Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy

Author(s): Mohamed Jawed Ahsan*

Volume 22, Issue 1, 2022

Published on: 26 February, 2021

Page: [164 - 197] Pages: 34

DOI: 10.2174/1389557521666210226145837

Price: $65

Abstract

Abstract: Background: Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five membered heterocyclic rings containing nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility, and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. The presence of this nucleus in therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide.

Objectives: The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The Structure-Activity Relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored.

Methods: The most potent 1,3,4-oxadiazoles reported in the literature were highlighted in the manuscript. The anticancer activity was reported in terms of Growth Percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI.

Results: 1,3,4-Oxadiazoles are important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted, and they may act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets.

Conclusion: The discussion outlined herein will prove to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.

Keywords: Anticancer, antiproliferative, cytotoxicity, 1, 3, 4-Oxadiazoles, structure activity relationship (SAR), Molecular docking.

Graphical Abstract

[1]
WHO cancer reports 2020.
[2]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health, 2016, 4, e609-e616.
[3]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[4]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[5]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: a biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[6]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[7]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. molecules 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[8]
Boyer, J.H. Heterocyclic compounds (R C Elderfield, ed);, 1961, 7, p. 525.
[9]
Dupont, G.; Locquin, R. Traite de chimie organique (V Grignard, ed);; , 1953, 21, p. 997.
[10]
Cocohoba, J.; Dong, B.J. Raltegravir: the first HIV integrase inhibitor. Clin. Ther., 2008, 30(10), 1747-1765.
[http://dx.doi.org/10.1016/j.clinthera.2008.10.012] [PMID: 19014832]
[11]
Vardan, S.; Smulyan, H.; Mookherjee, S.; Eich, R. Effects of tiodazosin, a new antihypertensive, hemodynamics and clinical variables. Clin. Pharmacol. Ther., 1983, 34(3), 290-296.
[http://dx.doi.org/10.1038/clpt.1983.170] [PMID: 6883905]
[12]
Schlecker, R.; Thieme, P.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolahines. Tetrahedron, 1988, 44, 3289-3294.
[http://dx.doi.org/10.1016/S0040-4020(01)85962-7]
[13]
Ogata, M.; Atobe, H.; Kushida, H.; Yamamoto, K. In vitro sensitivity of mycoplasmas isolated from various animals and sewage to antibiotics and nitrofurans. J. Antibiot. (Tokyo), 1971, 24(7), 443-451.
[http://dx.doi.org/10.7164/antibiotics.24.443] [PMID: 4327309]
[14]
James, N.D.; Growcott, J.W. Zibotentan. Drugs Future, 2009, 34, 624-633.
[15]
Ducharme, Y.; Blouin, M.; Brideau, C.; Châteauneuf, A.; Gareau, Y.; Grimm, E.L.; Juteau, H.; Laliberté, S.; MacKay, B.; Massé, F.; Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R.W. The discovery of setileuton, a potent and selective 5-lipoxygenase inhibitor. ACS Med. Chem. Lett., 2010, 1(4), 170-174.
[http://dx.doi.org/10.1021/ml100029k] [PMID: 24900191]
[16]
Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Nomani, M.S.; Saraswat, P.; Gaur, R.; Singh, A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett., 2011, 21(24), 7246-7250.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.057] [PMID: 22071303]
[17]
Ahsan, M.J.; Samy, J.G.; Jain, C.B.; Dutt, K.R.; Khalilullah, H.; Nomani, M.S. Discovery of novel antitubercular 1,5-dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one analogues. Bioorg. Med. Chem. Lett., 2012, 22(2), 969-972.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.014] [PMID: 22197387]
[18]
Karabanovich, G.; Zemanová, J.; Smutný, T.; Székely, R.; Šarkan, M.; Centárová, I.; Vocat, A.; Pávková, I.; Čonka, P.; Němeček, J.; Stolaříková, J.; Vejsová, M.; Vávrová, K.; Klimešová, V.; Hrabálek, A.; Pávek, P.; Cole, S.T.; Mikušová, K.; Roh, J. Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2016, 59(6), 2362-2380.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00608] [PMID: 26948407]
[19]
Khan, M.H.; Hameed, S.; Akhtar, T.; Al-Masoudi, W.A.; Jones, P.G.; Pannecouque, C. Synthesis, crystal structure, and molecular docking study of new thiazdiazole and thiazole analogues as potential anti-HIV agents. Med. Chem. Res., 2016, 25, 2399-2409.
[http://dx.doi.org/10.1007/s00044-016-1669-9]
[20]
Khan, M.U.; Akhtar, T.; Al-Masoudi, N.A.; Stoeckli-Evans, H.; Hameed, S. Synthesis, crystal structure and anti-HIV activity of 2-adamantyl/adamantylmethyl-5-aryl-1,3,4-oxadiazoles. Med. Chem., 2012, 8(6), 1190-1197.
[PMID: 22741800]
[21]
Habibullah, K.; Shamshir, K.M.; Shivli, N.; Bahar, A. () Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1,3,4-oxadiazole derivatives. Arab. J. Chem., 2016, 2, 1029-1035.
[22]
Sangshetti, J.N.; Chabukswar, A.R.; Shinde, D.B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(1), 444-448.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.120] [PMID: 21095127]
[23]
Rathore, A.; Sudhakar, R.; Ahsan, M.J.; Ali, A.; Subbarao, N.; Jadav, S.S.; Umar, S.; Yar, M.S. In vivo anti-inflammatory activity and docking study of newly synthesized benzimidazole derivatives bearing oxadiazole and morpholine rings. Bioorg. Chem., 2017, 70, 107-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.014] [PMID: 27923497]
[24]
Sahoo, B.M.; Dinda, S.C. RaviKumar, B.V.V.; Panda, J.; Brahmkshatriya, P.S. Design, green synthesis, and anti-inflammatory activity of schiff base of 1,3,4-oxadiazole analogues. Lett. Drug Des. Discov., 2014, 11, 82-89.
[http://dx.doi.org/10.2174/15701808113109990041]
[25]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[26]
Tabatabai, S.A.; Barghi Lashkari, S.; Zarrindast, M.R.; Gholibeikian, M.; Shafiee, A. Design, Synthesis and Anticonvulsant Activity of 2-(2-Phenoxy) phenyl- 1,3,4-oxadiazole Derivatives. Iran. J. Pharm. Res., 2013, 12(Suppl.), 105-111.
[PMID: 24250678]
[27]
Vaidya, A.; Jain, S.; Jain, P.; Jain, P.; Tiwari, N.; Jain, R.; Jain, R.; Jain, A.K.; Agrawal, R.K. Synthesis and biological activities of oxadiazole derivatives: A Review. Mini Rev. Med. Chem., 2016, 16(10), 825-845.
[http://dx.doi.org/10.2174/1389557516666160211120835] [PMID: 26864552]
[28]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1,3,4-oxadiazole derivatives. Synth. Commun., 2014, 44, 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[29]
Sharma, J.; Ahsan, M.J. 1,3,4-oxadiazole: A versatile therapeutic heterocycle. Adv. Biomed. Pharm., 2014, 1, 1-10.
[http://dx.doi.org/10.19046/abp.v01i01.01]
[30]
Salahuddin, M.A. ShaharYar, M.; Mazumdar, R.; Chakraborthy, G.S.; Ahsan, M.J.; Rahman, M. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. Synth. Commun., 2017, 47, 1805-1847.
[http://dx.doi.org/10.1080/00397911.2017.1360911]
[31]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A Review Exploring Therapeutic Worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[32]
Siwach, A.; Verma, P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem, 2020, 14(1), 70.
[http://dx.doi.org/10.1186/s13065-020-00721-2] [PMID: 33372629]
[33]
Dobbelstein, M.; Moll, U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat. Rev. Drug Discov., 2014, 13(3), 179-196.
[http://dx.doi.org/10.1038/nrd4201] [PMID: 24577400]
[34]
Nieddu, V.; Pinna, G.; Marchesi, I.; Sanna, L.; Asproni, B.; Pinna, G.A.; Bagella, L.; Murineddu, G. Synthesis and antineoplastic evaluation of novel unsymmetrical 1,3,4-Oxadiazoles. J. Med. Chem., 2016, 59(23), 10451-10469.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00468] [PMID: 27801583]
[35]
Warren, R.; Liu, G. ZD4054: A specific endothelin a receptor antagonist with promising activity in metastatic castration-resistant prostate cancer. Expert Opin. Investig. Drugs, 2008, 17(8), 1237-1245.
[http://dx.doi.org/10.1517/13543784.17.8.1237] [PMID: 18616419]
[36]
Haque, S.U.; Dashwood, M.R.; Heetun, M.; Shiwen, X.; Farooqui, N.; Ramesh, B.; Welch, H.; Savage, F.J.; Ogunbiyi, O.; Abraham, D.J.; Loizidou, M. Efficacy of the specific endothelin a receptor antagonist zibotentan (ZD4054) in colorectal cancer: A preclinical study. Mol. Cancer Ther., 2013, 12(8), 1556-1567.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0975] [PMID: 23723122]
[37]
Yarom, N.; Jonker, D.J. The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov. Med., 2011, 11(57), 95-105.
[PMID: 21356164]
[38]
Yarden, Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer, 2001, 37(Suppl. 4), S3-S8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[39]
Baselga, J.; Arteaga, C.L. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol., 2005, 23(11), 2445-2459.
[http://dx.doi.org/10.1200/JCO.2005.11.890] [PMID: 15753456]
[40]
Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Albain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003, 290(16), 2149-2158.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[41]
Seto, T.; Kato, T.; Nishio, M.; Goto, K.; Atagi, S.; Hosomi, Y.; Yamamoto, N.; Hida, T.; Maemondo, M.; Nakagawa, K.; Nagase, S.; Okamoto, I.; Yamanaka, T.; Tajima, K.; Harada, R.; Fukuoka, M.; Yamamoto, N. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): An open-label, randomised, multicentre, phase 2 study. Lancet Oncol., 2014, 15(11), 1236-1244.
[http://dx.doi.org/10.1016/S1470-2045(14)70381-X] [PMID: 25175099]
[42]
Abou-Seri, S.M. Synthesis and biological evaluation of novel 2,4′-bis substituted diphenylamines as anticancer agents and potential epidermal growth factor receptor tyrosine kinase inhibitors. Eur. J. Med. Chem., 2010, 45(9), 4113-4121.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.072] [PMID: 20580136]
[43]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014] [PMID: 27987485]
[44]
Fathi, M.A.A.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Abbas, S.H.; Montano, M.M.; Abdel-Aziz, M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg. Chem., 2019, 84, 150-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.032] [PMID: 30502626]
[45]
van Nimwegen, M.J.; van de Water, B. Focal adhesion kinase: A potential target in cancer therapy. Biochem. Pharmacol., 2007, 73(5), 597-609.
[http://dx.doi.org/10.1016/j.bcp.2006.08.011] [PMID: 16997283]
[46]
Lim, S.T.; Mikolon, D.; Stupack, D.G.; Schlaepfer, D.D. FERM control of FAK function: implications for cancer therapy. Cell Cycle, 2008, 7(15), 2306-2314.
[http://dx.doi.org/10.4161/cc.6367] [PMID: 18677107]
[47]
Dunn, K.B.; Heffler, M.; Golubovskaya, V.M. Evolving therapies and FAK inhibitors for the treatment of cancer. Anticancer. Agents Med. Chem., 2010, 10(10), 722-734.
[http://dx.doi.org/10.2174/187152010794728657] [PMID: 21291406]
[48]
Zhou, J.; Yi, Q.; Tang, L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: A focused review. J. Exp. Clin. Cancer Res., 2019, 38(1), 250.
[http://dx.doi.org/10.1186/s13046-019-1265-1] [PMID: 31186061]
[49]
Lv, P.C.; Jiang, A.Q.; Zhang, W.M.; Zhu, H.L. FAK inhibitors in Cancer, A patent review. Expert Opin. Ther. Pat., 2018, 28(2), 139-145.
[http://dx.doi.org/10.1080/13543776.2018.1414183] [PMID: 29210300]
[50]
Zhang, L.R.; Liu, Z.J.; Zhang, H.; Sun, J.; Luo, Y.; Zhao, T.T.; Gong, H.B.; Zhu, H.L. Synthesis, biological evaluation and molecular docking studies of novel 2-(1,3,4-oxadiazol-2-ylthio)-1-phenylethanone derivatives. Bioorg. Med. Chem., 2012, 20(11), 3615-3621.
[http://dx.doi.org/10.1016/j.bmc.2012.03.061] [PMID: 22541051]
[51]
Sun, J.; Ren, S.Z.; Lu, X.Y.; Li, J.J.; Shen, F.Q.; Xu, C.; Zhu, H.L. Discovery of a series of 1,3,4-oxadiazole-2(3H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg. Med. Chem., 2017, 25(9), 2593-2600.
[http://dx.doi.org/10.1016/j.bmc.2017.03.038] [PMID: 28363444]
[52]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur. J. Med. Chem., 2018, 155, 905-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.049] [PMID: 29966916]
[53]
Zhang, S.; Luo, Y.; He, L.Q.; Liu, Z.J.; Jiang, A.Q.; Yang, Y.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. Bioorg. Med. Chem., 2013, 21(13), 3723-3729.
[http://dx.doi.org/10.1016/j.bmc.2013.04.043] [PMID: 23673215]
[54]
Ma, X.; Ezzeldin, H.H.; Diasio, R.B. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs, 2009, 69(14), 1911-1934.
[http://dx.doi.org/10.2165/11315680-000000000-00000] [PMID: 19747008]
[55]
Marson, C.M. Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer. Anticancer. Agents Med. Chem., 2009, 9(6), 661-692.
[http://dx.doi.org/10.2174/187152009788679976] [PMID: 19601748]
[56]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[57]
Valente, S.; Trisciuoglio, D.; De Luca, T.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Del Bufalo, D.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells. J. Med. Chem., 2014, 57(14), 6259-6265.
[http://dx.doi.org/10.1021/jm500303u] [PMID: 24972008]
[58]
Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(19), 5735-5738.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.022] [PMID: 21875796]
[59]
Mohan, C.D.; Anilkumar, N.C.; Rangappa, S.; Shanmugam, M.K.; Mishra, S.; Chinnathambi, A.; Alharbi, S.A.; Bhattacharjee, A.; Sethi, G.; Kumar, A.P. Basappa; Rangappa, K.S. Basappa; Rangappa, K.S. Novel 1,3,4-oxadiazole induces anticancer activity by targeting NF- κB in hepatocellular carcinoma cells. Front. Oncol., 2018, 8, 42.
[http://dx.doi.org/10.3389/fonc.2018.00042] [PMID: 29616186]
[60]
Chen, J.; Peng, H.; He, J.; Huan, X.; Miao, Z.; Yang, C. Synthesis of isoquinolinone-based tricycles as novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(12), 2669-2673.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.061] [PMID: 24815508]
[61]
Horvath, E.M.; Szabó, C. Poly(ADP-ribose) polymerase as a drug target for cardiovascular disease and cancer: an update. Drug News Perspect., 2007, 20(3), 171-181.
[http://dx.doi.org/10.1358/dnp.2007.20.3.1092098] [PMID: 17520094]
[62]
Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer, 2008, 8(3), 193-204.
[http://dx.doi.org/10.1038/nrc2342] [PMID: 18256616]
[63]
Pommier, Y.; O’Connor, M.J.; de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med., 2016, 8(362), 362ps17.
[http://dx.doi.org/10.1126/scitranslmed.aaf9246] [PMID: 27797957]
[64]
Murray, J.; Thomas, H.; Berry, P.; Kyle, S.; Patterson, M.; Jones, C.; Los, G.; Hostomsky, Z.; Plummer, E.R.; Boddy, A.V.; Curtin, N.J. Tumour cell retention of rucaparib, sustained PARP inhibition and efficacy of weekly as well as daily schedules. Br. J. Cancer, 2014, 110(8), 1977-1984.
[http://dx.doi.org/10.1038/bjc.2014.91] [PMID: 24556618]
[65]
Canan Koch, S.S.; Thoresen, L.H.; Tikhe, J.G.; Maegley, K.A.; Almassy, R.J.; Li, J.; Yu, X.H.; Zook, S.E.; Kumpf, R.A.; Zhang, C.; Boritzki, T.J.; Mansour, R.N.; Zhang, K.E.; Ekker, A.; Calabrese, C.R.; Curtin, N.J.; Kyle, S.; Thomas, H.D.; Wang, L.Z.; Calvert, A.H.; Golding, B.T.; Griffin, R.J.; Newell, D.R.; Webber, S.E.; Hostomsky, Z. Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: design, synthesis, and X-ray cocrystal structure. J. Med. Chem., 2002, 45(23), 4961-4974.
[http://dx.doi.org/10.1021/jm020259n] [PMID: 12408707]
[66]
Murai, J.; Huang, S.Y.N.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther., 2014, 13(2), 433-443.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0803] [PMID: 24356813]
[67]
He, X.; Li, X.Y.; Liang, J.W.; Cao, C.; Li, S.; Zhang, T.J.; Meng, F.H. Design, synthesis and anticancer activities evaluation of novel 5H-dibenzo[b,e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units. Bioorg. Med. Chem. Lett., 2018, 28(5), 847-852.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.008] [PMID: 29456106]
[68]
Binarová, P.; Tuszynski, J. Tubulin: structure, functions and roles in disease. Cells, 2019, 8(10), 1294.
[http://dx.doi.org/10.3390/cells8101294] [PMID: 31652491]
[69]
Tuma, M.C.; Malikzay, A.; Ouyang, X.; Surguladze, D.; Fleming, J.; Mitelman, S.; Camara, M.; Finnerty, B.; Doody, J.; Chekler, E.L.P.; Kussie, P.; Tonra, J.R. Antitumor activity of IMC-038525, a novel oral tubulin polymerization inhibitor. Transl. Oncol., 2010, 3(5), 318-325.
[http://dx.doi.org/10.1593/tlo.10160] [PMID: 20885894]
[70]
Ahsan, M.J.; Choupra, A.; Sharma, R.K.; Jadav, S.S.; Padmaja, P.; Hassan, M.Z.; Al-Tamimi, A.B.S.; Geesi, M.H.; Bakht, M.A. Al-Tamimi. Rationale design, synthesis, cytotoxicity evaluation and molecular docking studies of 1,3,4-oxadiazole analogues. Anticancer. Agents Med. Chem., 2018, 18(1), 121-138.
[http://dx.doi.org/10.2174/1871520617666170419124702] [PMID: 28425854]
[71]
Hu, Y.; Lu, X.; Chen, K.; Yan, R.; Li, Q.S.; Zhu, H.L. Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of combretastatin-A4 as novel antitubulin agents. Bioorg. Med. Chem., 2012, 20(2), 903-909.
[http://dx.doi.org/10.1016/j.bmc.2011.11.057] [PMID: 22192936]
[72]
Naaz, F.; Ahmad, F.; Lone, B.A.; Pokharel, Y.R.; Fuloria, N.K.; Fuloria, S.; Ravichandran, M.; Pattabhiraman, L.; Shafi, S.; Shahar Yar, M. Design and synthesis of newer 1,3,4-oxadiazole and 1,2,4-triazole based Topsentin analogues as anti-proliferative agent targeting tubulin. Bioorg. Chem., 2020, 95, 103519.
[http://dx.doi.org/10.1016/j.bioorg.2019.103519] [PMID: 31884140]
[73]
Kamal, A.; Srikanth, Y.V.V.; Shaik, T.B.; Khan, M.N.A.; Ashraf, M.; Reddy, M.K.; Kumar, K.A.; Kalivendi, S.V. 2-Anilinonicotinyl linked 1,3,4-oxadiazole derivatives: Synthesis, antitumour activity and inhibition of tubulin polymerization. MedChemComm, 2011, 2, 819-823.
[http://dx.doi.org/10.1039/c0md00177e]
[74]
Kamal, A.; Srikanth, P.S.; Vishnuvardhan, M.V.P.S.; Kumar, G.B.; Suresh Babu, K.; Hussaini, S.M.A.; Kapure, J.S.; Alarifi, A. Combretastatin linked 1,3,4-oxadiazole conjugates as a Potent Tubulin Polymerization inhibitors. Bioorg. Chem., 2016, 65, 126-136.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.007] [PMID: 26943479]
[75]
Cunningham, A.P.; Love, W.K.; Zhang, R.W.; Andrews, L.G.; Tollefsbol, T.O. Telomerase inhibition in cancer therapeutics: molecular-based approaches. Curr. Med. Chem., 2006, 13(24), 2875-2888.
[http://dx.doi.org/10.2174/092986706778521887] [PMID: 17073634]
[76]
Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med., 2016, 8(1), 69.
[http://dx.doi.org/10.1186/s13073-016-0324-x] [PMID: 27323951]
[77]
Bajaj, S.; Asati, V.; Singh, J.; Roy, P.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur. J. Med. Chem., 2015, 97, 124-141.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.051] [PMID: 25965776]
[78]
Zheng, Q.Z.; Zhang, X.M.; Xu, Y.; Cheng, K.; Jiao, Q.C.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of 2-chloropyridine derivatives possessing 1,3,4-oxadiazole moiety as potential antitumor agents. Bioorg. Med. Chem., 2010, 18(22), 7836-7841.
[http://dx.doi.org/10.1016/j.bmc.2010.09.051] [PMID: 20947362]
[79]
Sun, J.; Zhu, H.; Yang, Z.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as novel anticancer agent. Eur. J. Med. Chem., 2013, 60, 23-28.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.039] [PMID: 23279864]
[80]
Zhang, X.M.; Qiu, M.; Sun, J.; Zhang, Y.B.; Yang, Y.S.; Wang, X.L.; Tang, J.F.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents. Bioorg. Med. Chem., 2011, 19(21), 6518-6524.
[http://dx.doi.org/10.1016/j.bmc.2011.08.013] [PMID: 21962523]
[81]
Matsushita, S.; Nitanda, T.; Furukawa, T.; Sumizawa, T.; Tani, A.; Nishimoto, K.; Akiba, S.; Miyadera, K.; Fukushima, M.; Yamada, Y.; Yoshida, H.; Kanzaki, T.; Akiyama, S. The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors. Cancer Res., 1999, 59(8), 1911-1916.
[PMID: 10213500]
[82]
Javid, M.T.; Rahim, F.; Taha, M.; Nawaz, M.; Wadood, A.; Ali, M.; Mosaddik, A.; Shah, S.A.A.; Farooq, R.K. Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorg. Chem., 2018, 79, 323-333.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.011] [PMID: 29803079]
[83]
Shahzad, S.A.; Yar, M.; Bajda, M.; Jadoon, B.; Khan, Z.A.; Naqvi, S.A.R.; Shaikh, A.J.; Hayat, K.; Mahmmod, A.; Mahmood, N.; Filipek, S. Synthesis and biological evaluation of novel oxadiazole derivatives: A new class of thymidine phosphorylase inhibitors as potential anti-tumor agents. Bioorg. Med. Chem., 2014, 22(3), 1008-1015.
[http://dx.doi.org/10.1016/j.bmc.2013.12.043] [PMID: 24411198]
[84]
Khan, K.M.; Rani, M.; Ambreen, N.; Ali, M.; Hussain, S.; Perveen, S.; Choudhary, M.I. 2,5-Disubstituted-1,3,4-Oxadiazoles: Thymidine Phosphorylase Inhibitors. Med. Chem. Res., 2013, 22, 6022-6028.
[http://dx.doi.org/10.1007/s00044-013-0588-2]
[85]
Ullah, H.; Rahim, F.; Taha, M.; Uddin, I.; Wadood, A.; Shah, S.A.A.; Farooq, R.K.; Nawaz, M.; Wahab, Z.; Khan, K.M. Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorg. Chem., 2018, 78, 58-67.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.020] [PMID: 29533215]
[86]
Taha, M.; Rashid, U.; Imran, S.; Ali, M. Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase. Bioorg. Med. Chem., 2018, 26(12), 3654-3663.
[http://dx.doi.org/10.1016/j.bmc.2018.05.046] [PMID: 29853339]
[87]
Iftikhar, F.; Yaqoob, F.; Tabassum, N.; Jan, M.S.; Sadiq, A.; Tahir, S.; Batool, T.; Niaz, B.; Ansari, F.L.; Choudhary, M.I.; Rashid, U. Design, synthesis, in vitro thymidine phosphorylase inhibition, in vivo antiangiogenic and in silico studies of C-6 substituted dihydropyrimidines. Bioorg. Chem., 2018, 80, 99-111.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.026] [PMID: 29894893]
[88]
El-Mesallamy, H.O.; El Magdoub, H.M.; Chapman, J.M.; Hamdy, N.M.; Schaalan, M.F.; Hammad, L.N.; Berger, S.H. Biomolecular study of human thymidylate synthase conformer-selective inhibitors: New chemotherapeutic approach. PLoS One, 2018, 13(3), e0193810.
[http://dx.doi.org/10.1371/journal.pone.0193810] [PMID: 29538414]
[89]
Du, Q.R.; Li, D.D.; Pi, Y.Z.; Li, J.R.; Sun, J.; Fang, F.; Zhong, W.Q.; Gong, H.B.; Zhu, H.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents. Bioorg. Med. Chem., 2013, 21(8), 2286-2297.
[http://dx.doi.org/10.1016/j.bmc.2013.02.008] [PMID: 23490159]
[90]
Haibara, H.; Yamazaki, R.; Nishiyama, Y.; Ono, M.; Kobayashi, T.; Hokkyo-Itagaki, A.; Nishisaka, F.; Nishiyama, H.; Kurita, A.; Matsuzaki, T.; Izumi, H.; Kohno, K. YPC-21661 and YPC-22026, novel small molecules, inhibit ZNF143 activity in vitro and in vivo. Cancer Sci., 2017, 108(5), 1042-1048.
[http://dx.doi.org/10.1111/cas.13199] [PMID: 28192620]
[91]
VanVliet, D.S.; Tachibana, Y.; Bastow, K.F.; Huang, E.S.; Lee, K.H. Antitumor agents. 207. Design, synthesis, and biological testing of 4β-anilino-2-fluoro-4′-demethylpodophyllotoxin analogues as cytotoxic and antiviral agents. J. Med. Chem., 2001, 44(9), 1422-1428.
[http://dx.doi.org/10.1021/jm000377f] [PMID: 11311065]
[92]
Zhao, Y.; Ge, C.W.; Wu, Z.H.; Wang, C.N.; Fang, J.H.; Zhu, L. Synthesis and evaluation of aroylthiourea derivatives of 4-β-amino-4′-O-demethyl-4-desoxypodophyllotoxin as novel topoisomerase II inhibitors. Eur. J. Med. Chem., 2011, 46(3), 901-906.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.001] [PMID: 21277655]
[93]
Ren, J.; Wu, L.; Xin, W.Q.; Chen, X.; Hu, K. Synthesis and biological evaluation of novel 4β-(1,3,4-oxadiazole-2-amino)-podophyllotoxin derivatives. Bioorg. Med. Chem. Lett., 2012, 22(14), 4778-4782.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.059] [PMID: 22687745]
[94]
Kundu, B.; Das, S.K.; Paul Chowdhuri, S.; Pal, S.; Sarkar, D.; Ghosh, A.; Mukherjee, A.; Bhattacharya, D.; Das, B.B.; Talukdar, A. Discovery and mechanistic study of tailor-made quinoline derivatives as topoisomerase 1 poison with potent anticancer activity. J. Med. Chem., 2019, 62(7), 3428-3446.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01938] [PMID: 30897325]
[95]
Subba Rao, A.V.; Vishnu Vardhan, M.V.; Subba Reddy, N.V.; Srinivasa Reddy, T.; Shaik, S.P.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorg. Chem., 2016, 69, 7-19.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.002] [PMID: 27656775]
[96]
Kundu, B.; Sarkar, D.; Chowdhuri, S.P.; Pal, S.; Das, S.K.; Das, B.B.; Talukdar, A. Development of a metabolically stable topoisomerase I poison as anticancer agent. Eur. J. Med. Chem., 2020, 202, 112551.
[http://dx.doi.org/10.1016/j.ejmech.2020.112551] [PMID: 32682183]
[97]
Acar Çevik, U.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Kaya Çavuşoğlu, B.; Karaduman, A.B.; Atlıd, Ö.; Atlı Eklioğlu, Ö.; Kaplancıklı, Z.A. Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1657-1673.
[http://dx.doi.org/10.1080/14756366.2020.1806831] [PMID: 32811204]
[98]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Bharathi, E.V.; Reddy, J.S.; Balakishan, G.; Sarma, P.; Pushpavalli, S.N.; Pal-Bhadra, M.; Juvekar, A.; Sen, S.; Zingde, S. Synthesis, anticancer activity and mitochondrial mediated apoptosis inducing ability of 2,5-diaryloxadiazole-pyrrolobenzodiazepine conjugates. Bioorg. Med. Chem., 2010, 18(18), 6666-6677.
[http://dx.doi.org/10.1016/j.bmc.2010.07.067] [PMID: 20732817]
[99]
Selvakumar, P.; Lakshmikuttyamma, A.; Dimmock, J.R.; Sharma, R.K. Methionine aminopeptidase 2 and cancer. Biochim. Biophys. Acta, 2006, 1765(2), 148-154.
[PMID: 16386852]
[100]
Sun, J.; Li, M.H.; Qian, S.S.; Guo, F.J.; Dang, X.F.; Wang, X.M.; Xue, Y.R.; Zhu, H.L. Synthesis and antitumor activity of 1,3,4-oxadiazole possessing 1,4-benzodioxan moiety as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(10), 2876-2879.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.068] [PMID: 23582273]
[101]
Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[102]
Musumeci, F.; Radi, M.; Brullo, C.; Schenone, S. Vascular endothelial growth factor (VEGF) receptors: Drugs and new inhibitors. J. Med. Chem., 2012, 55(24), 10797-10822.
[http://dx.doi.org/10.1021/jm301085w] [PMID: 23098265]
[103]
Bhanushali, U.; Kalekar-Joshi, S.; Kulkarni-Munshi, R.; Yellanki, S.; Medishetty, R.; Kulkarni, P.; Chelakara, R.S. Design, Synthesis and evaluation of 5-pyridin-4-yl-2-thioxo-[1,3,4]oxadiazol-3-yl derivatives as anti-angiogenic agents targeting VEGFR-2. Anticancer. Agents Med. Chem., 2017, 17(1), 67-74.
[PMID: 27141880]
[104]
Shahazadi, I.; Zahoor, A.F.; Rasul, A.; Rasool, N.; Raza, Z.; Faisal, S.; Parveen, B.; Kamal, S.; Zia-ur-Rahman, M.; Zahid, F.M. Synthesis, anticancer, and computational studies of 1, 3,4-oxadiazole-purine derivatives. J. Heterocycl. Chem., 2020, 57, 2782-2794.
[http://dx.doi.org/10.1002/jhet.3987]
[105]
Bhatt, P.; Sen, A.; Jha, A. Design and ultrasound assisted synthesis of novel 1,3,4-oxadiazole drugs for anti-cancer activity. ChemistrySelect, 2020, 5, 3347-3354.
[http://dx.doi.org/10.1002/slct.201904412]
[106]
Ananth, A.H.; Manikandan, N.; Rajan, R.K.; Elancheran, R.; Lakshmithendral, K.; Ramanathan, M.; Bhattacharjee, A.; Kabilan, S. Design, synthesis, and biological Evaluation of 2-(2-Bromo-3-nitrophenyl)-5-phenyl-1,3,4-oxadiazole derivatives as possible anti-breast cancer agents. Chem. Biodivers., 2020, 17(2), e1900659.
[http://dx.doi.org/10.1002/cbdv.201900659] [PMID: 31995280]
[107]
Rayam, P.; Polkam, N.; Kuntala, N.; Banothu, V.; Anantaraju, H.S.; Perumal, Y.; Balasubramanian, S.; Anireddy, J.S. Design and synthesis of oxaprozin-1,3,4-oxadiazole hybrids as potential anticancer and antibacterial agents. J. Heterocycl. Chem., 2020, 57, 1071-1082.
[http://dx.doi.org/10.1002/jhet.3842]
[108]
Sreenivasulu, R.; Tej, M.B.; Jadav, S.S.; Sujitha, P.; Kumar, C.G.; Raju, R.R. Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues. J. Mol. Struct., 2020, 1208, 127875.
[http://dx.doi.org/10.1016/j.molstruc.2020.127875]
[109]
Mamatha, S.V.; Belagali, S.L.; Bhat, M. Synthesis, characterisation and evaluation of oxadiazole as promising anticancer agent. SN Appl. Sci., 2020, 2, 882.
[http://dx.doi.org/10.1007/s42452-020-2511-z]
[110]
Ahsan, M.J.; Jadav, S.S.; Geesi, M.H.; Bakht, M.A.; Hassan, M.Z.; Riadi, Y. Salahuddin, Hussain, A; Khalilullah, H. Synthesis, antiproliferative, and antioxidant activities of substituted N-[(1,3,4-oxadiazol-2-yl)methyl]benzamines. Lett. Drug Des. Discov., 2020, 17, 145-154.
[http://dx.doi.org/10.2174/1570180816666181113110033]
[111]
Ahsan, M.J.; Hassan, M.Z.; Jadav, S.S.; Geesi, M.H.; Bakht, M.A.; Riadi, Y. Salahuddin, Akhtar, M.S.; Mallick, M.S.; Akhtar, M.H. Synthesis and Biological Potentials of 5-aryl-N-[4-(trifluoromethyl) phenyl]-1,3,4-oxadiazol-2-amines. Lett. Org. Chem., 2020, 17, 133-140.
[http://dx.doi.org/10.2174/1570178616666190401193928]
[112]
Popov, S.A.; Semenova, M.D.; Baev, D.S.; Frolova, T.S.; Shults, E.E.; Wang, C.; Turks, M. Synthesis of cytotoxic urs-12-ene- and 28-nor-urs-12-ene- type conjugates with amino- and mercapto-1,3,4-oxadiazoles and mercapto-1,2,4-triazoles. Steroids, 2020, 153, 108524.
[113]
Zhang, J.; Wang, X.; Yang, J.; Guo, L.; Wang, X.; Song, B.; Dong, W.; Wang, W. Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. Eur. J. Med. Chem., 2020, 186, 111897.
[http://dx.doi.org/10.1016/j.ejmech.2019.111897] [PMID: 31761382]
[114]
Nassar, I.F.; El-kady, D.S.; Awad, H.M.; El-Sayed, W.A. Design, Synthesis, and Anticancer Activity of New Oxadiazolyl-Linked and Thiazolyl-Linked Benzimidazole Arylidines, Thioglycoside, and acyclic analogs. J. Heterocycl. Chem., 2019, 56, 1086-1100.
[http://dx.doi.org/10.1002/jhet.3496]
[115]
Patil, S.R.; Sarkate, A.P.; Karnik, K.S.; Arsondkar, A.; Patil, V.; Sangshetti, J.N.; Bobade, A.S.; Shinde, D.B. A Facile synthesis of substituted 2-(5-(Benzylthio)-1,3,4-oxadiazol-2-yl)pyrazine using microwave irradiation and conventional method with antioxidant and anticancer activities. J. Heterocycl. Chem., 2019, 56, 859-866.
[http://dx.doi.org/10.1002/jhet.3464]
[116]
Santosh, R.; Prabhu, A.; Selvam, M.K.; Krishna, P.M.; Nagaraja, G.K.; Rekha, P.D. Design, synthesis, and pharmacology of some oxadiazole and hydroxypyrazoline hybrids bearing thiazoyl scaffold: antiproliferative activity, molecular docking and DNA binding studies. Heliyon, 2019, 5(2), e01255.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01255] [PMID: 30886919]
[117]
Rashid, M.; Husain, A.; Mishra, R.; Karim, S.; Khan, S.; Ahmad, M.; Al-wabel, N.; Husain, A.; Ahmad, A.; Khan, S.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolothiadiazines as a source of new anticancer agents. Arab. J. Chem., 2019, 12, 3202-3224.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.019]
[118]
Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H.A.; Ramanathan, M.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem., 2019, 168, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.033] [PMID: 30798049]
[119]
Caneschi, W.; Enes, K.B.; Carvalho de Mendonça, C.; de Souza Fernandes, F.; Miguel, F.B.; da Silva Martins, J.; Le Hyaric, M.; Pinho, R.R.; Duarte, L.M.; Leal de Oliveira, M.A.; Dos Santos, H.F.; Paz Lopes, M.T.; Dittz, D.; Silva, H.; Costa Couri, M.R. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2019, 165, 18-30.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.001] [PMID: 30654237]
[120]
Hassanzadeh, F.; Sadeghi-Aliabadi, H.; Jafari, E.; Sharifzadeh, A.; Dana, N. Synthesis and cytotoxic evaluation of some quinazolinone- 5-(4-chlorophenyl) 1, 3, 4-oxadiazole conjugates. Res. Pharm. Sci., 2019, 14(5), 408-413.
[http://dx.doi.org/10.4103/1735-5362.268201] [PMID: 31798657]
[121]
Nguyen Tien, C.; Nguyen Van, T.; Le Duc, G.; Vu Quoc, M.; Vu Quoc, T.; Pham Chien, T.; Nguyen Huy, H.; Dang Thi Tuyet, A.; Nguyen Van, T.; Van Meervelt, L. Synthesis, structure and in vitro cytotoxicity testing of some 1,3,4-oxadiazoline derivatives from 2-hydroxy-5-iodobenzoic acid. Acta Crystallogr. C Struct. Chem., 2018, 74(Pt 7), 839-846.
[http://dx.doi.org/10.1107/S2053229618008719] [PMID: 29973423]
[122]
Rayam, P.; Polkam, N.; Kummari, B.; Banothu, V.; Gandamalla, D.; Yellu, N.R.; Anireddya, J.S. Synthesis and biological evaluation of new ibuprofen-1,3,4-oxadiazole-1,2,3-triazole Hybrids. J. Heterocycl. Chem., 2018, 56, 296-305.
[http://dx.doi.org/10.1002/jhet.3409]
[123]
Madhavilatha, B.; Bhattacharjee, D.; Sabitha, G.; Reddy, B.V.S.; Yadav, J.S.; Jain, N.; Reddy, B.J.M. Synthesis and In Vitro anticancer activity of novel 1,3,4-Oxadiazole Linked 1,2,3-Triazole/Isoxazole Hybrids. J. Heterocycl. Chem., 2018, 55, 863-870.
[http://dx.doi.org/10.1002/jhet.3110]
[124]
Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.013] [PMID: 30015176]
[125]
Srinivas, M.; Satyaveni, S.; Ram, B. Design and synthesis of 1,3,4-oxadiazole incorporated indole derivatives as anticancer agents. J. Pharm. Res., 2018, 12, 758-763.
[126]
Amer, H.H.; Ali, O.M.; Salama, A.A.; El-gendy, M.S.; Houssin, O.K. Synthesis of some new 1,3,4-oxadiazole derivatives bearing sugars and α-aminophosphonate derived from 4-nitrophenol as anticancer agents. Natl. J. Physiol. Pharm. Pharmacol., 2018, 8, 1275-1286.
[127]
Ahsan, M.J.; Yadav, R.P.; Saini, S.; Hassan, M.Z.; Jadav, S.S.; Geesi, M.H.; Bakht, M.A.; Al-Tamimi, A.B.S.; Khalilullah, K.; Riadi, Y. Synthesis, cytotoxic evaluation, and molecular docking studies of new oxadiazole analogues. Lett. Org. Chem., 2018, 15, 49-56.
[128]
Ahsan, M.J. Synthesis and cytotoxicity evaluation of [(2,4-dichlorophenoxy)methyl]-5-aryl-1,3,4-oxadiazole/4H-1,2,4-triazole analogues. Turk. J. Chem., 2018, 42, 1334-1343.
[http://dx.doi.org/10.3906/kim-1803-25]
[129]
Ahsan, M.J.; Meena, R.; Dubey, S.; Khan, V.; Manda, S.; Jadav, S.S.; Sharma, P.; Geesi, M.H.; Hassan, M.Z.; Bakht, M.A.; Akhter, M.H. Salahuddin, Gundla, R. Synthesis and biological potentials of some new 1,3,4-oxadiazole analogues. Med. Chem. Res., 2018, 27, 864-883.
[http://dx.doi.org/10.1007/s00044-017-2109-1]
[130]
Ziedan, N.I.; Hamdy, R.; Cavaliere, A.; Kourti, M.; Prencipe, F.; Brancale, A.; Jones, A.T.; Westwell, A.D. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor. Chem. Biol. Drug Des., 2017, 90(1), 147-155.
[http://dx.doi.org/10.1111/cbdd.12936] [PMID: 28067996]
[131]
Polkam, N.; Kummari, B.; Rayam, P.; Brahma, U.; Naidu, V.G.M.; Balasubramanian, S.; Anireddy, J.S. Synthesis of 2,5-Disubstituted-1,3,4-oxadiazole derivatives and their evaluation as anticancer and antimycobacterial agents. ChemistrySelect, 2017, 2, 5492-5496.
[http://dx.doi.org/10.1002/slct.201701101]
[132]
Gu, W.; Jin, X.Y.; Li, D.D.; Wang, S.F.; Tao, X.B.; Chen, H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett., 2017, 27(17), 4128-4132.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.033] [PMID: 28733083]
[133]
Ragab, F.A.F.; Abou-Seri, S.M.; Abdel-Aziz, S.A.; Alfayomy, A.M.; Aboelmagd, M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur. J. Med. Chem., 2017, 138, 140-151.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.026] [PMID: 28667871]
[134]
Yadav, N.; Kumar, P.; Chhikara, A.; Chopra, M. Development of 1,3,4-oxadiazole thione based novel anticancer agents: Design, synthesis and in-vitro studies. Biomed. Pharmacother., 2017, 95, 721-730.
[http://dx.doi.org/10.1016/j.biopha.2017.08.110] [PMID: 28888209]
[135]
Vinayak, A.; Sudha, M.; Lalita, K.S. Design, synthesis and characterization of novel amine derivatives of 5-[5-(chloromethyl)-1,3,4-oxadiazol-2-yl]-2-(4-fluorophenyl)pyridine as a new class of anticancer agents. Dhaka Univ. J. Pharm. Sci., 2017, 16, 11-19.
[http://dx.doi.org/10.3329/dujps.v16i1.33377]
[136]
Ahmad, A.; Varshney, H.; Rauf, A.; Sherwani, A.; Owais, M. Synthesis and anticancer activity of long chain substituted 1,3,4-oxadiazol-2-thione, 1,2,4-triazol-3-thione and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives. Arab. J. Chem., 2017, 10, S3347-S3357.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.015]
[137]
El-Sayed, W.A.; El-Sofany, W.I.; Hussein, H.A.R.; Fathy, N.M. Synthesis and anticancer activity of new [(Indolyl)pyrazolyl]-1,3,4-oxadiazole thioglycosides and acyclic nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2017, 36(7), 474-495.
[http://dx.doi.org/10.1080/15257770.2017.1327665] [PMID: 28613111]
[138]
Madhavi, S.; Sreenivasulu, R.; Raju, R.R. Synthesis and biological evaluation of oxadiazole incorporated ellipticine derivatives as anticancer agents. Monatsh. Chem., 2017, 148, 933-938.
[http://dx.doi.org/10.1007/s00706-016-1790-y]
[139]
Roy, P.P.; Bajaj, S.; Maity, T.K.; Singh, J. Synthesis and evaluation of anticancer activity of 1,3,4-oxadiazole derivatives against ehrlich ascites carcinoma bearing mice and their correlation with histopathology of liver. Indian J. Pharm. Edu. Res., 2017, 51, 260-269.
[http://dx.doi.org/10.5530/ijper.51.2.31]
[140]
Kaya, B.; Kaplancıklı, Z.A.; Yurttaş, L.; Çiftçi, G.A. Synthesis and biological evaluation of some new pyrimidine bearing 2,5-disubstituted 1,3,4-oxadiazole derivatives as cytotoxic agents. Turk. J. Biochem., 2016, 42, 131-137.
[141]
Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.058] [PMID: 27156770]
[142]
Hamdy, R.; Ziedan, N.I.; Ali, S.; Bordoni, C.; El-Sadek, M.; Lashin, E.; Brancale, A.; Jones, A.T.; Westwell, A.D. Synthesis and evaluation of 5-(1H-indol-3-yl)-N-aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1037-1040.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.061] [PMID: 28087272]
[143]
Zhao, J.J.; Wang, X.F.; Li, B.L.; Zhang, R.L.; Li, B.; Liu, Y.M.; Li, C.W.; Liu, J.B.; Chen, B.Q. Synthesis and in vitro antiproliferative evaluation of novel nonsymmetrical disulfides bearing 1,3,4-oxadiazole moiety. Bioorg. Med. Chem. Lett., 2016, 26(18), 4414-4416.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.014] [PMID: 27542307]
[144]
Naresh Kumar, R.; Poornachandra, Y.; Nagender, P.; Santhosh Kumar, G.; Krishna Swaroop, D.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel nicotinohydrazide and (1,3,4-oxadiazol-2-yl)-6-(trifluoromethyl)pyridine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4829-4831.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.020] [PMID: 27561719]
[145]
Chaves, J.D.S.; Tunes, L.G. de J Franco, C.H.; Francisco, T.M.; Corrêa, C.C.; Murta, S.M.F.; Monte-Neto, R.L.; Silva, H.; Fontes, A.P.S.; de Almeida, M.V. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur. J. Med. Chem., 2017, 127, 727-739.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.052] [PMID: 27823888]
[146]
Ahsan, M.J.; Shastri, S.; Yadav, R.; Hassan, M.Z.; Bakht, M.A.; Jadav, S.S.; Yasmin, S. Synthesis and anticancer activity of some quinoline and oxadiazole analogues. Org. Chem. Int, 2016, 2016
[147]
Ahsan, M.J. Rationale design, synthesis and anticancer activity of 2,5-disubstituted-1,3,4-oxadiazole analogues. ChemSelect., 2016, 1, 4713-4720.
[148]
Agarwal, M.; Singh, V.; Sharma, S.K.; Sharma, P.; Ansari, M.Y.; Jadav, S.S.; Yasmin, S.; Sreenivasulu, R.; Hassan, M.Z.; Saini, V.; Ahsan, M.J. Design and synthesis of new 2,5-disubstituted-1,3,4-oxadiazole analogues as anticancer agents. Med. Chem. Res., 2016, 25, 2289-2303.
[http://dx.doi.org/10.1007/s00044-016-1672-1]
[149]
Hatti, I.; Sreenivasulu, R.; Jadav, S.S.; Ahsan, M.J.; Raju, R.R. Synthesis and biological evaluation of 1,3,4-oxadiazole-linked bisindole derivatives as anticancer agents. Monatsh. Chem., 2015, 146, 1699-1705.
[http://dx.doi.org/10.1007/s00706-015-1448-1]
[150]
Mochona, B.; Jackson, T.; McCauley, D.; Mazzio, E.; Redda, K.K. Synthesis and Cytotoxic Evaluation of Pyrrole Hetarylazoles Containing Benzimidazole/Pyrazolone/1,3,4-Oxadiazole Motifs. J. Heterocycl. Chem., 2016, 53(6), 1871-1877.
[http://dx.doi.org/10.1002/jhet.2501] [PMID: 27956751]
[151]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C.H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(8), 1692-1699.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.001] [PMID: 25801936]
[152]
Salahuddin; Mazumder, A.; Shaharyar, M. Synthesis, antibacterial and anticancer evaluation of 5-substituted (1,3,4-oxadiazol-2-yl)quinoline. Med. Chem. Res., 2015, 24, 2514-2528.
[http://dx.doi.org/10.1007/s00044-014-1308-2]
[153]
Mochona, B.; Mazzio, E.; Gangapurum, M.; Mateeva, N.; Redda, K.K. Synthesis of Some Benzimidazole Derivatives bearing 1,3,4-oxadiazole moiety as anticancer agents. Chem. Sci. Trans., 2015, 4(2), 534-540.
[PMID: 26451350]
[154]
Lelyukh, M.; Havrylyuk, D.; Lesyk, R. Synthesis and anticancer activity of isatin, oxadiazole and 4-thiazolidinone based conjugates. Chem. Chemical Tech., 2015, 9, 30-36.
[http://dx.doi.org/10.23939/chcht09.01.029]
[155]
Ahsan, M.J.; Sharma, J.; Bhatia, S.; Goyal, P.K.; Shankhla, K.; Didel, M. Synthesis of 2,5-disubstituted-1,3,4-oxadiazole analogs as novel anticancer and antimicrobial agents. Lett. Drug Des. Discov., 2014, 11, 413-419.
[http://dx.doi.org/10.2174/1570180810666131113211647]
[156]
Ahsan, M.J.; Sharma, J.; Singh, M.; Singh, S.; Yasmin, Y. Synthesis, anticancer activity of N-aryl-5-substituted-1,3,4-oxadiazol-2-amine analogues. BioMed Res. Int., 2014, 2014
[157]
Chaaban, I.; El Khawass, S.M.; Abd El Razik, H.A.; El Salamouni, N.S.; Redondo-Horcajo, M.; Barasoain, I.; Díaz, J.F.; Yli-Kauhaluoma, J.; Moreira, V.M. Synthesis and biological evaluation of new oxadiazoline-substituted naphthalenyl acetates as anticancer agents. Eur. J. Med. Chem., 2014, 87, 805-813.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.015] [PMID: 25440882]
[158]
Savariz, F.C.; Foglio, M.A.; Ruiz, A.L.T.G.; da Costa, W.F. Silva, Mde.M.; Santos, J.C.C.; Figueiredo, I.M.; Meyer, E.; de Carvalho, J.E.; Sarragiotto, M.H. Synthesis and antitumor activity of novel 1-substituted phenyl 3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines and their Mannich bases. Bioorg. Med. Chem., 2014, 22(24), 6867-6875.
[http://dx.doi.org/10.1016/j.bmc.2014.10.031] [PMID: 25464885]
[159]
Ramazani, A.; Khoobi, M.; Torkaman, A.; Nasrabadi, F.Z.; Forootanfar, H.; Shakibaie, M.; Jafari, M.; Ameri, A.; Emami, S.; Faramarzi, M.A.; Foroumadi, A.; Shafiee, A. One-pot, four-component synthesis of novel cytotoxic agents 1-(5-aryl-1,3,4-oxadiazol-2-yl)-1-(1H-pyrrol-2-yl)methanamines. Eur. J. Med. Chem., 2014, 78, 151-156.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.049] [PMID: 24681979]
[160]
Chaves, J.D.S.; Neumann, F.; Francisco, T.M.; Corrêa, C.C.; Lopes, M.T.P.; Silva, H.; Fontes, A.P.S.; de Almeida, M.V. Synthesis and cytotoxic activity of gold(I) complexes containing phosphines and 3-benzyl-1,3-thiazolidine-2-thione or 5-phenyl-1,3,4-oxadiazole-2-thione as ligands. Inorg. Chim. Acta, 2014, 414, 85-90.
[http://dx.doi.org/10.1016/j.ica.2014.01.042]
[161]
Kovács, D.; Mótyán, G.; Wölfling, J.; Kovács, I.; Zupkó, I.; Frank, É. A facile access to novel steroidal 17-2′-(1′,3′,4′)-oxadiazoles, and an evaluation of their cytotoxic activities in vitro. Bioorg. Med. Chem. Lett., 2014, 24(5), 1265-1268.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.069] [PMID: 24518189]
[162]
Salahuddin.; Shaharyar, M.; Mazumder, A.; Ahsan, M.J. Synthesis, characterization and anticancer evaluation of 2-(naphthalen-1-ylmethyl/naphthalen-2-yloxymethyl)-1-[5-(substituted phenyl)[1,3,4]oxadiazol-2-ylmethyl]-1H-benzimidazole. Arab. J. Chem., 2014, 7, 418-424.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.001]
[163]
Thasneem, C.K.; Biju, C.R.; Babu, G. Synthesis and anticancer study of chalcone linked 1,3,4-oxadiazole derivatives. Int. J. Pharma Bio Sci., 2014, 4, 20-28.
[164]
Synthesis, Characterization and In Vitro Anticancer Evaluation of Novel 2,5-Disubstituted 1,3,4-Oxadiazole Analogue. BioMed Res. Int., 2014, 2014
[165]
Ahsan, M.J.; Rathod, V.S.; Singh, M.; Sharma, R.; Jadav, S.S.; Yasmin, S. Synthesis of 2-(4-chlorophenyl)-5-aryl-1,3,4-oxadiazole analogs as anticancer agents. Omics Med. Chem., 2013, 4, 294-297.
[166]
Tantak, M.P.; Kumar, A.; Noel, B.; Shah, K.; Kumar, D. Synthesis and biological evaluation of 2-arylamino-5- (3′-indolyl)-1,3,4-oxadiazoles as potent cytotoxic agents. ChemMedChem, 2013, 8(9), 1468-1474.
[http://dx.doi.org/10.1002/cmdc.201300221] [PMID: 23846853]
[167]
Desai, N.C.; Bhatt, N.; Somani, H.; Trivedi, A. Synthesis, antimicrobial and cytotoxic activities of some novel thiazole clubbed 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2013, 67, 54-59.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.029] [PMID: 23835482]
[168]
Kumar, D.; Arun, V.; Maruthi Kumar, N.; Acosta, G.; Noel, B.; Shah, K. A facile synthesis of novel bis-(indolyl)-1,3,4-oxadiazoles as potent cytotoxic agents. ChemMedChem, 2012, 7(11), 1915-1920.
[http://dx.doi.org/10.1002/cmdc.201200363] [PMID: 22997171]
[169]
Taher, A.T.; Georgey, H.H.; El-Subbagh, H.I. Novel 1,3,4-heterodiazole analogues: synthesis and in vitro antitumor activity. Eur. J. Med. Chem., 2012, 47(1), 445-451.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.013] [PMID: 22119151]
[170]
Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Shin, D.S.; Kumar, D. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: design and synthesis as anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(17), 5438-5444.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.038] [PMID: 22840417]
[171]
Hans, J.; Wallace, E.M.; Zhao, Q.; Lyssikatos, J.P.; Aicher, T.D.; Liard, E.R.; Robinson, J; Allen, S. Mitotic Kinesin inhibitors and methods of use thereof patent. US8236825, 2012.
[172]
Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem., 2012, 48, 192-199.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.013] [PMID: 22204901]
[173]
Purohit, M.; Prasad, V.V.S.R.; Mayur, C.Y. Synthesis and cytotoxicity of bis-1,3,4-oxadiazoles and bis-pyrazoles derived from 1,4-bis[5-thio-4-substituted-1,2,4-triazol-3-yl]-butane and their DNA binding studies. Arch. Pharm. (Weinheim), 2011, 344(4), 248-254.
[http://dx.doi.org/10.1002/ardp.201000177] [PMID: 21469174]
[174]
Abu-Zaied, M.A.; El-Telbani, E.M.; Elgemeie, G.H.; Nawwar, G.A.M. Synthesis and in vitro anti-tumor activity of new oxadiazole thioglycosides. Eur. J. Med. Chem., 2011, 46(1), 229-235.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.008] [PMID: 21115211]
[175]
Gudipati, R.; Anreddy, R.N.R.; Manda, S. Synthesis, characterization and anticancer activity of certain 3-{4-(5-mercapto-1,3,4-oxadiazole-2-yl)phenylimino}indolin-2-one derivatives. Saudi Pharm. J., 2011, 19, 153-158.
[http://dx.doi.org/10.1016/j.jsps.2011.03.002] [PMID: 23960753]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy