 2016, 5(1), e189-e189.
[http://dx.doi.org/10.1038/oncsis.2015.49] [PMID: 26807644]
[133]
Muralidharan-Chari, V.; Clancy, J.W.; Sedgwick, A.; D’Souza-Schorey, C. Microvesicles: Mediators of extracellular communication during cancer progression. J. Cell Sci., 2010, 123(Pt 10), 1603-1611.
[http://dx.doi.org/10.1242/jcs.064386] [PMID: 20445011]
[134]
Carracedo, A.; Gironella, M.; Lorente, M.; Garcia, S.; Guzmán, M.; Velasco, G.; Iovanna, J.L. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res., 2006, 66(13), 6748-6755.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0169] [PMID: 16818650]
[135]
Jung, J.H.; Lee, M.Y.; Choi, D.Y.; Lee, J.W.; You, S.; Lee, K.Y.; Kim, J.; Kim, K.P. Phospholipids of tumor extracellular vesicles stratify gefitinib-resistant nonsmall cell lung cancer cells from gefitinib-sensitive cells. Proteomics, 2015, 15(4), 824-835.
[http://dx.doi.org/10.1002/pmic.201400243] [PMID: 25404199]
[136]
Fan, T.W.M.; Zhang, X.; Wang, C.; Yang, Y.; Kang, W-Y.; Arnold, S.; Higashi, R.M.; Liu, J.; Lane, A.N. Exosomal lipids for classifying early and late stage non-small cell lung cancer. Anal. Chim. Acta, 2018, 1037, 256-264.
[http://dx.doi.org/10.1016/j.aca.2018.02.051] [PMID: 30292300]
[137]
Simpson, R.J.; Kalra, H.; Mathivanan, S. ExoCarta as a resource for exosomal research. J. Extracell. Vesicles, 2012, 1(1), 18374.
[http://dx.doi.org/10.3402/jev.v1i0.18374] [PMID: 24009883]
[138]
Srivastava, A.; Amreddy, N.; Babu, A.; Panneerselvam, J.; Mehta, M.; Muralidharan, R.; Chen, A.; Zhao, Y.D.; Razaq, M.; Riedinger, N.; Kim, H.; Liu, S.; Wu, S.; Abdel-Mageed, A.B.; Munshi, A.; Ramesh, R. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci. Rep., 2016, 6, 38541.
[http://dx.doi.org/10.1038/srep38541] [PMID: 27941871]
[139]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[140]
Santarpia, M.; Liguori, A.; D’Aveni, A.; Karachaliou, N.; Gonzalez-Cao, M.; Daffinà, M.G.; Lazzari, C.; Altavilla, G.; Rosell, R. Liquid biopsy for lung cancer early detection. J. Thorac. Dis., 2018, 10(Suppl. 7), S882-S897.
[http://dx.doi.org/10.21037/jtd.2018.03.81] [PMID: 29780635]
[141]
Gold, B.; Cankovic, M.; Furtado, L.V.; Meier, F.; Gocke, C.D. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J. Mol. Diagn., 2015, 17(3), 209-224.
[http://dx.doi.org/10.1016/j.jmoldx.2015.02.001] [PMID: 25908243]
[142]
Castellanos-Rizaldos, E.; Grimm, D.G.; Tadigotla, V.; Hurley, J.; Healy, J.; Neal, P.L.; Sher, M.; Venkatesan, R.; Karlovich, C.; Raponi, M.; Krug, A.; Noerholm, M.; Tannous, J.; Tannous, B.A.; Raez, L.E.; Skog, J.K. Exosome-based detection of EGFR T790M in plasma from non-small cell lung cancer patients. Clin. Cancer Res., 2018, 24(12), 2944-2950.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3369] [PMID: 29535126]
[143]
Krug, A.K.; Enderle, D.; Karlovich, C.; Priewasser, T.; Bentink, S.; Spiel, A.; Brinkmann, K.; Emenegger, J.; Grimm, D.G.; Castellanos-Rizaldos, E.; Goldman, J.W.; Sequist, L.V.; Soria, J.C.; Camidge, D.R.; Gadgeel, S.M.; Wakelee, H.A.; Raponi, M.; Noerholm, M.; Skog, J. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol., 2018, 29(3), 700-706.
[http://dx.doi.org/10.1093/annonc/mdx765] [PMID: 29216356]
[144]
Goldie, B.J.; Dun, M.D.; Lin, M.; Smith, N.D.; Verrills, N.M.; Dayas, C.V.; Cairns, M.J. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res., 2014, 42(14), 9195-9208.
[http://dx.doi.org/10.1093/nar/gku594] [PMID: 25053844]
[145]
Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One, 2012, 7(3)e30679
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[146]
Reclusa, P.; Taverna, S.; Pucci, M.; Durendez, E.; Calabuig, S.; Manca, P.; Serrano, M.J.; Sober, L.; Pauwels, P.; Russo, A.; Rolfo, C. Exosomes as diagnostic and predictive biomarkers in lung cancer. J. Thorac. Dis., 2017, 9(Suppl. 13), S1373-S1382.
[http://dx.doi.org/10.21037/jtd.2017.10.67] [PMID: 29184676]
[147]
Fu, Y.; Li, C.; Luo, Y.; Li, L.; Liu, J.; Gui, R. Silencing of long non-coding RNA MIAT sensitizes lung cancer cells to gefitinib by epigenetically regulating miR-34a. Front. Pharmacol., 2018, 9, 82.
[http://dx.doi.org/10.3389/fphar.2018.00082] [PMID: 29487526]
[148]
Zhou, Y.; Yuan, Y.; Liu, M.; Hu, X.; Quan, Y.; Chen, X. Tumor-specific delivery of KRAS siRNA with iRGD-exosomes efficiently inhibits tumor growth. ExRNA, 2019, 1(1), 28.
[http://dx.doi.org/10.1186/s41544-019-0034-9]
[149]
Zhang, R.; Xia, Y.; Wang, Z.; Zheng, J.; Chen, Y.; Li, X.; Wang, Y.; Ming, H. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2017, 490(2), 406-414.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.055] [PMID: 28623135]
[150]
Chen, X.; Wang, Z.; Tong, F.; Dong, X.; Wu, G.; Zhang, R. lncRNA UCA1 promotes gefitinib resistance as a ceRNA to target FOSL2 by sponging miR-143 in non-small cell lung cancer. Mol. Ther. Nucleic Acids, 2020, 19, 643-653.
[http://dx.doi.org/10.1016/j.omtn.2019.10.047] [PMID: 31951852]
[151]
Zhang, W.; Cai, X.; Yu, J.; Lu, X.; Qian, Q.; Qian, W. Exosome-mediated transfer of lncRNA RP11 838N2.4 promotes erlotinib resistance in non-small cell lung cancer. Int. J. Oncol., 2018, 53(2), 527-538.
[http://dx.doi.org/10.3892/ijo.2018.4412] [PMID: 29845246]
[152]
Li, C.; Lv, Y.; Shao, C.; Chen, C.; Zhang, T.; Wei, Y.; Fan, H.; Lv, T.; Liu, H.; Song, Y. Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J. Cell. Physiol., 2019, 234(11), 20721-20727.
[http://dx.doi.org/10.1002/jcp.28678] [PMID: 31032916]
[153]
Zhang, X.; Guo, H.; Bao, Y.; Yu, H.; Xie, D.; Wang, X. Exosomal long non-coding RNA DLX6-AS1 as a potential diagnostic biomarker for non-small cell lung cancer. Oncol. Lett., 2019, 18(5), 5197-5204.
[http://dx.doi.org/10.3892/ol.2019.10892] [PMID: 31612030]
[154]
Lei, Y.; Guo, W.; Chen, B.; Chen, L.; Gong, J.; Li, W. Tumor released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non small cell lung cancer. Oncol. Rep., 2018, 40(6), 3438-3446.
[http://dx.doi.org/10.3892/or.2018.6762] [PMID: 30542738]
[155]
Wu, D.M.; Deng, S.H.; Liu, T.; Han, R.; Zhang, T.; Xu, Y. TGF-β-mediated exosomal lnc-MMP2-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Med., 2018, 7(10), 5118-5129.
[http://dx.doi.org/10.1002/cam4.1758] [PMID: 30256540]
[156]
Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem., 2010, 285(23), 17442-17452.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[157]
Nishida-Aoki, N.; Tominaga, N.; Takeshita, F.; Sonoda, H.; Yoshioka, Y.; Ochiya, T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol. Ther., 2017, 25(1), 181-191.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.009] [PMID: 28129113]
[158]
Li, X.Q.; Liu, J.T.; Fan, L.L.; Liu, Y.; Cheng, L.; Wang, F.; Yu, H.Q.; Gao, J.; Wei, W.; Wang, H.; Sun, G.P. Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget, 2016, 7(17), 24585-24595.
[http://dx.doi.org/10.18632/oncotarget.8358] [PMID: 27029054]
[159]
Meads, M.B.; Gatenby, R.A.; Dalton, W.S. Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat. Rev. Cancer, 2009, 9(9), 665-674.
[http://dx.doi.org/10.1038/nrc2714] [PMID: 19693095]
[160]
Azmi, A.S.; Bao, B.; Sarkar, F.H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev., 2013, 32(3-4), 623-642.
[http://dx.doi.org/10.1007/s10555-013-9441-9] [PMID: 23709120]
[161]
Andre, F.; Escudier, B.; Angevin, E.; Tursz, T.; Zitvogel, L. Exosomes for cancer immunotherapy. Ann. Oncol., 2004, 15(4)(Suppl. 4), iv141-iv144.
[http://dx.doi.org/10.1093/annonc/mdh918] [PMID: 15477298]
[162]
Tan, A.; De La Peña, H.; Seifalian, A.M. The application of exosomes as a nanoscale cancer vaccine. Int. J. Nanomede, 2010, 5, 889-900.
[PMID: 21116329]
[163]
Viaud, S.; Théry, C.; Ploix, S.; Tursz, T.; Lapierre, V.; Lantz, O.; Zitvogel, L.; Chaput, N. Dendritic cell-derived exosomes for cancer immunotherapy: What’s next? Cancer Res., 2010, 70(4), 1281-1285.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3276] [PMID: 20145139]
[164]
Zhou, L.; Lv, T.; Zhang, Q.; Zhu, Q.; Zhan, P.; Zhu, S.; Zhang, J.; Song, Y. The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett., 2017, 407, 84-92.
[http://dx.doi.org/10.1016/j.canlet.2017.08.003] [PMID: 28807820]
[165]
Morse, M.A.; Garst, J.; Osada, T.; Khan, S.; Hobeika, A.; Clay, T.M.; Valente, N.; Shreeniwas, R.; Sutton, M.A.; Delcayre, A.; Hsu, D-H.; Le Pecq, J-B.; Lyerly, H.K. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med., 2005, 3(1), 9.
[http://dx.doi.org/10.1186/1479-5876-3-9] [PMID: 15723705]
[166]
Besse, B.; Charrier, M.; Lapierre, V.; Dansin, E.; Lantz, O.; Planchard, D.; Le Chevalier, T.; Livartoski, A.; Barlesi, F.; Laplanche, A.; Ploix, S.; Vimond, N.; Peguillet, I.; Théry, C.; Lacroix, L.; Zoernig, I.; Dhodapkar, K.; Dhodapkar, M.; Viaud, S.; Soria, J.C.; Reiners, K.S.; Pogge von Strandmann, E.; Vély, F.; Rusakiewicz, S.; Eggermont, A.; Pitt, J.M.; Zitvogel, L.; Chaput, N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology, 2015, 5(4)e1071008
[http://dx.doi.org/10.1080/2162402X.2015.1071008] [PMID: 27141373]
[167]
Hao, S.; Bai, O.; Li, F.; Yuan, J.; Laferte, S.; Xiang, J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology, 2007, 120(1), 90-102.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02483.x] [PMID: 17073943]
[168]
Hao, S.; Ye, Z.; Yang, J.; Bai, O.; Xiang, J. Intradermal vaccination of dendritic cell-derived exosomes is superior to a subcutaneous one in the induction of antitumor immunity. Cancer Biother. Radiopharm., 2006, 21(2), 146-154.
[http://dx.doi.org/10.1089/cbr.2006.21.146] [PMID: 16706635]
[169]
Hao, S.; Bai, O.; Yuan, J.; Qureshi, M.; Xiang, J. Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes. Cell. Mol. Immunol., 2006, 3(3), 205-211.
[PMID: 16893501]
[170]
Au, J.L.S.; Yeung, B.Z.; Wientjes, M.G.; Lu, Z.; Wientjes, M.G. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities. Adv. Drug Deliv. Rev., 2016, 97, 280-301.
[http://dx.doi.org/10.1016/j.addr.2015.12.002] [PMID: 26686425]
[171]
Aqil, F.; Kausar, H.; Agrawal, A.K.; Jeyabalan, J.; Kyakulaga, A-H.; Munagala, R.; Gupta, R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp. Mol. Pathol., 2016, 101(1), 12-21.
[http://dx.doi.org/10.1016/j.yexmp.2016.05.013] [PMID: 27235383]
[172]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[173]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Bovine milk-derived exosomes for drug delivery. Cancer Lett., 2016, 371(1), 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[174]
Toffoli, G.; Hadla, M.; Corona, G.; Caligiuri, I.; Palazzolo, S.; Semeraro, S.; Gamini, A.; Canzonieri, V.; Rizzolio, F. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine (Lond.), 2015, 10(19), 2963-2971.
[http://dx.doi.org/10.2217/nnm.15.118] [PMID: 26420143]
[175]
Kim, M.; Sun, E.Y.; Jung, H.Y.; Cho, B.K.; Park, H.J. Onychopapilloma: A report of three cases presenting with various longitudinal chromonychia. Ann. Dermatol., 2016, 28(5), 655-657.
[http://dx.doi.org/10.5021/ad.2016.28.5.655] [PMID: 27746654]
[176]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond.), 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[177]
Wu, H.; Zhou, J.; Zeng, C.; Wu, D.; Mu, Z.; Chen, B.; Xie, Y.; Ye, Y.; Liu, J. Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget, 2016, 7(52), 87081-87090.
[http://dx.doi.org/10.18632/oncotarget.13499] [PMID: 27894084]
[178]
Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; Yang, X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun., 2019, 10(1), 3838.
[http://dx.doi.org/10.1038/s41467-019-11718-4] [PMID: 31444335]
[179]
Yuan, Z.; Kolluri, K.K.; Gowers, K.H.; Janes, S.M. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J. Extracell. Vesicles, 2017, 6(1)1265291
[http://dx.doi.org/10.1080/20013078.2017.1265291] [PMID: 28326166]
[180]
Bai, J.; Duan, J.; Liu, R.; Du, Y.; Luo, Q.; Cui, Y.; Su, Z.; Xu, J.; Xie, Y.; Lu, W. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J. Pharmaceut. Sci., 2019, 15(4), 461-471.
[181]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A-H.; Wilcher, S.A.; Gupta, R.C. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Lett., 2019, 449, 186-195.
[http://dx.doi.org/10.1016/j.canlet.2019.02.011] [PMID: 30771430]
[182]
Vázquez-Ríos, A.J.; Molina-Crespo, Á.; Bouzo, B.L.; López-López, R.; Moreno-Bueno, G.; de la Fuente, M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J. Nanobiotechnol, 2019, 17(1), 85.
[http://dx.doi.org/10.1186/s12951-019-0517-8] [PMID: 31319859]
[183]
Nie, H.; Xie, X.; Zhang, D.; Zhou, Y.; Li, B.; Li, F.; Li, F.; Cheng, Y.; Mei, H.; Meng, H.; Jia, L. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale, 2020, 12(2), 877-887.
[http://dx.doi.org/10.1039/C9NR09011H] [PMID: 31833519]
[184]
Chen, L.; Charrier, A.; Zhou, Y.; Chen, R.; Yu, B.; Agarwal, K.; Tsukamoto, H.; Lee, L.J.; Paulaitis, M.E.; Brigstock, D.R. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology, 2014, 59(3), 1118-1129.
[http://dx.doi.org/10.1002/hep.26768] [PMID: 24122827]
[185]
Bryniarski, K.; Ptak, W.; Jayakumar, A.; Püllmann, K.; Caplan, M.J.; Chairoungdua, A.; Lu, J.; Adams, B.D.; Sikora, E.; Nazimek, K. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J. Allergy Clin. Immunol., 2013, 132(1), 170-181.
[http://dx.doi.org/10.1016/j.jaci.2013.04.048]
[186]
Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; Sun, Q.; Wang, K.; Ba, Y.; Wang, Q.; Wang, D.; Yang, J.; Liu, P.; Xu, T.; Yan, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, 39(1), 133-144.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[187]
Katakowski, M.; Buller, B.; Zheng, X.; Lu, Y.; Rogers, T.; Osobamiro, O.; Shu, W.; Jiang, F.; Chopp, M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett., 2013, 335(1), 201-204.
[http://dx.doi.org/10.1016/j.canlet.2013.02.019] [PMID: 23419525]
[188]
Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Hagiwara, K.; Takeshita, F.; Ochiya, T. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J. Biol. Chem., 2012, 287(2), 1397-1405.
[http://dx.doi.org/10.1074/jbc.M111.288662] [PMID: 22123823]
[189]
Pan, Q.; Ramakrishnaiah, V.; Henry, S.; Fouraschen, S.; de Ruiter, P.E.; Kwekkeboom, J.; Tilanus, H.W.; Janssen, H.L.; van der Laan, L.J. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut, 2012, 61, 1330-1339.
[190]
Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012, 30(7), 1556-1564.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[191]
Ohno, S.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T.; Gotoh, N.; Kuroda, M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther., 2013, 21(1), 185-191.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[192]
Munoz, J.L.; Bliss, S.A.; Greco, S.J.; Ramkissoon, S.H.; Ligon, K.L.; Rameshwar, P. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids, 2013, 2(10)e126
[http://dx.doi.org/10.1038/mtna.2013.60] [PMID: 24084846]
[193]
Wahlgren, J.; De, L. Karlson, T.; Brisslert, M.; Vaziri Sani, F.; Telemo, E.; Sunnerhagen, P.; Valadi, H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res., 2012, 40(17)e130
[http://dx.doi.org/10.1093/nar/gks463] [PMID: 22618874]
[194]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[195]
Shtam, T.A.; Kovalev, R.A.; Varfolomeeva, E.Y.; Makarov, E.M.; Kil, Y.V.; Filatov, M.V. Exosomes are natural carriers of exogenous siRNA to human cells in vitro.Cell Commun. Signal.,, 2013, 11(88.10), 1186.
[http://dx.doi.org/10.1186/1478-811X-11-88]
[196]
Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; Miller, D.; Zhang, H.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther., 2011, 19(10), 1769-1779.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[197]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H-G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[198]
Mizrak, A.; Bolukbasi, M.F.; Ozdener, G.B.; Brenner, G.J.; Madlener, S.; Erkan, E.P.; Ströbel, T.; Breakefield, X.O.; Saydam, O. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol. Ther., 2013, 21(1), 101-108.
[http://dx.doi.org/10.1038/mt.2012.161] [PMID: 22910294]
[199]
Maguire, C.A.; Balaj, L.; Sivaraman, S.; Crommentuijn, M.H.; Ericsson, M.; Mincheva-Nilsson, L.; Baranov, V.; Gianni, D.; Tannous, B.A.; Sena-Esteves, M.; Breakefield, X.O.; Skog, J. Microvesicle-associated AAV vector as a novel gene delivery system. Mol. Ther., 2012, 20(5), 960-971.
[http://dx.doi.org/10.1038/mt.2011.303] [PMID: 22314290]
[200]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[201]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D-S.; Roh, T-Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y-K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[202]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001]
[203]
Wang, J.; Zheng, Y.; Zhao, M. Exosome-based cancer therapy: Implication for targeting cancer stem cells. Front. Pharmacol., 2017, 7, 533.
[http://dx.doi.org/10.3389/fphar.2016.00533]
[204]
Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng., 2019, 3(1)011503
[205]
Yang, M.; Wu, S.Y. The advances and challenges in utilizing exosomes for delivering cancer therapeutics. Front. Pharmacol., 2018, 9, 735.
[http://dx.doi.org/10.3389/fphar.2018.00735]
[206]
Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R.J.N. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659), 498-503.
[http://dx.doi.org/10.1038/nature22341]
[207]
Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther., 2020, 5(1), 145.
[208]
Lee, M.; Ban, J-J. Im, W. Influence of storage condition on exosome recovery. Biotechnol. Bioprocess Eng.;, 2016, 21, 299-304.
[209]
Li, Y.; Yin, Z.; Fan, J.; Zhang, S.; Yang, W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct. Target. Ther., 2019, 4(1), 47.
[http://dx.doi.org/10.1038/s41392-019-0080-7] [PMID: 31728212]
[210]
Chen, R.; Xu, X.; Qian, Z.; Zhang, C.; Niu, Y.; Wang, Z.; Sun, J.; Zhang, X.; Yu, Y. The biological functions and clinical applications of exosomes in lung cancer. Cell. Mol. Life Sci., 2019, 76(23), 4613-4633.
[http://dx.doi.org/10.1007/s00018-019-03233-y] [PMID: 31352532]
[211]
Vanni, I.; Alama, A.; Grossi, F.; Dal Bello, M.G.; Coco, S. Exosomes: A new horizon in lung cancer. Drug Discov. Today, 2017, 22(6), 927-936.
[http://dx.doi.org/10.1016/j.drudis.2017.03.004] [PMID: 28288782]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy