Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Possible Therapeutic Uses of Extracellular Vesicles for Reversion of Activated Hepatic Stellate Cells: Context and Future Perspectives

Author(s): Fahim Rejanur Tasin, Debasish Halder and Chanchal Mandal*

Volume 22, Issue 2, 2022

Published on: 18 February, 2021

Page: [151 - 164] Pages: 14

DOI: 10.2174/1566524021666210218113928

Price: $65

Abstract

Liver fibrosis is one of the leading causes of cirrhotic liver disease, and the lack of therapies to treat fibrotic liver is a major concern. Liver fibrosis is mainly occurred by activation of hepatic stellate cells, and some stem cell therapies had previously reported for treatment. However, due to some problems with cell-based treatment, a safe therapeutic agent is vehemently sought by the researchers. Extracellular vesicles are cell-derived nanoparticles that are employed in several therapeutic approaches, including fibrosis, for their ability to transfer specific molecules in the target cells. In this review, the possibilities of extracellular vesicles to inactivate stellate cells are summarized and discussed. According to several studies, extracellular vesicles from different sources can either have beneficial or detrimental effects by regulating the activation of stellate cells. Therefore, targeting extracellular vesicles for maximizing or inhibiting their production is a potential approach for fibrotic liver treatment. Extracellular vesicles from different cells can also inactivate stellate cells by carrying out the paracrine effects of those cells, working as the agents. They are also implicated as a smart carrier of anti-fibrotic molecules when their respective parent cells are engineered to produce specific stellate cell-regulating substances. A number of studies showed stellate cell activation can be regulated by up/downregulation of specific proteins, and extracellular vesicle-based therapies can be an effective move to exploit these mechanisms. In conclusion, EVs are advantageous nano-carriers with the potential to treat fibrotic liver by inactivating activated stellate cells by various mechanisms.

Keywords: Extracellular vesicles, hepatic stellate cells, inactivation, liver fibrosis, therapeutics, DNA.

[1]
Morán L, Cubero FJ. Extracellular vesicles in liver disease and beyond. World J Gastroenterol 2018; 24(40): 4519-26.
[http://dx.doi.org/10.3748/wjg.v24.i40.4519] [PMID: 30386101]
[2]
Borrelli DA, Yankson K, Shukla N, Vilanilam G, Ticer T, Wolfram J. Extracellular vesicle therapeutics for liver disease. Controlled Release 2018; 273: 86-98.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.022]
[3]
Wiklander OPB, Brennan MA, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11(492)eaav8521
[http://dx.doi.org/10.1126/scitranslmed.aav8521] [PMID: 31092696]
[4]
Maji S, Matsuda A, Yan IK, Parasramka M, Patel T. Extracellular vesicles in liver diseases. Am J Physiol Gastrointest Liver Physiol 2017; 312(3): G194-200.
[http://dx.doi.org/10.1152/ajpgi.00216.2016] [PMID: 28039157]
[5]
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[6]
Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 2019; 9(1): 4468.
[http://dx.doi.org/10.1038/s41598-019-41100-9] [PMID: 30872726]
[7]
Chen W, Wang J, Shao C, et al. Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur J Immunol 2006; 36(6): 1598-607.
[http://dx.doi.org/10.1002/eji.200535501] [PMID: 16708399]
[8]
Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci 2015; 11(2): 238-45.
[http://dx.doi.org/10.7150/ijbs.10725] [PMID: 25632267]
[9]
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 2013; 3: 1197.
[http://dx.doi.org/10.1038/srep01197] [PMID: 23378928]
[10]
Li XCR, Kemper S, Brigstock DR. Dynamic changes in function and proteomic composition of extracellular vesicles from hepatic stellate Cells during Cellular Activation. Cells 2020; 9(2): 290.
[http://dx.doi.org/10.3390/cells9020290]
[11]
Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017; 14(8): 455-66.
[http://dx.doi.org/10.1038/nrgastro.2017.71] [PMID: 28634412]
[12]
Fiore EJ, Domínguez LM, Bayo J, García MG, Mazzolini GD. Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies. World J Gastroenterol 2018; 24(23): 2427-40.
[http://dx.doi.org/10.3748/wjg.v24.i23.2427] [PMID: 29930465]
[13]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1)1535750
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[14]
Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 2012; 27(Suppl. 2): 112-20.
[http://dx.doi.org/10.1111/j.1440-1746.2011.07024.x] [PMID: 22320928]
[15]
Fiore E, Domínguez LM, Bayo J, et al. Human umbilical cord perivascular cells-derived extracellular vesicles mediate the transfer of IGF-I to the liver and ameliorate hepatic fibrogenesis in mice. Gene Ther 2020; 27(1-2): 62-73.
[http://dx.doi.org/10.1038/s41434-019-0102-7] [PMID: 31551525]
[16]
Chen L, Brenner DA, Kisseleva T. Combatting fibrosis: exosome-based therapies in the regression of liver fibrosis hepatology communications 2019; 3(2): 180-92
[17]
Venugopal SK, Jiang J, Kim TH, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol 2010; 298(1): G101-6.
[http://dx.doi.org/10.1152/ajpgi.00220.2009] [PMID: 19892940]
[18]
El Taghdouini A, Najimi M, Sancho-Bru P, Sokal E, van Grunsven LA. In vitro reversion of activated primary human hepatic stellate cells. Fibrogenesis Tissue Repair 2015; 8: 14.
[http://dx.doi.org/10.1186/s13069-015-0031-z] [PMID: 26251672]
[19]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[20]
Higuchi H, Gores GJ. Mechanisms of liver injury: an overview. Curr Mol Med 2003; 3(6): 483-90.
[http://dx.doi.org/10.2174/1566524033479528] [PMID: 14527080]
[21]
Saxena NK, Anania FA. Adipocytokines and hepatic fibrosis. Trends Endocrinol Metab 2015; 26(3): 153-61.
[http://dx.doi.org/10.1016/j.tem.2015.01.002] [PMID: 25656826]
[22]
Seo W, Eun HS, Kim SY, et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology 2016; 64(2): 616-31.
[http://dx.doi.org/10.1002/hep.28644] [PMID: 27178735]
[23]
Chen L, Chen R, Kemper S, Cong M, You H, Brigstock DR. Therapeutic effects of serum extracellular vesicles in liver fibrosis. J Extracell Vesicles 2018; 7(1)
[http://dx.doi.org/10.1080/20013078.2018.1461505] [PMID: 29696080]
[24]
Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol 2016; 51(6): 511-9.
[http://dx.doi.org/10.1007/s00535-016-1190-4] [PMID: 26939970]
[25]
Qu Y, Zhang Q, Cai X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 2017; 21(10): 2491-502.
[http://dx.doi.org/10.1111/jcmm.13170] [PMID: 28382720]
[26]
Povero D, Pinatel EM, Leszczynska A, et al. Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight 2019; 5: 5.
[http://dx.doi.org/10.1172/jci.insight.125652] [PMID: 31184999]
[27]
Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. Linking Pathogenic Mechanisms of Alcoholic Liver Disease With Clinical Phenotypes. Gastroenterology 2016; 150(8): 1756-68.
[http://dx.doi.org/10.1053/j.gastro.2016.02.035] [PMID: 26919968]
[28]
Saha B, Momen-Heravi F, Furi I, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology 2018; 67(5): 1986-2000.
[http://dx.doi.org/10.1002/hep.29732] [PMID: 29251792]
[29]
Hirsova P, Ibrahim SH, Krishnan A, et al. Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes. Gastroenterology 2016; 150(4): 956-67.
[http://dx.doi.org/10.1053/j.gastro.2015.12.037] [PMID: 26764184]
[30]
Kostallari E, Hirsova P, Prasnicka A, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 2018; 68(1): 333-48.
[http://dx.doi.org/10.1002/hep.29803] [PMID: 29360139]
[31]
Hirsova P, Ibrahim SH, Verma VK, et al. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016; 64(6): 2219-33.
[http://dx.doi.org/10.1002/hep.28814] [PMID: 27628960]
[32]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[33]
Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol 2012; 14(7): 654-5.
[http://dx.doi.org/10.1038/ncb2530] [PMID: 22743708]
[34]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319(5867): 1244-7.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[35]
van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 2011; 21(4): 708-21.
[http://dx.doi.org/10.1016/j.devcel.2011.08.019] [PMID: 21962903]
[36]
Deng F, Magee N, Zhang Y. Decoding the Role of Extracellular Vesicles in Liver DiseasesLiver research 2017; 1(3): 147-55
[http://dx.doi.org/10.1016/j.livres.2017.11.003]
[37]
Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 2016; 6: 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]
[38]
Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 2005; 6(2): 131-43.
[http://dx.doi.org/10.1111/j.1600-0854.2004.00257.x] [PMID: 15634213]
[39]
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12(1): 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[40]
Li W, Hu Y, Jiang T, Han Y, Han G, Chen J, et al. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 2014; 122(11): 1080-7
[http://dx.doi.org/10.1111/apm.12261]
[41]
Hsu C, Morohashi Y, Yoshimura S, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 2010; 189(2): 223-32.
[http://dx.doi.org/10.1083/jcb.200911018] [PMID: 20404108]
[42]
Gao J, Wei B, de Assuncao TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73(5): 1144-54.
[http://dx.doi.org/10.1016/j.jhep.2020.04.044] [PMID: 32389810]
[43]
Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 2019; 9(1)
[http://dx.doi.org/10.1080/20013078.2019.1703244] [PMID: 32002167]
[44]
Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA 2012; 109(11): 4146-51.
[http://dx.doi.org/10.1073/pnas.1200448109] [PMID: 22315426]
[45]
Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 2015; 112(12): E1433-42.
[http://dx.doi.org/10.1073/pnas.1418401112] [PMID: 25713383]
[46]
Tang TT, Lv LL, Lan HY, Liu BC. Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Front Physiol 2019; 10: 226.
[http://dx.doi.org/10.3389/fphys.2019.00226] [PMID: 30941051]
[47]
Barrès C, Blanc L, Bette-Bobillo P, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 2010; 115(3): 696-705.
[http://dx.doi.org/10.1182/blood-2009-07-231449] [PMID: 19903899]
[48]
Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49(6)
[http://dx.doi.org/10.1038/emm.2017.63] [PMID: 28620221]
[49]
Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015; 40: 82-8.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.001] [PMID: 25765629]
[50]
Chen L, Chen R, Kemper S, Charrier A, Brigstock DR. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: Role of exosomes in horizontal transfer of Twist1. Am J Physiol Gastrointest Liver Physiol 2015; 309(6): G491-9.
[http://dx.doi.org/10.1152/ajpgi.00140.2015] [PMID: 26229009]
[51]
Chen L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic Signaling Is Suppressed in Hepatic Stellate Cells through Targeting of Connective Tissue Growth Factor (CCN2) by Cellular or Exosomal MicroRNA-199a-5p. Am J Pathol 2016; 186(11): 2921-33.
[http://dx.doi.org/10.1016/j.ajpath.2016.07.011] [PMID: 27662798]
[52]
Chen L, Charrier A, Zhou Y, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 2014; 59(3): 1118-29.
[http://dx.doi.org/10.1002/hep.26768] [PMID: 24122827]
[53]
Wan L, Xia T, Du Y, et al. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J 2019; 33(7): 8530-42.
[http://dx.doi.org/10.1096/fj.201802675R] [PMID: 30970216]
[54]
Lou G, Yang Y, Liu F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med 2017; 21(11): 2963-73.
[http://dx.doi.org/10.1111/jcmm.13208] [PMID: 28544786]
[55]
Kornek M, Popov Y, Libermann TA, Afdhal NH, Schuppan D. Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells. Hepatology 2011; 53(1): 230-42.
[http://dx.doi.org/10.1002/hep.23999] [PMID: 20979056]
[56]
Charrier A, Chen R, Chen L, et al. Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery 2014; 156(3): 548-55.
[http://dx.doi.org/10.1016/j.surg.2014.04.014] [PMID: 24882759]
[57]
Povero D, Panera N, Eguchi A, et al. ipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-gamma Cell Mole and molecular Gastroent and Hepatol 2015; 1(6): 646- 3
[58]
Wang R, Ding Q, Yaqoob U, et al. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration. J Biol Chem 2015; 290(52): 30684-96.
[http://dx.doi.org/10.1074/jbc.M115.671735] [PMID: 26534962]
[59]
Zafrani L, Gerotziafas G, Byrnes C, et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am J Respir Crit Care Med 2012; 185(7): 744-55.
[http://dx.doi.org/10.1164/rccm.201109-1686OC] [PMID: 22268136]
[60]
Arvidsson I, Ståhl AL, Hedström MM, et al. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol 2015; 194(5): 2309-18.
[http://dx.doi.org/10.4049/jimmunol.1402470] [PMID: 25637016]
[61]
Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 2012; 125(13): 1664-72.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.068833] [PMID: 22388320]
[62]
Faille D, El-Assaad F, Mitchell AJ, et al. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 2012; 16(8): 1731-8.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01434.x] [PMID: 21883894]
[63]
Ren G, Chen X, Dong F, et al. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 2012; 1(1): 51-8.
[http://dx.doi.org/10.5966/sctm.2011-0019] [PMID: 23197640]
[64]
Christ B, Brückner S, Winkler S. The therapeutic promise of mesenchymal stem cells for liver restoration. Trends Mol Med 2015; 21(11): 673-86.
[http://dx.doi.org/10.1016/j.molmed.2015.09.004] [PMID: 26476857]
[65]
Berardis S, Lombard C, Evraerts J, et al. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells. PLoS One 2014; 9(1)e86137
[http://dx.doi.org/10.1371/journal.pone.0086137] [PMID: 24516514]
[66]
Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med (Korean Assoc Intern Med) 2015; 30(5): 580-9.
[http://dx.doi.org/10.3904/kjim.2015.30.5.580] [PMID: 26354051]
[67]
Usunier B, Benderitter M, Tamarat R, Chapel A. Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int 2014; 2014340257
[http://dx.doi.org/10.1155/2014/340257] [PMID: 25132856]
[68]
Tsai PC, Fu TW, Chen YM, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 2009; 15(5): 484-95.
[http://dx.doi.org/10.1002/lt.21715] [PMID: 19399744]
[69]
Rengasamy M, Singh G, Fakharuzi NA, et al. Transplantation of human bone marrow mesenchymal stromal cells reduces liver fibrosis more effectively than Wharton’s jelly mesenchymal stromal cells. Stem Cell Res Ther 2017; 8(1): 143.
[http://dx.doi.org/10.1186/s13287-017-0595-1] [PMID: 28610623]
[70]
Ali G, Mohsin S, Khan M, et al. Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. J Transl Med 2012; 10: 75.
[http://dx.doi.org/10.1186/1479-5876-10-75] [PMID: 22533821]
[71]
Nasir GA, Mohsin S, Khan M, et al. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. J Transl Med 2013; 11: 78.
[http://dx.doi.org/10.1186/1479-5876-11-78] [PMID: 23531302]
[72]
Kim MD, Kim SS, Cha HY, et al. Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. Exp Mol Med 2014; 46(8)e110
[http://dx.doi.org/10.1038/emm.2014.49] [PMID: 25145391]
[73]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[74]
Chen L, Zhang C, Chen L, et al. Human menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate Cells via Paracrine Mediators. Stem Cells Transl Med 2017; 6(1): 272-84.
[http://dx.doi.org/10.5966/sctm.2015-0265] [PMID: 28170193]
[75]
Wang Y, Lian F, Li J, et al. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats. J Transl Med 2012; 10: 133.
[http://dx.doi.org/10.1186/1479-5876-10-133] [PMID: 22735033]
[76]
Han HS, Lee H, You D, Nguyen VQ, Song DG, Oh BH, et al. Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis of Controlled Release : 2020; 320: 328-6
[http://dx.doi.org/10.1016/j.jconrel.2020.01.042]
[77]
Toyserkani NM, Jørgensen MG, Tabatabaeifar S. jensen CH, sheikh SP, sørensen JA. concise review: A Safety Assessment of Adipose-Derived Cell Therapy in Clinical Trials: A Systematic Review of Reported Adverse Events. Stem Cells Transl Med 2017; 6(9): 1786-94.
[http://dx.doi.org/10.1002/sctm.17-0031] [PMID: 28722289]
[78]
Baertschiger RM, Serre-Beinier V, Morel P, et al. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver. PLoS One 2009; 4(8)
[http://dx.doi.org/10.1371/journal.pone.0006657] [PMID: 19684854]
[79]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87.
[PMID: 24747178]
[80]
Haga H, Yan IK, Takahashi K, Matsuda A, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl Med 2017; 6(4): 1262-72.
[http://dx.doi.org/10.1002/sctm.16-0226] [PMID: 28213967]
[81]
Sun L, Xu R, Sun X, et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy 2016; 18(3): 413-22.
[http://dx.doi.org/10.1016/j.jcyt.2015.11.018] [PMID: 26857231]
[82]
Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 2013; 13(10-11): 1637-53.
[http://dx.doi.org/10.1002/pmic.201200373] [PMID: 23335344]
[83]
Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180]
[84]
Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10(1): 98.
[http://dx.doi.org/10.1186/s13287-019-1204-2] [PMID: 30885249]
[85]
Myung SJ, Yoon JH, Gwak GY, et al. Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett 2007; 581(16): 2954-8.
[http://dx.doi.org/10.1016/j.febslet.2007.05.050] [PMID: 17544413]
[86]
Ohara M, Ohnishi S, Hosono H, et al. Extracellular vesicles from amnion-derived mesenchymal stem cells ameliorate hepatic inflammation and fibrosis in rats. Stem Cells Int 2018; 2018ID3212643
[http://dx.doi.org/10.1155/2018/3212643] [PMID: 30675167]
[87]
Berschneider B, Ellwanger DC, Baarsma HA, et al. miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis. Int J Biochem Cell Biol 2014; 53: 432-41.
[http://dx.doi.org/10.1016/j.biocel.2014.06.011] [PMID: 24953558]
[88]
Dong L, Pu Y, Chen X, et al. hUCMSC-extracellular vesicles downregulated hepatic stellate cell activation and reduced liver injury in S. japonicum-infected mice. Stem Cell Res Ther 2020; 11(1): 21.
[http://dx.doi.org/10.1186/s13287-019-1539-8] [PMID: 31918749]
[89]
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. Controlled Release 2015; 219: 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030]
[90]
Li J, Ghazwani M, Zhang Y, et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol 2013; 58(3): 522-8.
[http://dx.doi.org/10.1016/j.jhep.2012.11.011] [PMID: 23178710]
[91]
Wu Y, Liu X, Zhou Q, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol 2015; 289(2): 163-76.
[http://dx.doi.org/10.1016/j.taap.2015.09.028] [PMID: 26435214]
[92]
Yu HX, Yao Y, Bu FT, et al. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol Immunol 2019; 107: 29-40.
[http://dx.doi.org/10.1016/j.molimm.2019.01.004] [PMID: 30639476]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy