Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Biogenesis and Application of Nickel Nanoparticles: A Review

Author(s): Siva S. Sana, Raghvendra P. Singh*, Minaxi Sharma, Atul K. Srivastava, Geetanjali Manchanda, Alok R. Rai and Zhi-Jun Zhang*

Volume 22, Issue 6, 2021

Published on: 01 January, 2021

Page: [808 - 822] Pages: 15

DOI: 10.2174/1389201022999210101235233

Price: $65

Abstract

Biogenic synthesis of Nanoparticles (NPs) is attractive due to their ecological benefits and cheap, rapid, and sustainable nature. Among them, Nickel Oxide NPs (NiO-NPs) are acquired for their varied catalytic and clinical applications, as they have antibacterial, antifungal, cytotoxic, anticancer, antioxidant, remediation, and enzyme inhibition properties. Though several chemical-dependent methods were applied for the fabrication of nanoparticles, due to their substantial disadvantages, mainly toxicity and higher cost synthesis methods, the more secure, greener, eco-friendly, cost-effective, and synthetic methods are in demand. Greener approaches can take away the arduousness and complications of physicochemical methods. The present review is aimed at displaying the recent advancement related to the catalytic activity, antimicrobial activity, cytotoxicity, and antioxidant application of green synthesized Nickle. In this study, nickle oxide nanoparticles have been highlighted along with their sustainable synthesis options.

Keywords: Biological material, antioxidant, cytotoxicity, antimicrobial activity, nickel oxide, catalytic activity.

Graphical Abstract

[1]
Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem., 2006, 8(5), 417-432.
[http://dx.doi.org/10.1039/b517131h]
[2]
Shin, W.K.; Cho, J.; Kannan, A.G.; Lee, Y.S.; Kim, D.W. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep., 2016, 6, 26332.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]]
[3]
Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater., 2010, 22(25), 2729-2742.
[http://dx.doi.org/10.1002/adma.201000260] [PMID: 20473985]
[4]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[5]
Gupta, A.K.; Gupta, M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26(13), 1565-1573.
[http://dx.doi.org/10.1016/j.biomaterials.2004.05.022] [PMID: 15522758]
[6]
Jia, F.L.; Zhang, L.Z.; Shang, X.Y.; Yang, Y. Non-aqueous sol-gel approach towards the controllable preparation of nickel nanospheres, nanowires, and nanoflowers. Adv. Mater., 2008, 20(5), 1050-1054.
[http://dx.doi.org/10.1002/adma.200702159]
[7]
Chen, D.H.; Wu, S.H. Preparation of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater., 2000, 12(5), 1354-1360.
[http://dx.doi.org/10.1021/cm991167y]
[8]
Chouke, P.; Potbhare, A.; Dadure, K.; Mungole, A.; Meshram, N.; Chaudhary, R.R.; Rai, A.R.; Chaudhary, R.G. An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay. Mater. Today: Proc., 2020, 29(3), 815-821.
[9]
Potbhare, A.K.; Chouke, P.B.; Mondal, A.; Thakare, R.U.; Mondal, S.; Chaudhary, R.G.; Rai, A.R. Rhizoctonia solani assisted biosynthesis of silver nanoparticles for antibacterial assay. Mater. Today: Proc., 2020, 29(3), 939-945.
[10]
Nagaraj, B.; Krishnamurthy, N.B.; Liny, P.; Divya, T.K.; Dinesh, R. Biopreparation of gold nanoparticles of Ixora coccinea flower extract & their antimicrobial activities. Int. J. Pharma Bio Sci., 2011, 2(4), 557-565.
[11]
Raj, K.; Viswanathan, B. Preparation of nickel nanoparticles with FCC and Hcp crystal structures. Indian J. Chem., 2011, 50(2), 176-179.
[12]
Sudhasree, S.; Shakila, B.A.; Brindha, P.; Kurian, G.A. Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol. Environ. Chem., 2014, 96(5), 743-754.
[http://dx.doi.org/10.1080/02772248.2014.923148]
[13]
Ahmed, K.; Yasmin, F.; Hussain, N. Green preparation of nickel nanoparticles by using plant leaf extract as reducing agent. Int. J. Sci., 2016, 28(3), 2511.
[14]
Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, D.; Chen, G. Preparation of nickel nanoparticles by aqueous reduction in continuous flow microreactor. Chem. Engi. Proc.: Process Intensification, 2015, 93, 44-49.
[http://dx.doi.org/10.1016/j.cep.2015.04.010]
[15]
Li, D.; Komarneni, S. Microwave-assisted polyol process for preparation of Ni nanoparticles. J. Am. Ceram. Soc., 2006, 89(5), 1510-1517.
[http://dx.doi.org/10.1111/j.1551-2916.2006.00925.x]
[16]
López-Quintela, M.A.; Rivas, J.; Blanco, M.C.; Tojo, C. Synthesis of nanoparticles in microemulsions. Nanoscale Materials; Liz-Marzán, L.M; Kamat, P.V., Ed.; Springer: Boston, MA, 2014.
[17]
Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci., 2015, 457, 141-147.
[http://dx.doi.org/10.1016/j.jcis.2015.07.004] [PMID: 26164245]
[18]
Rice-Evans, C. Flavonoids and isoflavones: Absorption, metabolism, and bioactivity. Free Radic. Biol. Med., 2004, 36(7), 827-828.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.012] [PMID: 15019967]
[19]
Chouke, P.; Potbhare, A.; Bhusari, G.; Somkuwar, S.; Shaik, D.P.M.D.; Mishra, R.; Chaudhary, R.G. Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity. Adv. Mater. Lettr., 2019, 10, 355-360.
[http://dx.doi.org/10.5185/amlett.2019.2235]
[20]
Tanna, J.; Juneja, H.D.; Gandhare, N.V.; Chaudhary, R.G.; Meshram, V.P.; Gharpure, M.P.; Chauke, P.B.; Kalsaitkar, P. An efficient and effective In-vitro callus production in Bacopa monnieri by using copper nanoparticles. Res. J. Pharm. Biol. Chem. Sci., 2016, 7, 12-17.
[21]
Chaudhary, R.G.; Bhusari, G.S.; Tiple, A.D.; Rai, A.R.; Somkuvar, S.R.; Potbhare, A.K.; Lambat, T.L.; Ingle, P.P.; Abdala, A.A. Metal/metal oxide nanoparticles: Toxicity, applications, and future prospects. Curr. Pharm. Des., 2019, 25(37), 4013-4029.
[http://dx.doi.org/10.2174/1381612825666191111091326] [PMID: 31713480]
[22]
Wang, X.; Li, L.; Zhang, Y.G.; Wang, S.; Zhang, Z.; Fei, L.; Qian, Y. High-yield preparation of NiO nanoplatelets and their excellent electrochemical performance. Cryst. Growth Des., 2006, 6(9), 2163-2165.
[http://dx.doi.org/10.1021/cg060156w]
[23]
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors., 2010.
[24]
Deng, W.; Ji, X.; Chen, Q.; Banks, C.E. Electrochemical capacitors utilising transition metal oxides: An update of recent developments. Rsc Adv., 2011, 1(7), 1171-1178.
[http://dx.doi.org/10.1039/c1ra00664a]
[25]
Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41(2), 797-828.
[http://dx.doi.org/10.1039/C1CS15060J] [PMID: 21779609]
[26]
Conway, B.E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem., 1991, 138(6), 1539.
[http://dx.doi.org/10.1149/1.2085829]
[27]
Juibari, N.M.; Eslami, A. Synthesis of nickel oxide nanorods by Aloe vera leaf extract. J. Therm. Anal. Calorim., 2019, 136(2), 913-923.
[http://dx.doi.org/10.1007/s10973-018-7640-x]
[28]
Kharissova, O.V.; Dias, H.V.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31(4), 240-248.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[29]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[30]
Sharma, H.S.; Ali, S.F.; Hussain, S.M.; Schlager, J.J.; Sharma, A. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J. Nanosci. Nanotechnol., 2009, 9(8), 5055-5072.
[http://dx.doi.org/10.1166/jnn.2009.GR09] [PMID: 19928185]
[31]
Hashem, M.; Saion, E.; Al-Hada, N.M.; Kamari, H.M.; Shaari, A.H.; Talib, Z.A.; Paiman, S.B.; Kamarudeen, M.A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys., 2016, 6, 1024-1030.
[http://dx.doi.org/10.1016/j.rinp.2016.11.031]
[32]
Gong, N.; Shao, K.; Feng, W.; Lin, Z.; Liang, C.; Sun, Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 2011, 83(4), 510-516.
[http://dx.doi.org/10.1016/j.chemosphere.2010.12.059] [PMID: 21216429]
[33]
Kundu, M.; Liu, L. Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for high-rate supercapacitors. Mater. Lett., 2015, 144, 114-118.
[http://dx.doi.org/10.1016/j.matlet.2015.01.032]
[34]
Soomro, R.A.; Ibupoto, Z.H.; Abro, M.I.; Willander, M. Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B Chem., 2015, 209, 966-974.
[http://dx.doi.org/10.1016/j.snb.2014.12.050]
[35]
Thema, F.T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single phase Bunsenite NiO nanoparticles green preparation by Agathosma betulina natural extract. J. Alloys Compd., 2016, 657, 655-661.
[http://dx.doi.org/10.1016/j.jallcom.2015.09.227]
[36]
Imran Din, M.; Rani, A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. Int. J. Anal. Chem., 2016, 2016, Article ID 3512145.
[http://dx.doi.org/10.1155/2016/3512145] [PMID: 27413375]
[37]
Ahamed, M.; Ali, D.; Alhadlaq, H.A.; Akhtar, M.J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in Human liver cells (HepG2). Chemosphere, 2013, 93(10), 2514-2522.
[http://dx.doi.org/10.1016/j.chemosphere.2013.09.047] [PMID: 24139157]
[38]
Lingaraju, K.; Naika, H.R.; Nagabhushana, H.; Jayanna, K.; Devaraja, S.; Nagaraju, G. Biopreparation of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab. J. Chem., 2020, 13(3), 4712-4719.
[http://dx.doi.org/10.1016/j.arabjc.2019.11.003]
[39]
Singh, R.P.; Handa, R.; Geetanjali, M. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Controlled Release, 2021, 329, 1234-1248.
[40]
Jahromi, S.P.; Pandikumar, A.; Goh, B.T.; Lim, Y.S.; Basirun, W.J.; Lim, H.N.; Huang, N.M. Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Advances, 2015, 5(18), 14010-14019.
[http://dx.doi.org/10.1039/C4RA16776G]
[41]
Sankar, S.; Sharma, S.K.; An, N.; Lee, H.; Kim, D.Y. Im, Y.B.; Cho, Y.D.; Ganesh, R.S.; Ponnusamy, S.; Raji, P.; Purohit, L.P. Photocatalytic properties of Mn-doped NiO spherical nanoparticles synthesized from sol-gel method. Optik (Stuttg.), 2016, 127(22), 10727-10734.
[http://dx.doi.org/10.1016/j.ijleo.2016.08.126]
[42]
Motevalli, K.; Zarghami, Z.; Panahi-Kalamuei, M. Simple, novel and low-temperature preparation of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment. J. Mater. Sci. Mater. Electron., 2016, 27(5), 4794-4799.
[http://dx.doi.org/10.1007/s10854-016-4360-5]
[43]
Nassar, M.Y.; Aly, H.M.; Abdelrahman, E.A.; Moustafa, M.E. Preparation, characterization, and biological activity of some novel Schiff bases and their Co (II) and Ni (II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. J. Mol. Struct., 2017, 1143, 462-471.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.118]
[44]
Gnanasekaran, L.; Hemamalini, R.; Saravanan, R.; Ravichandran, K.; Gracia, F.; Agarwal, S.; Gupta, V.K. Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J. Photochem. Photobiol. B, 2017, 173, 43-49.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.027] [PMID: 28558305]
[45]
Mohammadijoo, M.; Khorshidi, Z.N.; Sadrnezhaad, S.K.; Mazinani, V. Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing. J. Nanosci. Nanotechnol., 2014, 4(1), 6-9.
[46]
Madhumitha, G.; Elango, G.; Roopan, S.M. Biotechnological aspects of ZnO nanoparticles: Overview on synthesis and its applications. Appl. Microbiol. Biotechnol., 2016, 100(2), 571-581.
[http://dx.doi.org/10.1007/s00253-015-7108-x] [PMID: 26541334]
[47]
Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Maaza, M.; Ayeshamariam, A.; Kennedy, L.J. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B, 2016, 164, 352-360.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.003] [PMID: 27728880]
[48]
Karpagavinayagam, P.; Prasanna, A.E.; Vedhi, C. Eco-friendly preparation of nickel oxide nanoparticles using Avicennia marina leaf extract: Morphological characterization and electrochemical application. Mater. Today Proc., In press, 2020. hdoi.org/10.1016/j.matpr.2020.04.183
[49]
Gu, S.H.; Nicolas, V.; Lalis, A.; Sathirapongsasuti, N.; Yanagihara, R. Complete genome sequence and molecular phylogeny of a newfound hantavirus harbored by the Doucet’s musk shrew (Crocidura douceti) in Guinea. Infect. Genet. Evol., 2013, 20, 118-123.
[http://dx.doi.org/10.1016/j.meegid.2013.08.016] [PMID: 23994121]
[50]
Recio, F.J.; Herrasti, P.; Sirés, I.; Kulak, A.N.; Bavykin, D.V.; Ponce-de-León, C.; Walsh, F.C. The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim. Acta, 2011, 56(14), 5158-5165.
[http://dx.doi.org/10.1016/j.electacta.2011.03.054]
[51]
Yuan, B.; Xu, C.; Deng, D.; Xing, Y.; Liu, L.; Pang, H.; Zhang, D. Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim. Acta, 2013, 88, 708-712.
[http://dx.doi.org/10.1016/j.electacta.2012.10.102]
[52]
Pallela, P.N.; Ummey, S.; Ruddaraju, L.K.; Kollu, P.; Khan, S.; Pammi, S.V. Antibacterial activity assessment and characterization of green synthesized CuO nano rods using Asparagus racemosus roots extract. SN Appl. Sci., 2019, 1(5), 421.
[http://dx.doi.org/10.1007/s42452-019-0449-9]
[53]
Kumar, P.V.; Shameem, U.; Kollu, P.; Kalyani, R.L.; Pammi, S.V. Green preparation of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience, 2015, 5(3), 135-139.
[http://dx.doi.org/10.1007/s12668-015-0171-z]
[54]
Pallela, P.N.V.K.; Ummey, S.; Ruddaraju, L.K.; Pammi, S.V.N.; Yoon, S.G. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microb. Pathog., 2018, 124, 63-69.
[http://dx.doi.org/10.1016/j.micpath.2018.08.026] [PMID: 30121359]
[55]
Kumara, P.P.; Pammi, S.V.; Shameem, U. A Green approach for the preparation of iron oxide nanoparticles by using roots of A. racemosus and its degradation of dye methyl orange. Int. J. Pharm. Drug. Anal., 2018, 6, 22-28.
[56]
Kuchekar, S.; Dhage, P.; Gaikwad, V.; Aher, H.; Han, S. Biopreparation and characterization of nickel nanoparticle using Ocimum sanctum (Tulsi). Leaf Extract. Chem. Sci. (Camb.), 2018, 7(4), 696-702.
[57]
Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical coprecipitation method. Mater. Sci. Eng. B, 2012, 177(5), 421-427.
[http://dx.doi.org/10.1016/j.mseb.2012.01.003]
[58]
Subhashini, D.V.; Singh, R.P.; Manchanda, G. 2017.https://books.google.co.in/books?id=vSaLtAEACAAJ
[59]
Pandian, C.J.; Palanivel, R.; Dhananasekaran, S. Green preparation of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin. J. Chem. Eng., 2015, 23(8), 1307-1315.
[http://dx.doi.org/10.1016/j.cjche.2015.05.012]
[60]
Sudhasree, S.; Shakila, B.A.; Brindha, P.; Kurian, G.A. Preparation of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol. Environ. Chem., 2014, 96(5), 743-754.
[http://dx.doi.org/10.1080/02772248.2014.923148]
[61]
Reynolds, T.; Dweck, A.C. Aloe vera leaf gel: A review update. J. Ethnopharmacol., 1999, 68(1-3), 3-37.
[http://dx.doi.org/10.1016/S0378-8741(99)00085-9] [PMID: 10624859]
[62]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[63]
Maensiri, S.; Laokul, P.; Klinkaewnarong, J.; Phokha, S.; Promarak, V.; Seraphin, S. Indium Oxide (In2O3) nanoparticles using Aloe vera plant extract: Preparation and optical properties. J. Optoelectron. Adv. Mater., 2008, 10(3), 161-165.
[64]
Kavitha, T.; Yuvaraj, H. A facile approach to the preparation of high-quality NiO nanorods: Electrochemical and antibacterial properties. J. Mater. Chem., 2011, 21(39), 15686-15691.
[http://dx.doi.org/10.1039/c1jm13278d]
[65]
Ghosh, M.; Biswas, K.; Sundaresan, A.; Rao, C.N. MnO and NiO nanoparticles: Preparation and magnetic properties. J. Mater. Chem., 2006, 16(1), 106-111.
[http://dx.doi.org/10.1039/B511920K]
[66]
Saikia, J.P.; Paul, S.; Konwar, B.K.; Samdarshi, S.K. Nickel oxide nanoparticles: A novel antioxidant. Colloids Surf. B Biointerfaces, 2010, 78(1), 146-148.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.016] [PMID: 20219331]
[67]
Chaudhary, R.G.; Tanna, J.; Gandhare, N.; Rai, A.R.; Juneja, H. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lettr., 2015, 6, 990-998.
[http://dx.doi.org/10.5185/amlett.2015.5901]
[68]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Hameed, S.; Munir, A.; Kanwal, S. Green preparation and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem., 2019, 33(8)
[http://dx.doi.org/10.1002/aoc.4950]
[69]
Mayedwa, N.; Mongwaketsi, N.; Khamlich, S.; Kaviyarasu, K.; Matinise, N.; Maaza, M. Green preparation of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: Physical properties & mechanism of formation. Appl. Surf. Sci., 2018, 446, 266-272.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.116]
[70]
Sone, B.T.; Fuku, X.G.; Maaza, M. Physical & electrochemical properties of green synthesized bunsenite NiO nanoparticles via Callistemon viminalis’ extracts. Int. J. Electrochem. Sci., 2016, 11, 8204-8220.
[http://dx.doi.org/10.20964/2016.10.17]
[71]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. Sageretiathea (Osbeck.) modulated biopreparation of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 838-852.
[http://dx.doi.org/10.1080/21691401.2017.1345928] [PMID: 28687045]
[72]
Sharma, A.; Hickman, J.; Gazit, N.; Rabkin, E.; Mishin, Y. Nickel nanoparticles set a new record of strength. Nat. Commun., 2018, 9(1), 4102.
[http://dx.doi.org/10.1038/s41467-018-06575-6] [PMID: 30291239]
[73]
Nasseri, M.A.; Ahrari, F.; Zakerinasab, B.A. Green biopreparation of NiO nanoparticles using aqueous extract of Tamarix serotina and their characterization and application. Appl. Organomet. Chem., 2016, 30(12), 978-984.
[http://dx.doi.org/10.1002/aoc.3530]
[74]
Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S. I Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic preparation of nickel oxide nanocrystals. Mater. Lett., 2014, 128, 170-174.
[http://dx.doi.org/10.1016/j.matlet.2014.04.112]
[75]
Yang, Y.J.; Singh, R.P.; Lan, X.; Zhang, C.S.; Sheng, D.H.; Li, Y.Q. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus. Microb. Cell Fact., 2019, 18(1), 123.
[http://dx.doi.org/10.1186/s12934-019-1172-3] [PMID: 31291955]
[76]
Latvala, S.; Hedberg, J.; Di Bucchianico, S.; Möller, L.; Odnevall Wallinder, I.; Elihn, K.; Karlsson, H.L. Nickel release, ROS generation and toxicity of Ni and NiO micro- and nanoparticles. PLoS One, 2016, 11(7), e0159684.
[http://dx.doi.org/10.1371/journal.pone.0159684] [PMID: 27434640]
[77]
Abbasi, B.A.; Iqbal, J.; Ahmad, R.; Zia, L.; Kanwal, S.; Mahmood, T.; Wang, C.; Chen, J.T. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 2019, 10(1), 38.
[http://dx.doi.org/10.3390/biom10010038] [PMID: 31888037]
[78]
Mohamed, K.; Zine, K.; Fahima, K.; Abdelfattah, E.; Sharifudin, S.M.; Duduku, K. NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): Preventive effect of Pistacia lentiscus essential oil. Toxicol. Rep., 2018, 5, 480-488.
[http://dx.doi.org/10.1016/j.toxrep.2018.03.012] [PMID: 29854619]
[79]
Chen, M.; Zhang, Y.; Huang, B.; Yang, X.; Wu, Y.; Liu, B.; Yuan, Y.; Zhang, G. Nanostructured surfaces, coatings, and films: Fabrication, characterization, and application. J. Nanomater., 2013, 6, 492646.
[http://dx.doi.org/10.1155/2013/623497]
[80]
Springer Singapore: Singapore, 2020.
[81]
Muthuvinothini, A.; Stella, S. Green preparation of metal oxide nanoparticles and their catalytic activity for the reduction of aldehydes. Process Biochem., 2019, 77, 48-56.
[http://dx.doi.org/10.1016/j.procbio.2018.12.001]
[82]
Srihasam, S.; Thyagarajan, K.; Korivi, M.; Lebaka, V.R.; Mallem, S.P.R. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their In-vitro antioxidant and antimicrobial properties. Biomolecules, 2020, 10(1), 89.
[http://dx.doi.org/10.3390/biom10010089] [PMID: 31935798]
[83]
Din, M.I.; Nabi, A.G.; Rani, A.; Aihetasham, A.; Mukhtar, M. Single step green preparation of sturdy nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials. Environ. Nanotechnol. Monit. Manag., 2018, 9, 29-36.
[http://dx.doi.org/10.1016/j.enmm.2017.11.005]
[84]
Chethana, R.; Sharath Kumar, M.N.; Jayanna, K.; Ashwini, S. Chandramma; Girish, K.S.; Kemparaju, K.; Devaraja, S. Evaluation of anticoagulant and antiplatelet activity of Pisum sativum pod extract. J. Blood Res. Hematol. Dis., 2017, 2(1), 1-8.
[85]
Ardlie, N.G.; Han, P. Enzymatic basis for platelet aggregation and release: the significance of the ‘platelet atmosphere’ and the relationship between platelet function and blood coagulation. Br. J. Haematol., 1974, 26(3), 331-356.
[http://dx.doi.org/10.1111/j.1365-2141.1974.tb00477.x] [PMID: 4851871]
[86]
Quick, A.J.; Stanley-Brown, M.; Bancroft, F.W. A studies of the coagulation defect in hemophilia and in jaundice. Am. J. Med. Sci., 1935, 190, 501-511.
[http://dx.doi.org/10.1097/00000441-193510000-00009]
[87]
Lalithambika, K.C.; Thayumanavan, A.; Ravichandran, K. Photocatalytic and antibacterial activities of eco-friendly green synthesized ZnO and NiO nanoparticles. J. Mater. Sci. Mater. Electron., 2017, 28, 2062-2068.
[http://dx.doi.org/10.1007/s10854-016-5767-8]
[88]
Giri, A.S.; Chakma, S. Green synthesis of nanoparticles and their application for sustainable environment. Nanotechnology-Based Industrial Applications of Ionic Liquids. Nanotechnology in the Life Sciences; Inamuddin, A.A., Ed.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-44995-7_13]
[89]
Manjunath, K.; Ravishankar, T.N.; Dhanith, K.; Priyanka, K.P.; Varghese, T.; Naika, R.; Nagabhushana, H.; Sharma, S.C.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G. Facile combustion preparation of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications. Mater. Res. Bull., 2014, 7, 325-334.
[http://dx.doi.org/10.1016/j.materresbull.2014.06.010]
[90]
Hemeg, H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomedicine, 2017, 12, 8211-8225.
[http://dx.doi.org/10.2147/IJN.S132163] [PMID: 29184409]
[91]
Ibraheem, F.; Aziz, M.H.; Fatima, M.; Shaheen, F.; Mansoor, A.S.; Huang, Q. In vitro Cytotoxicity, MMP and ROS activity of green synthesized nickel oxide nanoparticles using extract of Terminalia chebula against MCF-7 cells. Mater. Lett., 2019, 234, 129-133.
[http://dx.doi.org/10.1016/j.matlet.2018.09.075]
[92]
Lingaraju, K.; Raja, N.H.; Nagabhushana, H.; Nagaraju, G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. Biocatal. Agric. Biotechnol., 2019, •••, 18.
[http://dx.doi.org/10.1016/j.bcab.2018.10.011]
[93]
Tareen, A.K.; Priyanga, G.S.; Khan, K.; Pervaiz, E.; Thomas, T.; Yang, M. Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. ChemSusChem, 2019, 12(17), 3941-3954.
[http://dx.doi.org/10.1002/cssc.201900553] [PMID: 31197961]
[94]
Sabouri, Z.; Fereydouni, N.; Akbari, A. Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met., 2020, 39, 1134-1144.
[http://dx.doi.org/10.1007/s12598-019-01333-z]
[95]
Bibi, I.; Kamal, S.; Ahmed, A.; Iqbal, M.; Nouren, S.; Jilani, K.; Nazar, N.; Amir, M.; Abbas, A.; Ata, S.; Majid, F. Nickel nanoparticle synthesis using Camellia sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation. Int. J. Biol. Macromol., 2017, 103, 783-790.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.023] [PMID: 28495625]
[96]
Pandian, C.J.; Palanivel, R.; Dhananasekaran, S. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin. J. Chem. Eng., 2015, 23(8), 1307-1315.
[http://dx.doi.org/10.1016/j.cjche.2015.05.012]
[97]
Karthik, K.; Shashank, M.; Revathi, V.; Tetiana, T. Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities Molecul. Crystals Liquid Crys., 2018, 1, 70-80.
[http://dx.doi.org/10.1080/15421406.2019.1578495]
[98]
Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S.I. Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater. Lett., 2014, 128, 170-174.
[http://dx.doi.org/10.1016/j.matlet.2014.04.112]
[99]
Thema, F.T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single phase bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J. Alloys Compd., 2016, 657, 655-661.
[http://dx.doi.org/10.1016/j.jallcom.2015.09.227]
[100]
Mariam, A.A.; Kashif, M.; Arokiyaraj, S.; Bououdina, M.; Sankaracharyulu, M.G.V.; Jayachandran, M.; Hashim, U. Bio-synthesis of NIO and Ni nanoparticles and their characterization. Dig. J. Nanomater. Biostruct., 2014, 9, 1007-1019.
[101]
Prasad, C.; Sreenivasulu, K.; Gangadhara, S.; Venkateswarlu, P. Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: A magnetically recoverable catalyst for organic dye degradation in aqueous solution. J. Alloys Compd., 2017, 700, 252-258.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.363]
[102]
Raj, R.A.; AlSalhi, M.S.; Devanesan, S. Microwave-assisted synthesis of Nickel Oxide nanoparticles using Coriandrum sativum leaf extract and their structural-magnetic catalytic properties. Material., 2017, 10, 1-12.
[103]
Weng, X.; Guo, M.; Luo, F.; Chen, Z. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: Biomolecules identification, characterization and catalytic activity. Chem. Eng. J., 2017, 308, 904-911.
[http://dx.doi.org/10.1016/j.cej.2016.09.134]
[104]
Abbasi, B.A.; Iqbal, J.; Mahmood, T.; Ahmad, R.; Kanwal, S.; Afridi, S. Plant-mediated synthesis of Nickel Oxide nanoparticles (NiO) via geranium wallichianum: Characterization and different biological applications. Mater. Res. Express, 2019, 6(8)
[http://dx.doi.org/10.1088/2053-1591/ab23e1]
[105]
Mayedwa, N.; Mongwaketsi, N.; Khamlich, S.; Kaviyarasu, K.; Matinise, N.; Maaza, M. Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: Physical properties and mechanism of formation. Appl. Surf. Sci., 2018, 446, 266-272.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.116]
[106]
Angajala, G.; Ramya, R.; Subashini, R. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop., 2014, 135, 19-26.
[http://dx.doi.org/10.1016/j.actatropica.2014.03.012] [PMID: 24681220]
[107]
Zahra, T.; Ahmad, K.S. Structural, optical and electrochemical studies of organo-templated wet synthesis of cubic shaped Nickel oxide nanoparticles. Optik (Stuttg.), 2020, •••, 205.
[http://dx.doi.org/10.1016/j.ijleo.2020.164241]
[108]
Rameshthangam, P.; Chitra, J.P. Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract. J. Mater. Sci. Technol., 2018, 34, 508-522.
[http://dx.doi.org/10.1016/j.jmst.2017.01.004]
[109]
Rawat, V.; Sharma, A.; Bhatt, V.P.; Singh, R.P.; Maurya, I.K. Sunlight mediated green synthesis of silver nanoparticles using Polygonatum graminifolium leaf extract and their antibacterial activity. Mater. Today: Proc., 2020, 29, 911-916.
[http://dx.doi.org/10.1016/j.matpr.2020.05.274]
[110]
Siavash, I. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[111]
Mukunthan, K.S.; Balaji, S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int. J. Grn. Nanotech, 2012, 4, 71-79.
[112]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; Pyne, S.; Misra, A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp., 2009, 348, 212-216.
[http://dx.doi.org/10.1016/j.colsurfa.2009.07.021]
[113]
Narayanan, K.B.; Sakthivel, N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 2008, 62, 4588-4590.
[http://dx.doi.org/10.1016/j.matlet.2008.08.044]
[114]
Lingaraju, K.; Raja, N.H.; Nagabhushan, H.J.; Devaraja, S.; Nagaraju, G. Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab. J. Chem., 2020, 13, 4712-4719.
[http://dx.doi.org/10.1016/j.arabjc.2019.11.003]
[115]
Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review., 2017.
[116]
Abbasi, B. A.; Iqbal, J.; Mahmood, T.; Ahmad, R.; Kanwal, S.; Afridi, S. 2019.
[117]
Iqbal, J.; Abbasi, B.A.; Mahmood, H.; Munir, A.; Kanwal, S. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem., 2019, •••, 33.
[http://dx.doi.org/10.1002/aoc.4950]
[118]
Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7, 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[119]
Cemple, M.; Nickel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud., 2006, 15, 375-382.
[120]
Chohan, Z.H.; Sherazi, S.K.A. Biological role of cobalt(II), copper(II) and nickel(II) metal ions on the antibacterial properties of some nicotinoyl-hydrazine derived compounds. Met. Based Drugs, 1997, 4(2), 69-74.
[http://dx.doi.org/10.1155/MBD.1997.69] [PMID: 18475771]
[121]
Thauer, R.K.; Diekert, G.; Schonheit, P. Biological role of nickel. Trends Biochem. Sci., 1980, 5, 304-306.
[http://dx.doi.org/10.1016/0968-0004(80)90166-8]
[122]
Saxena, A.; Kumar, A.; Mozumdar, S. Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. J. Mol. Catal. Chem., 2007, 269, 35-40.
[http://dx.doi.org/10.1016/j.molcata.2006.12.042]
[123]
Dhakshinamoorthy, A.; Pitchumani, K. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts for hydrogenation of olefins. Tetrahedron Lett., 2008, 49, 1818-1823.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.061]
[124]
Bender, P.; Tschöpe, A.; Birringer, R. Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes. J. Magn. Magn. Mater., 2013, 346, 152-160.
[http://dx.doi.org/10.1016/j.jmmm.2013.07.010]
[125]
Castillo, M.; Ebensperger, R.; Wirtz, D.; Walczak, M.; Hurtado, D.E.; Celedon, A. Local mechanical response of cells to the controlled rotation of magnetic nanorods. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(8), 1779-1785.
[http://dx.doi.org/10.1002/jbm.b.33167] [PMID: 24700696]
[126]
García, M.; Escarpa, A. Disposable electrochemical detectors based on nickel nanowires for carbohydrate sensing. Biosens. Bioelectron., 2011, 26(5), 2527-2533.
[http://dx.doi.org/10.1016/j.bios.2010.10.049] [PMID: 21111597]
[127]
Tanna, J.A.; Chaudhary, R.G.; Gandhare, N.V.; Rai, A.R.; Juneja, H.D. Nickel oxide nanoparticles: Synthesis, characterization and recyclable catalyst. Int. J. Sci. Eng. Res., 2015, 6, 93-99.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy