Research Article

马钱子的植物化合物显示出对SARS-CoV-2 RNA依赖的RNA聚合酶的高效力

卷 22, 期 10, 2022

发表于: 31 March, 2022

页: [929 - 940] 页: 12

弟呕挨: 10.2174/1566524021666210218113409

价格: $65

摘要

背景:建立抑制病毒复制的策略是对抗SARS-CoV-2感染的一种有吸引力的手段。 目的:利用计算方法研究马钱子中植物化合物对SARS-CoV-2 RNA依赖RNA聚合酶的作用。 方法:采用分子对接、分子动力学(MD)模拟和能量计算等方法对这些植物化合物的作用进行分析。 结果:麦角胺结合自由能为-14.39 kcal/mol,具有良好的结合亲和力和与保守基序的相互作用,尤其是与SDD特征序列的结合能力。计算得到ATP、麦角胺、异天葵素和天葵素的解离常数分别为12 μM、0.072 nM、0.011 nM和0.152 nM。这些植物化合物所显示的kd的效力是ATP的数万倍。与ATP (-6.98 kcal/mol)相比,天葵素和异天葵素的结合自由能更低(分别为-13.93和-15.55 kcal/mol)。 结论:麦角胺、异天蚕素、天蚕素和士的宁n -氧化物具有与ATP相同的结合位点和较高的结合亲和力,可通过阻断ATP和抑制酶功能来控制SARS-CoV-2病毒的复制。

关键词: SARS-CoV-2, RNA依赖RNA聚合酶,抑制,马钱子,植物化合物,计算方法

[1]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[2]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[3]
Fields BN, Knipe DM, Howley PM. CoronavirusFields Virology. 6th ed. Wolters Kluwer Health/Lippincott Williams and Wilkins 2013; pp. 825-58.
[4]
Stadler K, Rappuoli R. SARS: understanding the virus and development of rational therapy. Curr Mol Med 2005; 5(7): 677-97.
[http://dx.doi.org/10.2174/156652405774641124] [PMID: 16305493]
[5]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[6]
Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 2020; 38(4): 379-81.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[7]
Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105955] [PMID: 32234468]
[8]
Warren T, Jordan R, Lo M, et al. Nucleotide prodrug GS- 5734 is a broad-spectrum filovirus inhibitor that provides complete therapeutic protection against the development of Ebola virus disease (EVD) in infected non-human primates. Open Forum Infectious Diseases. Infect Dis Soc Am 2015; 2(1)
[9]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[10]
Green N, Ott RD, Isaacs RJ, Fang H. Cell-based assays to identify inhibitors of viral disease. Expert Opin Drug Discov 2008; 3(6): 671-6.
[http://dx.doi.org/10.1517/17460441.3.6.671] [PMID: 19750206]
[11]
Lung J, Lin YS, Yang YH, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 2020; 92(6): 693-7.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[12]
Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 2020; 10(4): 320-8.
[http://dx.doi.org/10.1016/j.jpha.2020.04.008] [PMID: 32346490]
[13]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[14]
Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res 2020; 155: 104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[15]
Kumar V, Dhanjal JK, Kaul SC, Wadhwa R, Sundar D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J Biomol Struct Dyn 2021; 39(11): 3842-54.
[http://dx.doi.org/10.1080/07391102.2020.1772108] [PMID: 32431217]
[16]
Balkrishna A, Pokhrel S, Singh J, Varshney A. Withanone from Withania somnifera may inhibit novel Coronavirus (COVID-19) entry by disrupting interactions between viral Sprotein receptor binding domain and host ACE2 receptor. 2021; 15: 1111-33.
[17]
Vivek-Ananth RP, Rana A, Rajan N, Biswal HS, Samal A. In silico identification of potential natural product inhibitors of human proteases key to SARS-CoV-2 infection. arXiv preprint arXiv:200600652 2020.
[18]
Mitra S, Shukla VJ, Acharya R. Effect of Shodhana (processing) on Kupeelu (Strychnos nux-vomica Linn.) with special reference to strychnine and brucine content. Ayu 2011; 32(3): 402-7.
[http://dx.doi.org/10.4103/0974-8520.93923] [PMID: 22529660]
[19]
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 2002; 40(1): 82- 92.
[20]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[21]
Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature 1992; 356(6364): 83-5.
[http://dx.doi.org/10.1038/356083a0] [PMID: 1538787]
[22]
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993; 2(9): 1511-9.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[23]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[24]
Lovell SC, Davis IW, Arendall WB, et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 2003; 50: 437-50.
[25]
Pratim B. Strychnos nux-vomica: A poisonous plant with various aspects of therapeutic significance. J Basic Clin Pharm 2017; 8: 252209791.
[26]
Xu YY, Si DY, Liu CX. Research on bioresponse of active compounds of Strychnos nux-vomica L. Asian J Pharmacokin Pharmacodyn 2009; 9: 179-201.
[27]
O’Boyle NM, Banck M. James. C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21999342]
[28]
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4(1): 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[29]
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRxChemical biology. New York, NY: Humana Press 2015; pp. 243-50.
[30]
Release S. 2020-2: Maestro. New York, NY: Schrödinger, LLC 2020.
[31]
Dassault Systèmes BIOVIA. Discovery Studio 2017 R2 Client, Release 2017. San Diego: Dassault Systèmes 2017.
[32]
Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn 2020; 11: 1-9.
[http://dx.doi.org/10.1080/07391102.2020.1761882] [PMID: 32338164]
[33]
Hasan A, Paray BA, Hussain A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39(8): 3025-33.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[34]
Subissi L, Imbert I, Ferron F, et al. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014; 101: 122-30.
[http://dx.doi.org/10.1016/j.antiviral.2013.11.006] [PMID: 24269475]
[35]
Imbert I, Guillemot JC, Bourhis JM, et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 2006; 25(20): 4933-42.
[http://dx.doi.org/10.1038/sj.emboj.7601368] [PMID: 17024178]
[36]
Chu CK, Gadthula S, Chen X, et al. Antiviral activity of nucleoside analogues against SARS-coronavirus (SARS-coV). Antivir Chem Chemother 2006; 17(5): 285-9.
[http://dx.doi.org/10.1177/095632020601700506] [PMID: 17176633]
[37]
Thompson AA, Albertini RA, Peersen OB. Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. J Mol Biol 2007; 366(5): 1459-74.
[http://dx.doi.org/10.1016/j.jmb.2006.11.070] [PMID: 17223130]
[38]
Shu B, Gong P. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci USA 2016; 113(28): E4005-14.
[http://dx.doi.org/10.1073/pnas.1602591113] [PMID: 27339134]
[39]
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14(1): 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[40]
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 2008; 29(11): 1859-65.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[41]
Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26(16): 1781-802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[42]
Åqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Protein Eng 1994; 7(3): 385-91.
[http://dx.doi.org/10.1093/protein/7.3.385] [PMID: 8177887]
[43]
Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 1997; 44(3): 309-20.
[http://dx.doi.org/10.1006/geno.1997.4845] [PMID: 9325052]
[44]
Gul S, Ozcan O, Okyar A. Barıs I, Kavakli IH. In Silico Identification of Widely Used and Well Tolerated Drugs That May Inhibit SARSCov-2 3C-like Protease and Viral RNADependent RNA Polymerase Activities, and May Have Potential to Be Directly Used in Clinical Trials 2022; 39(17): 6772-91.
[45]
Vázquez AL, Alonso JM, Parra F. Mutation analysis of the GDD sequence motif of a calicivirus RNA-dependent RNA polymerase. J Virol 2000; 74(8): 3888-91.
[http://dx.doi.org/10.1128/JVI.74.8.3888-3891.2000] [PMID: 10729164]
[46]
Zhou Y, Zheng H, Gao F, Tian D, Yuan S. Mutational analysis of the SDD sequence motif of a PRRSV RNA-dependent RNA polymerase. Sci China Life Sci 2011; 54(9): 870-9.
[http://dx.doi.org/10.1007/s11427-011-4216-4] [PMID: 21922433]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy