Research Article

RNA靶向CRISPR-Cas13a有效下调BCR-ABL致瘤性

卷 21, 期 3, 2021

发表于: 17 February, 2021

页: [270 - 277] 页: 8

弟呕挨: 10.2174/1566523221666210217155233

价格: $65

摘要

目标:利用CRISPR Cas13a诱导BCR-ABL基因沉默。 背景:CML是一种克隆性骨髓增生性多能干细胞疾病,由染色体9和22之间的相互易位驱动,形成BCR-ABL融合基因。像伊马替尼这样的酪氨酸激酶抑制剂药物是治疗的主要药物,如果没有相容的干细胞供体,对这些药物有耐药性的病例预后较差。然而,随着基因编辑技术的快速发展,目前大多数研究都集中在开发一种针对单基因疾病的翻译模型,具有潜在的永久治愈。 目的:探讨RNA靶向CRISPR-Cas13a系统在CML细胞系K562中有效敲除BCR-ABL融合转录本的潜在应用价值。 方法:设计特异于嵌合BCR-ABL基因的CRISPR Cas13a crRNA,并将该系统作为双质粒系统转染到CML细胞系K562中。通过评估依赖于BCR-ABL基因表达的下游基因的表达水平来列举影响。此外,下一代测序也被用来确定CRISPR对该基因的影响。 结果:CRISPR系统成功降低了依赖于激活的BCR-ABL激酶信号的下游基因[pCRKL和pCRK]的表达高达4.3倍。crispr处理后的细胞活力也显著降低了373.83倍[p-value= 0.000891196]。时间依赖动力学也强调了显著的体外抑制活性,可持续长达8周[p-value: 0.025]。根据Oxford MinION下一代测序器的cDNA测序数据,CRISPR处理的细胞显示62.37%的疑似裂解读取。 结论:这些初步结果突出了RNA靶向CRISPRs在血液学肿瘤(如CML)中的极好的潜在应用,并为这一方向的进一步研究铺平了道路。

关键词: CRISPR,肿瘤学,分子生物学,血液学,RNA裂解,BCR-ABL

« Previous
图形摘要

[1]
Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315(6020): 550-4.
[http://dx.doi.org/10.1038/315550a0] [PMID: 2989692]
[2]
Quintás-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009; 113(8): 1619-30.
[http://dx.doi.org/10.1182/blood-2008-03-144790] [PMID: 18827185]
[3]
Arana-Trejo RM, Ruíz Sánchez E, Ignacio-Ibarra G, et al. BCR/ABL p210, p190 and p230 fusion genes in 250 Mexican patients with chronic myeloid leukaemia (CML). Clin Lab Haematol 2002; 24(3): 145-50. [CML].
[http://dx.doi.org/10.1046/j.1365-2257.2002.00413.x] [PMID: 12067277]
[4]
Bruns I, Czibere A, Cadeddu P, Roels F, Fischer JC, Buest S, et al. Hematopoiesis in Chronic Phase CML emerges from Hematopoietic Stem Cells with a Transcriptional Phenotype Resembling Normal Myeloid Progenitor Cells. Blood 2008; 112(11): 1155.
[http://dx.doi.org/10.1182/blood.V112.11.3365.3365]
[5]
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[6]
Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae 2014; 6(3): 19-40.
[http://dx.doi.org/10.32607/20758251-2014-6-3-19-40] [PMID: 25349712]
[7]
Mercer AC, Gaj T, Fuller RP, Barbas CF III. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 2012; 40(21): 11163-72.
[http://dx.doi.org/10.1093/nar/gks875] [PMID: 23019222]
[8]
García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, et al. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget 2017; 8(16): 26027-40.
[http://dx.doi.org/10.18632/oncotarget.15215] [PMID: 28212528]
[9]
Shibata Y, Malhotra A, Dutta A. Detection of DNA fusion junctions for BCR-ABL translocations by Anchored ChromPET. Genome Med 2010; 2(9): 70.
[http://dx.doi.org/10.1186/gm191] [PMID: 20860819]
[10]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature 2017; 550(7675): 280-4.
[http://dx.doi.org/10.1038/nature24049] [PMID: 28976959]
[11]
Zhu H, Richmond E, Liang C. CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity. Bioinformatics 2018; 34(1): 117-9.
[http://dx.doi.org/10.1093/bioinformatics/btx580] [PMID: 28968770]
[12]
Cong L, Zhang F. Genome engineering using crispr-cas9 system. 2nd ed. Chromosomal Mutagenesis 2015; 1239: pp. 197-217.
[http://dx.doi.org/10.1007/978-1-4939-1862-1_10]
[13]
Sambrook J, Russell DW. Preparation and Transformation of Competent E. coli Using Calcium Chloride. CSH Protoc 2006; 1 pdb.prot3932.
[http://dx.doi.org/10.1101/pdb.prot3932]
[14]
Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975; 45(3): 321-34.
[http://dx.doi.org/10.1182/blood.V45.3.321.321] [PMID: 163658]
[15]
Suzuki N, Itou T, Hasegawa Y, Okazaki T, Ikeno M. Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 2010; 38(5): e33.
[http://dx.doi.org/10.1093/nar/gkp1168] [PMID: 20007595]
[16]
Jones CD, Yeung C, Zehnder JL. Comprehensive validation of a real-time quantitative bcr-abl assay for clinical laboratory use. Am J Clin Pathol 2003; 120(1): 42-8.
[http://dx.doi.org/10.1309/60A9C8WGEGHRNXEE] [PMID: 12866371]
[17]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-5.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[18]
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34(15): 2666-9.
[http://dx.doi.org/10.1093/bioinformatics/bty149] [PMID: 29547981]
[19]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[20]
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25(14): 1754-60.
[http://dx.doi.org/10.1093/bioinformatics/btp324] [PMID: 19451168]
[21]
Li H, Handsaker B, Wysoker A, et al. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25(16): 2078-9.
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[22]
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011; 29(1): 24-6.
[http://dx.doi.org/10.1038/nbt.1754] [PMID: 21221095]
[23]
Osborn MJ, Belanto JJ, Tolar J, Voytas DF. Gene editing and its application for hematological diseases. Int J Hematol 2016; 104(1): 18-28.
[http://dx.doi.org/10.1007/s12185-016-2017-z] [PMID: 27233509]
[24]
Liu Y, Zhao G, Xu CF, Luo YL, Lu ZD, Wang J. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater Sci 2018; 6(6): 1592-603.
[http://dx.doi.org/10.1039/C8BM00263K] [PMID: 29725684]
[25]
García-Tuñón I, Alonso-Pérez V, Vuelta E, et al. Splice donor site sgRNAs enhance CRISPR/Cas9-mediated knockout efficiency. PLoS One 2019; 14(5): e0216674.
[http://dx.doi.org/10.1371/journal.pone.0216674] [PMID: 31071190]
[26]
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 2000; 28: pp. 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27]
[27]
Wolter F, Puchta H. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 2018; 94(5): 767-75.
[http://dx.doi.org/10.1111/tpj.13899] [PMID: 29575326]
[28]
Hamilton A, Elrick L, Myssina S, et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 2006; 20(6): 1035-9.
[http://dx.doi.org/10.1038/sj.leu.2404189] [PMID: 16572205]
[29]
Wilbie D, Walther J, Mastrobattista E. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Acc Chem Res 2019; 52(6): 1555-64.
[http://dx.doi.org/10.1021/acs.accounts.9b00106] [PMID: 31099553]
[30]
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019-27.
[http://dx.doi.org/10.1126/science.aaq0180] [PMID: 29070703]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy