Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Effect on Successful Recanalization of Thrombus Length in Susceptibility- weighted Imaging in Mechanical Thrombectomy with Stentretrieval

Author(s): Dong Hoon Lee, Jae Hoon Sung*, Ho Jun Yi, Min Hyung Lee and Seung Yoon Song

Volume 18, Issue 1, 2021

Published on: 25 February, 2021

Page: [78 - 84] Pages: 7

DOI: 10.2174/1567202618666210225102029

Price: $65

Abstract

Introduction: Susceptibility-Eeighted Imaging (SWI) enables visualization of thrombotic material in acute ischemic stroke. We analyzed the association between thrombus length on SWI and the success rate of recanalization in stent-retriever mechanical thrombectomy.

Methods: A retrospective study was performed on 128 patients with Middle Cerebral Artery (MCA) thrombus on pretreatment SWI. The patients were divided into 2 groups, the successful recanalization and the failed recanalization group. Thrombus visibility and location on SWI were compared to those on Maximum Intensity Projection (MIP) in Computed Tomography (CT) angiography. A comparative analysis was performed in terms of clinical and radiologic outcomes as well as complications with respect to multiple categories.

Results: No significant differences were noted in terms of baseline characteristics and clinical outcomes between the 2 groups. However, compared with the successful recanalization group, the failed recanalization group had a larger number of stent-retriever passages and a longer thrombus length (p = 0.027 and 0.014, respectively). Multivariate analyses revealed that a larger mean number of stent-retriever passages was a predictive factor for failure of recanalization (odds ratio [OR] 1.60; 95% confidence Interval [CI] 1.12-2.08; p = 0.04). Thrombus length (OR 9.91; 95% CI 3.89-13.87; p < 0.001) and atrial fibrillation (OR 5.38; 95% CI 1.51-9.58; p = 0.008) were separately associated with more than 3 stent-retriever passages.

Conclusion: Thrombus length has been identified as a predictor of recanalization failure in mechanical thrombectomy. A significant decline in the success rate of recanalization was associated with longer thrombus length.

Keywords: Mechanical thrombectomy, thrombus length, susceptibility-weighted imaging, failed recanalization, 3 stent-retriever passages, maximum intensity projection.

[1]
Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372(1): 11-20.
[http://dx.doi.org/10.1056/NEJMoa1411587] [PMID: 25517348]
[2]
Campbell BC, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372(11): 1009-18.
[http://dx.doi.org/10.1056/NEJMoa1414792] [PMID: 25671797]
[3]
Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372(11): 1019-30.
[http://dx.doi.org/10.1056/NEJMoa1414905] [PMID: 25671798]
[4]
Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015; 372(24): 2296-306.
[http://dx.doi.org/10.1056/NEJMoa1503780] [PMID: 25882510]
[5]
Yoo AJ, Andersson T. Thrombectomy in acute ischemic stroke: Challenges to procedural success. J Stroke 2017; 19(2): 121-30.
[http://dx.doi.org/10.5853/jos.2017.00752] [PMID: 28592779]
[6]
Rha JH, Saver JL. The impact of recanalization on ischemic stroke outcome: A meta-analysis. Stroke 2007; 38(3): 967-73.
[http://dx.doi.org/10.1161/01.STR.0000258112.14918.24] [PMID: 17272772]
[7]
Saqqur M, Uchino K, Demchuk AM, et al. Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke 2007; 38(3): 948-54.
[http://dx.doi.org/10.1161/01.STR.0000257304.21967.ba] [PMID: 17290031]
[8]
Hofmeister J, Bernava G, Rosi A, et al. Clot-based radiomics predict a mechanical thrombectomy strategy for successful recanalization in acute ischemic stroke. Stroke 2020; 51(8): 2488-94.
[http://dx.doi.org/10.1161/STROKEAHA.120.030334] [PMID: 32684141]
[9]
Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011; 42(6): 1775-7.
[http://dx.doi.org/10.1161/STROKEAHA.110.609693] [PMID: 21474810]
[10]
Luthman AS, Bouchez L, Botta D, Vargas MI, Machi P, Lövblad KO. Imaging clot characteristics in stroke and its possible implication on treatment. Clin Neuroradiol 2020; 30(1): 27-35.
[http://dx.doi.org/10.1007/s00062-019-00841-w] [PMID: 31602486]
[11]
Rovira A, Orellana P, Alvarez-Sabín J, et al. Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 2004; 232(2): 466-73.
[http://dx.doi.org/10.1148/radiol.2322030273] [PMID: 15215546]
[12]
Bourcier R, Duchmann Z, Sgreccia A, et al. Diagnostic performances of the susceptibility vessel sign on MRI for the prediction of macroscopic thrombi features in acute ischemic stroke. J Stroke and Cerebrovasc Dis 2020; 29(11): 105245.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105245]
[13]
Romero JM, Liberato ACP, Montes D, et al. Accuracy of MRI T2*-weighted sequences (GRE-EPI) compared to CTA for detection of anterior circulation large vessel thrombus. Emerg Radiol 2020; 27(3): 269-75.
[http://dx.doi.org/10.1007/s10140-020-01754-9] [PMID: 31955315]
[14]
Naggara O, Raymond J, Domingo Ayllon M, et al. T2* “susceptibility vessel sign” demonstrates clot location and length in acute ischemic stroke. PLoS One 2013; 8(10): e76727.
[http://dx.doi.org/10.1371/journal.pone.0076727] [PMID: 24146915]
[15]
Barreto AD, Albright KC, Hallevi H, et al. Thrombus burden is associated with clinical outcome after intra-arterial therapy for acute ischemic stroke. Stroke 2008; 39(12): 3231-5.
[http://dx.doi.org/10.1161/STROKEAHA.108.521054] [PMID: 18772444]
[16]
Behrens L, Möhlenbruch M, Stampfl S, et al. Effect of thrombus size on recanalization by bridging intravenous thrombolysis. Eur J Neurol 2014; 21(11): 1406-10.
[http://dx.doi.org/10.1111/ene.12509] [PMID: 25040586]
[17]
Beck C, Cheng B, Krützelmann A, et al. Outcome of MRI-based intravenous thrombolysis in carotid-T occlusion. J Neurol 2012; 259(10): 2141-6.
[http://dx.doi.org/10.1007/s00415-012-6472-z] [PMID: 22460586]
[18]
Aoki J, Kimura K, Shibazaki K, Sakamoto Y, Saji N, Uemura J. Location of the susceptibility vessel sign on T2*-weighted MRI and early recanalization within 1 hour after tissue plasminogen activator administration. Cerebrovasc Dis Extra 2013; 3(1): 111-20.
[http://dx.doi.org/10.1159/000354848] [PMID: 24163686]
[19]
Linfante I, Llinas RH, Selim M, et al. Clinical and vascular outcome in internal carotid artery versus middle cerebral artery occlusions after intravenous tissue plasminogen activator. Stroke 2002; 33(8): 2066-71.
[http://dx.doi.org/10.1161/01.STR.0000021001.18101.A5] [PMID: 12154264]
[20]
Jang IK, Gold HK, Ziskind AA, et al. Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. A possible explanation for resistance to coronary thrombolysis. Circulation 1989; 79(4): 920-8.
[http://dx.doi.org/10.1161/01.CIR.79.4.920] [PMID: 2494006]
[21]
Legrand L, Naggara O, Turc G, et al. Clot burden score on admission T2*-MRI predicts recanalization in acute stroke. Stroke 2013; 44(7): 1878-84.
[http://dx.doi.org/10.1161/STROKEAHA.113.001026] [PMID: 23704103]
[22]
Gunning GM, McArdle K, Mirza M, Duffy S, Gilvarry M, Brouwer PA. Clot friction variation with fibrin content; Implications for resistance to thrombectomy. J Neurointerv Surg 2018; 10(1): 34-8.
[http://dx.doi.org/10.1136/neurintsurg-2016-012721] [PMID: 28044009]
[23]
Cho KH, Kim JS, Kwon SU, Cho AH, Kang DW. Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005; 36(11): 2379-83.
[http://dx.doi.org/10.1161/01.STR.0000185932.73486.7a] [PMID: 16224077]
[24]
Allibert R, Billon Grand C, Vuillier F, et al. Advantages of susceptibility-weighted magnetic resonance sequences in the visualization of intravascular thrombi in acute ischemic stroke. Int J Stroke 2014; 9(8): 980-4.
[http://dx.doi.org/10.1111/ijs.12373] [PMID: 25319168]
[25]
Radbruch A, Mucke J, Schweser F, et al. Comparison of susceptibility weighted imaging and TOF-angiography for the detection of Thrombi in acute stroke. PLoS One 2013; 8(5): e63459.
[http://dx.doi.org/10.1371/journal.pone.0063459] [PMID: 23717426]
[26]
Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009; 30(1): 19-30.
[http://dx.doi.org/10.3174/ajnr.A1400] [PMID: 19039041]
[27]
Santhosh K, Kesavadas C, Thomas B, Gupta AK, Thamburaj K, Kapilamoorthy TR. Susceptibility weighted imaging: A new tool in magnetic resonance imaging of stroke. Clin Radiol 2009; 64(1): 74-83.
[http://dx.doi.org/10.1016/j.crad.2008.04.022] [PMID: 19070701]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy