Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

Flexible, Piezoelectric Aluminum-Doped Zinc Oxide Energy Harvesters with Printed Electrodes for Wearable Applications

Author(s): Muhammad Irsyad Suhaimi, Anis Nurashikin Nordin*, Aliza Aini Md Ralib, Lai Ming Lim and Zambri Samsudin

Volume 12, Issue 1, 2022

Published on: 26 January, 2021

Page: [48 - 68] Pages: 21

DOI: 10.2174/2210327911666210126123257

Price: $65

Abstract

Aims: Recent advancements in sensing technology and wireless communications have accelerated the development of the Internet of Things (IoT) which promotes the usage of wearable sensors. An emerging trend is to develop self-sustainable wearable devices, thus eliminating the necessity of the user to carry bulky batteries. In this work, the development of a flexible piezoelectric energy harvester that is capable of harvesting energy from low frequency vibrations is presented. The target application of this energy harvester is for usage in smart shoes.

Objectives: The objective of this research is to design, fabricate and test an energy harvester on PET substrate using Aluminum Zinc Oxide as its piezoelectric layer.

Methods: The energy harvester was designed as a cantilever structure using PET/AZO/Ag layers in d33 mode which can generate large output voltages with small displacements. The electrodes were designed as an interdigitated structure in which two significant design parameters were chosen, namely the effect of gap between electrodes, g and number of inter-digital electrodes (IDE) pairs, N to the output voltage and resonant frequency.

Results: The sputtered AZO on PET showed c-axis orientation at 002 peak with 2 values of 34.45° which indicates piezoelectric behavior. The silver IDE pairs were screen-printed on the AZO thin film. Functionality of the device as an energy harvester was demonstrated by testing it, using a shaker. The energy harvester was capable of generating 0.867 Vrms output voltage when actuated at 49.6 Hz vibrations.

Conclusion: This indicates that the AZO thin films with printed silver electrodes can be used as flexible, d33 energy harvesters.

Keywords: Flexible electronics, energy harvesting, ZnO, Aluminum doped ZnO, silver electrode, piezoelectric.

Graphical Abstract

[1]
Iranmanesh S, Raikos G, Imtiaz SA, Rodriguez-Villegas E. A seizure-based power reduction SoC for wearable EEG in epilepsyIEEE Access 2019; 7: 151682-91.
[http://dx.doi.org/10.1109/ACCESS.2019.2948231]
[2]
Kalantarian H, Sideris C, Mortazavi B, Alshurafa N, Sarrafzadeh M. Dynamic computation offloading for low-power wearable health monitoring systems. IEEE Trans Biomed Eng 2017; 64(3): 621-8.
[http://dx.doi.org/10.1109/TBME.2016.2570210] [PMID: 28113209]
[3]
Spanò E, Di Pascoli S, Iannaccone G. Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sens J 2016; 16(13): 5452-62.
[http://dx.doi.org/10.1109/JSEN.2016.2564995]
[4]
Ashyap AYI, et al. Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas Wirel Propag Lett 2017; 16(c): 2550-3.
[http://dx.doi.org/10.1109/LAWP.2017.2732355]
[5]
Kim J, Gutruf P, Chiarelli AM, et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv Funct Mater 2017; 27(1): 1-8.
[http://dx.doi.org/10.1002/adfm.201604373] [PMID: 28798658]
[6]
Kim J, Banks A, Xie Z, et al. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv Funct Mater 2015; 25(30): 4761-7.
[http://dx.doi.org/10.1002/adfm.201501590]
[7]
Mallires KR, Wang D, Tipparaju VV, Tao N. Developing a low-cost wearable personal exposure monitor for studying respiratory diseases using metal-oxide sensors. IEEE Sens J 2019; 19(18): 8252-61.
[http://dx.doi.org/10.1109/JSEN.2019.2917435]
[8]
Xuan X, Yoon HS, Park JY. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron 2018; 109: 75-82.
[http://dx.doi.org/10.1016/j.bios.2018.02.054] [PMID: 29529511]
[9]
Saleh M, Jeannes RLB. Elderly fall detection using wearable sensors: a low cost highly accurate algorithm. IEEE Sens J 2019; 19(8): 3156-64.
[http://dx.doi.org/10.1109/JSEN.2019.2891128]
[10]
Dierk C, Nicholas MJP, Paulos E. AlterWear: Battery-free wearable displays for opportunistic interactions Conf Hum Factors Comput Syst - Proc 2018; 1-11.
[http://dx.doi.org/10.1145/3173574.3173794]
[11]
Talla V, Pellerano S, Xu H, Ravi A, Palaskas Y. Wi-Fi RF energy harvesting for battery-free wearable radio platforms. In 2015 IEEE International Conference on RFID (RFID)2015. 47-54.
[http://dx.doi.org/10.1109/RFID.2015.7113072]
[12]
Hester J, Storer K, Sorber J. Timely execution on intermittently powered batteryless sensors SenSys 2017 -Proc 15th ACM Conf Embed Networked Sens Syst.
[http://dx.doi.org/10.1145/3131672.3131673]
[13]
Çakıroğlu B, Özacar M. A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosens Bioelectron 2018; 119: 34-41.
[http://dx.doi.org/10.1016/j.bios.2018.07.049] [PMID: 30098464]
[14]
Huang M, Zhou C, Tian J, Yang K, Yang H, Lu J. Self-powered aptasensing for prostate specific antigen based on a membraneless photoelectrochemical fuel cell. Biosens Bioelectron 2020; 165.
[http://dx.doi.org/10.1016/j.bios.2020.112357] [PMID: 32729490]
[15]
Cho E, Mohammadifar M, Choi S. A SELF-POWERED SENSOR PATCH FOR GLUCOSE MONITORING IN SWEAT 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) 366-9.
[http://dx.doi.org/10.1109/MEMSYS.2017.7863417]
[16]
Jeerapan I, Sempionatto JR, Wang J. On-Body Bioelectronics : Wearable Biofuel Cells for Bioenergy Harvesting and Self-Powered Biosensing. Adv Funct Mater 2019; 1906243: 1-18.
[http://dx.doi.org/10.1002/adfm.201906243]
[17]
Shitanda I, Soc JE, Shitanda I, Fujimura Y, Nohara S, Hoshi Y. Paper-based disk-type self-powered glucose biosensor based on screen-printed biofuel cell array paper-based disk-type self-powered glucose biosensor based on screen-printed biofuel cell array. J Electrochem Soc 2019; 166(12): B1063-8.
[http://dx.doi.org/10.1149/2.1501912jes]
[18]
Babar M, Rahman A, Arif F, Jeon G. Energy-harvesting based on internet of things and big data analytics for smart health monitoring. Sustain Comput Informatics Syst 2018; 20: 155-64.
[http://dx.doi.org/10.1016/j.suscom.2017.10.009]
[19]
Yan C, Gao Y, Zhao S, et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2020; 67104235
[http://dx.doi.org/10.1016/j.nanoen.2019.104235]
[20]
Ibarra E, Antonopoulos A, Kartsakli E, Rodrigues JJPC, Verikoukis C. QoS-aware energy management in body sensor nodes powered by human energy harvesting. IEEE Sens J 2016; 16(2): 542-9.
[http://dx.doi.org/10.1109/JSEN.2015.2483064]
[21]
Iqbal M, Khan FU. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Convers Manage 2018; 172: 611-8.
[http://dx.doi.org/10.1016/j.enconman.2018.07.044]
[22]
Le MQ, et al. Review on energy harvesting for structural health monitoring in aeronautical applications. Prog Aerosp Sci 2015; 79: 147-57.
[http://dx.doi.org/10.1016/j.paerosci.2015.10.001]
[23]
Maruccio C, Quaranta G, De Lorenzis L, Monti G. Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge. Smart Mater Struct 2016; 25(8): 1-13.
[http://dx.doi.org/10.1088/0964-1726/25/8/085040]
[24]
Sharma H, Haque A, Jaffery ZA. Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Netw 2019; 94.
[http://dx.doi.org/10.1016/j.adhoc.2019.101966]
[25]
Sharma H, Haque A, Jaffery ZA. Smart agriculture monitoring using Energy Harvesting Internet of Things (EH-IoT). World Sci News 2019; 121: 22-6.
[26]
Zergoune Z, Kacem N, Bouhaddi N. On the energy localization in weakly coupled oscillators for electromagnetic vibration energy harvesting. Smart Mater Struct 28(7)07LT02
[http://dx.doi.org/10.1088/1361-665X/ab05f8]
[27]
Ozger M, Cetinkaya O, Akan OB. Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob Netw Appl 2018; 23(4): 956-66.
[http://dx.doi.org/10.1007/s11036-017-0961-3]
[28]
Zhao Z, et al. Analysis and application of the piezoelectric energy harvester on light electric logistics vehicle suspension systems. Energy Sci Eng 2019; 7(6): 2741-55.
[http://dx.doi.org/10.1002/ese3.456]
[29]
Tentzeris MM, Georgiadis A, Roselli L. Energy Harvesting and Scavenging. [Scanning the Issue] Proc IEEE 2014; 102(11): 1644-8.
[http://dx.doi.org/10.1109/JPROC.2014.2361599]
[30]
Pang Y, Ding H, Liu J, Fang Y, Chen S. A UHF RFID-Based System for Children Tracking. IEEE Internet Things J 2018; 5(6): 5055-64.
[http://dx.doi.org/10.1109/JIOT.2018.2841809]
[31]
Manyala RO. Introductory Chapter: Trends in Research on Energy Harvesting Technology. Energy Harvest 2018; pp. 1-4.
[32]
Tan YK. Sustainable energy harvesting technologies – Past Edited by Yen Kheng Tan . 2011.
[33]
Zhou Y, Zhang S, Ding Y, Zhang L, Zhang C, Zhang X. Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions. Adv Mater 2018; 30(31)1802294
[34]
Chai Z, Zhang N, Sun P, et al. Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 2016; 10(10): 9201-7.
[http://dx.doi.org/10.1021/acsnano.6b05293] [PMID: 27701868]
[35]
Sharma H, Haque A, Jaffery ZA. Solar energy harvesting wireless sensor network nodes: A survey. J Renew Sustain Energy 2018; 10(2)023704
[http://dx.doi.org/10.1063/1.5006619]
[36]
Liu J, Jia Y, Jiang Q, et al. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces 2018; 10(50): 44033-40.
[http://dx.doi.org/10.1021/acsami.8b15332] [PMID: 30523679]
[37]
Nozariasbmarz A, Collins H, Dsouza K, et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl Energy 2020; 258.
[http://dx.doi.org/10.1016/j.apenergy.2019.114069]
[38]
Yang Y, Guo W, Pradel KC, et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 2012; 12(6): 2833-8.
[http://dx.doi.org/10.1021/nl3003039] [PMID: 22545631]
[39]
Chen Z, Xia Y, He J, Xiong Y, Wang G. Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting. Mech Syst Signal Process 2020; 143106824
[http://dx.doi.org/10.1016/j.ymssp.2020.106824]
[40]
Abdelkareem MA, Xu L, Ali MK, et al. Vibration energy harvesting in automotive suspension system: A detailed review. Appl Energy 2018; 229: 672-99.
[http://dx.doi.org/10.1016/j.apenergy.2018.08.030]
[41]
Kim HS, Kim JH, Kim J. A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 2011; 12(6): 1129-41.
[http://dx.doi.org/10.1007/s12541-011-0151-3]
[42]
Divakaran SK, Das Krishna D. RF energy harvesting systems: An overview and design issues. Int J RF Microw Comput Eng 2019; 29(1): 1-15.
[43]
Assogba O, Mbodji AK, Karim Diallo A. Efficiency in RF energy harvesting systems: A comprehensive review IBASE-BF 2020 - 1st IEEE Int Conf Nat Eng Sci Sahel Sustain Dev Impact Big Data Appl Soc Environ 1-10.
[http://dx.doi.org/10.1109/IBASE-BF48578.2020.9069597]
[44]
Visser HJ, Vullers RJM. RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proc IEEE 2013; 101(6): 1410-23.
[http://dx.doi.org/10.1109/JPROC.2013.2250891]
[45]
La Rosa R, Livreri P, Trigona C, Di Donato L, Sorbello G. Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer. Sensors 2019; 19(12): 2660.
[http://dx.doi.org/10.3390/s19122660]
[46]
Zareei S, Deng JD. Energy harvesting modelling for self-powered fitness gadgets: a feasibility study. Int J Parallel Emergent Distrib Syst 2019; 34(4): 412-29.
[http://dx.doi.org/10.1080/17445760.2017.1410817]
[47]
Basaloom AAS, Hadi Habaebi M, Khan S, Shaikh FA. Increasing RPL-based LLN Lifespan using Harvested Solar Energy 2019 IEEE International Conference on Smart Instrumentation, Measurement and Application (ICSIMA). 1-6.
[48]
Jiang X, Polastre J, Culler D. Perpetual environmentally powered sensor networks 2005 4th Int Symp Inf Process Sens Networks, IPSN 2005. 463-8.
[49]
Roundy S, Otis BP, Chee Y-H, Rabaey JM, Wright P A. 1.9 GHz RF transmit beacon using environmentally scavenged energy. Optimization 2003; 4(2): 4.
[50]
Tian R, Wan C, Wang Y, et al. A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J Mater Chem A Mater Energy Sustain 2017; 5(2): 564-70.
[http://dx.doi.org/10.1039/C6TA08838D]
[51]
Choi K, Ahn D, Boo JH. Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module. J Korea Acad Coop Soc 2017; 18(10): 777-84.
[52]
Bottner H, Nurnus J, Gavrikov A, et al. New thermoelectric components using microsystems technologies. J Microelectromech Syst 2004; 13(3): 414-20.
[http://dx.doi.org/10.1109/JMEMS.2004.828740]
[53]
Fan K, Cai M, Liu H, Zhang Y. Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy 2019; 169: 356-68.
[http://dx.doi.org/10.1016/j.energy.2018.12.053]
[54]
Nia EM, Zawawi NAWA, Singh BSM. A review of walking energy harvesting using piezoelectric materials. IOP Conf Ser Mater Sci Eng 2017. 291: 012026.
[55]
Khalatkar AM, Gupta VK. Piezoelectric energy harvester for low engine vibrations. J Renew Sustain Energy 2017; 9(2)024701
[http://dx.doi.org/10.1063/1.4979501]
[56]
Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 2003; 26(11): 1131-44.
[http://dx.doi.org/10.1016/S0140-3664(02)00248-7]
[57]
Carneiro P, dos Santos MP, et al. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl Energy 2020; 260114191
[http://dx.doi.org/10.1016/j.apenergy.2019.114191]
[58]
Li Z, Zuo L, Luhrs G, Lin L, Qin YX. Electromagnetic energy-harvesting shock absorbers: Design, modeling, and road tests. IEEE Trans Vehicular Technol 2013; 62(3): 1065-74.
[http://dx.doi.org/10.1109/TVT.2012.2229308]
[59]
Guo X, Zhang Y, Fan K, Lee C, Wang F. A comprehensive study of non-linear air damping and ‘pull-in’ effects on the electrostatic energy harvesters. Energy Convers Manage 2020; 203112264
[http://dx.doi.org/10.1016/j.enconman.2019.112264]
[60]
Boisseau S, Despesse G, Ahmed B. Electrostatic Conversion for Vibration Energy Harvesting. Small-Scale Energy Harvest 2012.
[http://dx.doi.org/10.5772/51360]
[61]
Priya S, Song HC, Zhou Y, et al. A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest Syst 2017; 4(1): 3-39.
[http://dx.doi.org/10.1515/ehs-2016-0028]
[62]
Ralib AAM, Nordin AN, Othman R, Salleh H. Design, simulation and fabrication of piezoelectric micro generators for aero acoustic applications. Microsyst Technol 2011; 17(4): 563-73.
[http://dx.doi.org/10.1007/s00542-011-1228-8]
[63]
Meninger S, Mur-miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH. Vibration-to-Electric Energy Conversion 2001; 9(1): 64-76.
[64]
Oza V, et al. Development of an electromagnetic micro-generator. J Qual Technol Manag 2007; 20(3–4): 87-97.
[65]
Beeby SP, Tudor MJ, White NM. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 2006; 17(12): R175-95.
[http://dx.doi.org/10.1088/0957-0233/17/12/R01]
[66]
Choi WJ, Jeon Y, Jeong JH, Sood R, Kim SG. Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram 2006; 17(2–4): 543-8.
[http://dx.doi.org/10.1007/s10832-006-6287-3]
[67]
Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 2005; 4(1): 18-27.
[http://dx.doi.org/10.1109/MPRV.2005.9]
[68]
Covaci C, Gontean A. Piezoelectric energy harvesting solutions: A review. Sensors (Basel) 2020; 20(12): 1-37.
[http://dx.doi.org/10.3390/s20123512] [PMID: 32575888]
[69]
Zhou H, Zhang Y, Qiu Y, et al. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 2020; 168112569
[http://dx.doi.org/10.1016/j.bios.2020.112569] [PMID: 32905930]
[70]
Carbonaro N, Lorussi F, Tognetti A. Assessment of a smart sensing shoe for gait phase detection in level walking. Electron 2016; 5(4): 1-15.
[http://dx.doi.org/10.3390/electronics5040078]
[71]
Eskofier BM, Lee SI, Baron M, et al. An overview of smart shoes in the internet of health things: Gait and mobility assessment in health promotion and disease monitoring. Appl Sci(Basel) 2017; 7(10): 986.
[http://dx.doi.org/10.3390/app7100986]
[72]
Badawi H, Laamarti F, Arafsha F, El Saddik A. Standardizing a shoe insole based on ISO/IEEE 11073 personal health device (X73-PHD) standards. In Advances in Intelligent Systems and Computing 2019; 764-78.
[http://dx.doi.org/10.1007/978-3-030-11890-7_72]
[73]
Tabrizi MM, Sharifnezhad A, Agheli M. Development of a totally embedded smart insole Proc ASME Des Eng Tech Conf 1-5.
[http://dx.doi.org/10.1115/DETC2018-86399]
[74]
Lamaarti F, Arafsha F, Hafidh B, El Saddik A. Automated Athlete Haptic Training System for Soccer Sprinting 2nd Int Conf Multimed Inf Process Retrieval, MIPR 2019. 303-9.
[http://dx.doi.org/10.1109/MIPR.2019.00061]
[75]
Mehendale N, Gokalgandhi D, Shah N, Kamdar L. A Review of Smart Technologies Embedded in Shoes. SSRN Electron. J. 2020; pp. 1-9.
[76]
Geisler M, et al. Human-motion energy harvester for autonomous body area sensors Smart Mater Struct 2017; 26(3): 0-31.
[http://dx.doi.org/10.1088/1361-665X/aa548a]
[77]
Kohiki S, Nishitani M, Wada T. Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J Appl Phys 1994; 75(4): 2069-72.
[http://dx.doi.org/10.1063/1.356310]
[78]
Halim MA, Cho H, Park JY. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers Manage 2015; 106: 393-404.
[http://dx.doi.org/10.1016/j.enconman.2015.09.065]
[79]
Cho KH, Shin DJ, Lee CS, Koh JH. Impedance Matching Techniques of Multi-layered PZT Ceramics for Piezoelectric Energy Harvesters. Electron Mater Lett 2019; 15(4): 437-43.
[http://dx.doi.org/10.1007/s13391-019-00135-w]
[80]
Almusallam A, Torah RN, Zhu D, Tudor MJ, Beeby SP. Screen-printed piezoelectric shoe-insole energy harvester using an improved flexible PZT-polymer composites. J Phys Conf Ser 2013; 476(1): 12108.
[http://dx.doi.org/10.1088/1742-6596/476/1/012108]
[81]
Tao K, Yi H, Tang L, et al. Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surf Coat Tech 2019; 359: 289-95.
[http://dx.doi.org/10.1016/j.surfcoat.2018.11.102]
[82]
Han D, Wang Y, Zhang S, et al. Fabrication and characteristics of ZnO thin films deposited by RF sputtering on plastic substrates for flexible display. Sci China Inf Sci 2012; 55(6): 1441-5.
[http://dx.doi.org/10.1007/s11432-011-4348-y]
[83]
Wasa K, Kanno I, Kotera H. Fundamentals of thin film piezoelectric materials and processing design for a better energy harvesting MEMS. Power MEMS 2009; 61: 61-6.
[84]
Gablech I, Klempa J, Pekárek J, et al. Simple and efficient AlN-Based piezoelectric energy harvesters. Micromachines (Basel) 2020; 11(2): 1-10.
[http://dx.doi.org/10.3390/mi11020143] [PMID: 32012859]
[85]
Shen Z, Liu S, Miao J, Woh LS, Wang Z. Spiral electrode d33 mode piezoelectric diaphragm combined with proof mass as energy harvester. J Micromech Microeng 2015; 25(3)035004
[http://dx.doi.org/10.1088/0960-1317/25/3/035004]
[86]
Chin HS, Chao LS, Wu CC. Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Mater Res Bull 2016; 79: 90-6.
[http://dx.doi.org/10.1016/j.materresbull.2016.03.017]
[87]
Nomoto J, Makino H, Nakajima T, Tsuchiya T, Yamamoto T. Improvement of the Properties of Direct-Current Magnetron-Sputtered Al-Doped ZnO Polycrystalline Films Containing Retained Ar Atoms Using 10-nm-Thick Buffer Layers. ACS Omega 2019; 4(11): 14526-36.
[http://dx.doi.org/10.1021/acsomega.9b01761] [PMID: 31528807]
[88]
Zhu C, Zhou T, Shi F, Song W, Li J, Wu W. Room-temperature RF magnetron sputtering deposition of hydrogenated Ga-doped ZnO thin films on PET substrates for PDLC devices. Appl Phys, A Mater Sci Process 2018; 124(12): 1-5.
[http://dx.doi.org/10.1007/s00339-018-2276-z]
[89]
Pan C T. Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 2014.
[http://dx.doi.org/10.1002/9781118487808.ch2]
[90]
El Hamali SO, Cranton WM, Kalfagiannis N, Hou X, Ranson R, Koutsogeorgis DC. Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing. Opt Lasers Eng 2016; 80: 45-51.
[http://dx.doi.org/10.1016/j.optlaseng.2015.12.010]
[91]
Md Ralib AA, Nordin AN, Salleh H, Othman R. Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters. Microsyst Technol 2012; 18(11): 1761-9.
[http://dx.doi.org/10.1007/s00542-012-1550-9]
[92]
Jeong D, Kang C, Priya S. Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density J Microelectromechanical Syst 2017; (99): 1-9.
[93]
Zhao J, You Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors (Basel) 2014; 14(7): 12497-510.
[http://dx.doi.org/10.3390/s140712497] [PMID: 25019634]
[94]
Jung WS, Lee MJ, Kang MG, et al. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015; 13: 174-81.
[http://dx.doi.org/10.1016/j.nanoen.2015.01.051]
[95]
Nishi T, Ito T, Hida H, Kanno I. Shoe-mounted vibration energy harvester of PZT piezoelectric thin films on metal foils. J Phys Conf Ser 2016; 773(1)012062
[http://dx.doi.org/10.1088/1742-6596/773/1/012062]
[96]
Pan CT, Liu ZH, Chen YC, Liu CF. Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sens Actuators A Phys 2010; 159(1): 96-104.
[http://dx.doi.org/10.1016/j.sna.2010.02.023]
[97]
Yang Y, Wang S, Stein P, Xu BX, Yang T. Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: Analysis and identification of optimal structural parameters. Smart Mater Struct 2017; 26(4)
[http://dx.doi.org/10.1088/1361-665X/aa5fda]
[98]
Zhao Q, Liu Y, Wang L, Yang H, Cao D. Design method for piezoelectric cantilever beam structure under low frequency condition. Int J Pavement Res Technol 2018; 11(2): 153-9.
[http://dx.doi.org/10.1016/j.ijprt.2017.08.001]
[99]
Usharani R, Uma G, Umapathy M. “Design of high output broadband piezoelectric energy harvester with double tapered cavity beam,” Int. J. Precis. Eng. Manuf. -. Green Technol 2016; 3(4): 343-51.
[100]
Tang G, Yang B, Liu JQ, Xu B, Zhu HY, Yang CS. Development of high performance piezoelectric d33mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sens Actuators A Phys 2014; 205: 150-5.
[http://dx.doi.org/10.1016/j.sna.2013.11.007]
[101]
Priya S, Inman DJ. Energy harvesting technologies. Springer 2009; Vol. 21.
[http://dx.doi.org/10.1007/978-0-387-76464-1]
[102]
Shivashankar P, Gopalakrishnan S. Design, modeling and testing of d33-mode surface-bondable multilayer piezoelectric actuator. Smart Mater Struct 2020; 29(4)045016
[http://dx.doi.org/10.1088/1361-665X/ab6698]
[103]
Zhou H, Han RH, Xu MH, Guo H. Study of a piezoelectric accelerometer based on d33 mode In 2016 Symp Piezoelectricity. Acoust Waves Device Appl SPAWDA 2016; pp. 61-5.
[104]
Park JC, Member S, Park JY, Lee Y. Modeling and Characterization 427 of Piezoelectric d 33 -Mode MEMS Energy Harvester 2010; 19(5): 1215-22.
[http://dx.doi.org/10.1109/JMEMS.2010.2067431]
[105]
Hosseini R, Hamedi M. An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester. Microsyst Technol 2016; 22(5): 1127-34.
[http://dx.doi.org/10.1007/s00542-015-2583-7]
[106]
Hegde N, Bries M, Sazonov E. A Comparative Review of Footwear-Based Wearable Systems. Electronics (Basel) 2016; 5(48): 1-28.
[http://dx.doi.org/10.3390/electronics5030048]
[107]
Guan M, Liao WH. Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers Manage 2016; 111: 239-44.
[http://dx.doi.org/10.1016/j.enconman.2015.12.061]
[108]
Wang L, Zhao L, Jiang Z, et al. High accuracy comsol simulation method of bimorph cantilever for piezoelectric vibration energy harvesting. AIP Adv 2019; 9(9)095067
[http://dx.doi.org/10.1063/1.5119328]
[109]
Alsaad AM, Ahmad AA, Al-Bataineh QM, Daoud NS, Khazaleh MH. Design and analysis of MEMS based Aluminum Nitride (AlN), Lithium Niobate (LiNbO3) and Zinc Oxide (ZnO) cantilever with different substrate materials for piezoelectric vibration energy harvesters using COMSOL multiphysics software. Open J Appl Sci 2019; 09(04): 181-97.
[http://dx.doi.org/10.4236/ojapps.2019.94016]
[110]
Yeo HG, Xue T, Roundy S, Ma X, Rahn C, Trolier-McKinstry S. Strongly (001) oriented bimorph PZT film on metal foils grown by rf-sputtering for wrist-worn piezoelectric energy harvesters. Adv Funct Mater 2018; 28(36): 1-9.
[http://dx.doi.org/10.1002/adfm.201801327]
[111]
Han CS, Lee TH, Kim GM, Lee DY, Cho YS. Piezoelectric energy harvesting characteristics of GaN nanowires prepared by a magnetic field-assisted CVD process. J Korean Ceram Soc 2016; 53(2): 167-70.
[http://dx.doi.org/10.4191/kcers.2016.53.2.167]
[112]
Praveen JP, Karthik T, James AR, Chandrakala E, Asthana S, Das D. Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J Eur Ceram Soc 2015; 35(6): 1785-98.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.010]
[113]
Ralib AAM, Mortada O, Orlianges JC, Crunteanu A, Chatras M, Nordin AN. Enhanced piezoelectric properties of aluminium doped zinc oxide thin film for surface acoustic wave resonators on a CMOS platform. J Mater Sci Mater Electron 2017; 28(12): 9132-8.
[http://dx.doi.org/10.1007/s10854-017-6647-6]
[114]
Zhang Y, Jiang X, Zhang J, Zhang H, Li Y. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron 2019; 130: 315-21.
[http://dx.doi.org/10.1016/j.bios.2019.01.043] [PMID: 30784985]
[115]
Hyun WJ, Lim S, Ahn BY, Lewis JA, Frisbie CD, Francis LF. Screen printing of highly loaded silver inks on plastic substrates using silicon stencils. ACS Appl Mater Interfaces 2015; 7(23): 12619-24.
[http://dx.doi.org/10.1021/acsami.5b02487] [PMID: 26035226]
[116]
Chen Y, Wang L, Gao R, et al. Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical Water splitting. Appl Catal B 2019; 259118079
[http://dx.doi.org/10.1016/j.apcatb.2019.118079]
[117]
Jain P, Stroppa A, Nabok D, et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework npj Quantum Mater 2016; 11-6.
[http://dx.doi.org/10.1038/npjquantmats.2016.12]
[118]
Epp J. X-Ray Diffraction (XRD) Techniques for Materials Characterization. Elsevier Ltd 2016.
[http://dx.doi.org/10.1016/B978-0-08-100040-3.00004-3]
[119]
Park JH. Deposition-Temperature Effects on AZO Thin Films Prepared by RF Magnetron Sputtering and Their Physical Properties 2006; 49(December): 584-8.
[120]
Gâlc AC, Secu M, Vlad A, Pedarnig JD. Optical properties of zinc oxide thin fi lms doped with aluminum and lithium 2010.Vol.518: pp. 4603-6..
[121]
Kumar A, Saini SK, Sharma G, Johar AK. Development and characterization of ZnO thin film for piezoelectric applications MaterToday Proc2020; (xxxx): 1-3
[http://dx.doi.org/10.1016/j.matpr.2020.01.351]
[122]
Liu SJ, Wan B, Wang P, Song SH. Influence of A-site non-stoichiometry on structure and electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric ceramics. Scr Mater 2010; 63(1): 124-7.
[http://dx.doi.org/10.1016/j.scriptamat.2010.03.033]
[123]
Wang P, Du H, Shen S, Zhang M, Liu B. Applied Surface Science Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers. Appl Surf Sci 2012; 258(24): 9510-7.
[http://dx.doi.org/10.1016/j.apsusc.2012.04.158]
[124]
David T, Goldsmith S, Boxman RL. Dependence of zinc oxide thin film properties on filtered vacuum arc deposition parameters. J Phys D Appl Phys 2005; 38(14): 2407-16.
[http://dx.doi.org/10.1088/0022-3727/38/14/017]
[125]
Du S, Jia Y, Chen ST, et al. A new electrode design method in piezoelectric vibration energy harvesters to maximize output power. Sens Actuators A Phys 2017; 263: 693-701.
[http://dx.doi.org/10.1016/j.sna.2017.06.026]
[126]
Jamain UM, Ibrahim NH, Rahim RA. Performance analysis of zinc oxide piezoelectric MEMS energy harvester IEEE Int Conf Semicond Electron Proceedings, ICSE. 263-6.
[http://dx.doi.org/10.1109/SMELEC.2014.6920847]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy