Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Minisci-type Reactions and Applications in Organic Synthesis

Author(s): Wengui Wang and Shoufeng Wang*

Volume 25, Issue 8, 2021

Published on: 30 December, 2020

Page: [894 - 934] Pages: 41

DOI: 10.2174/1385272824999201230211157

Price: $65

Abstract

Minisci-type reactions have been widely known as reactions that involve the addition of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss. While the originally developed protocols for radical generation remain in active use today, in recent years, the new array of radical generation strategies have allowed the use of a wider variety of radical precursors that often operate under milder and more benign conditions. New transformations based on free radical reactivity are now available to a synthetic chemist, to utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical precursors, have become popular approaches. Our review will cover the remarkable literature that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications in organic synthesis.

Keywords: Minisci-type reaction, radicals' generation, C-H functionalization heterocycles, transition metal-promoted/catalyzed Minisci reactions, light-mediated Minisci reactions, transition metal-free Minisci reactions.

Graphical Abstract

[1]
Zard, S.Z. Radical Reactions in Organic Synthesis; Oxford University Press: Oxford, 2004.
[2]
Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem., 2017, 2017(15), 2056-2071.
[http://dx.doi.org/10.1002/ejoc.201601485] [PMID: 30147436]
[3]
Bowman, W.R.; Storey, J.M.D. Synthesis using aromatic homolytic substitution--recent advances. Chem. Soc. Rev., 2007, 36(11), 1803-1822.
[http://dx.doi.org/10.1039/b605183a] [PMID: 18213987]
[4]
Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341]
[5]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[6]
Schultz, D.M.; Yoon, T.P. Solar synthesis: prospects in visible light photocatalysis. Science, 2014, 343(6174)1239176
[http://dx.doi.org/10.1126/science.1239176] [PMID: 24578578]
[7]
Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[8]
Staveness, D.; Bosque, I.; Stephenson, C.R.J. Free radical chemistry enabled by visible light-Induced electron transfer. Acc. Chem. Res., 2016, 49(10), 2295-2306.
[http://dx.doi.org/10.1021/acs.accounts.6b00270] [PMID: 27529484]
[9]
Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
[10]
Yan, M.; Lo, J.C.; Edwards, J.T.; Baran, P.S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc., 2016, 138(39), 12692-12714.
[http://dx.doi.org/10.1021/jacs.6b08856] [PMID: 27631602]
[11]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. Engl., 2018, 57(16), 4149-4155.
[http://dx.doi.org/10.1002/anie.201707584] [PMID: 28834012]
[12]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev., 2017, 117(21), 13230-13319.
[http://dx.doi.org/10.1021/acs.chemrev.7b00397] [PMID: 28991454]
[13]
Abramovitch, R.A.; Saha, J.G. Substitution in the pyridine series. Effect of Substituents. Adv. Heterocycl. Chem., 1966, 6, 229-345.
[http://dx.doi.org/10.1016/S0065-2725(08)60578-4]
[14]
Lynch, B.M.; Chang, H.S. Concentration-dependent orientations in free-radical phenylations of heteroaromatic compounds. Tetrahedron Lett., 1964, 5, 2965-2968.
[http://dx.doi.org/10.1016/0040-4039(64)83071-9]
[15]
Dou, H.J.M.; Lynch, B.M. Selective free-radical phenylations: nitrogen-heteroaromatic compounds in acidic media. Tetrahedron Lett., 1965, 6, 897-901.
[http://dx.doi.org/10.1016/S0040-4039(01)99495-X]
[16]
Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Nucleophilic character of alkyl radicals: new syntheses by alkyl radicals generated in redox processes. Tetrahedron Lett., 1968, 9, 5609-5612.
[http://dx.doi.org/10.1016/S0040-4039(00)70732-5]
[17]
Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Nucleophilic character of alkyl radicals–VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron, 1971, 27, 3575-3579.
[http://dx.doi.org/10.1016/S0040-4020(01)97768-3]
[18]
Duncton, M.A.J. Minisci reactions: Versatile CH-functionalizations for medicinal chemists. MedChemComm, 2011, 2, 1135-1161.
[http://dx.doi.org/10.1039/c1md00134e]
[19]
Minisci, F.; Vismara, E.; Fontana, F.; Morini, G.; Serravalle, M.; Giordano, C. Polar effects in free-radical reactions. Solvent and isotope effects and effects of base catalysis on the regio- and chemoselectivity of the substitution of protonated heteroaromatic bases by nucleophilic carbon-centered radicals. J. Org. Chem., 1987, 52, 730-736.
[http://dx.doi.org/10.1021/jo00381a004]
[20]
Minisci, F. Novel Applications of free-radical Reactions in preparative organic chemistry. Synthesis, 1973, 1-24.
[http://dx.doi.org/10.1055/s-1973-22123]
[21]
Minisci, F.; Vismara, E.; Fontana, F. Recent developments of free-radical substitutions of heteroaromatic bases. Heterocycles, 1989, 28, 489-519.
[http://dx.doi.org/10.3987/REV-88-SR1]
[22]
Minisci, F.; Fontana, F.; Vismara, E. Substitutions by nucleophilic free radicals: A new general reaction of heteroaromatic bases. J. Heterocycl. Chem., 1990, 27, 79-96.
[http://dx.doi.org/10.1002/jhet.5570270107]
[23]
Tauber, J.; Imbri, D.; Opatz, T. Radical addition to iminium ions and cationic heterocycles. Molecules, 2014, 19(10), 16190-16222.
[http://dx.doi.org/10.3390/molecules191016190] [PMID: 25310148]
[24]
Proctor, R.S.J.; Phipps, R.J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(39), 13666-13699.
[http://dx.doi.org/10.1002/anie.201900977] [PMID: 30888102]
[25]
Shore, D.G.M.; Wasik, K.A.; Lyssikatos, J.P.; Estrada, A.A. Minisci alkylations of electron-deficient pyrimidines with alkyl carboxylic acids. Tetrahedron Lett., 2015, 56, 4063-4066.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.123]
[26]
Tung, T.T.; Christensen, S.B.; Nielsen, J. Difluoroacetic acid as a new reagent for direct C−H difluoromethylation of heteroaromatic compounds. Chemistry, 2017, 23(72), 18125-18128.
[http://dx.doi.org/10.1002/chem.201704261] [PMID: 28945302]
[27]
Zeng, X.; Liu, C.; Wang, X.; Zhang, J.; Wang, X.; Hu, Y. Silver-catalyzed decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo-carboxylic acids. Org. Biomol. Chem., 2017, 15(42), 8929-8935.
[http://dx.doi.org/10.1039/C7OB02187A] [PMID: 29039437]
[28]
Xie, X.; Zhang, Y.; Hao, J.; Wan, W. Ag-Catalyzed minisci C-H difluoromethylarylation of N-heteroarenes. Org. Biomol. Chem., 2020, 18(3), 400-404.
[http://dx.doi.org/10.1039/C9OB02586C] [PMID: 31907499]
[29]
Lu, S-C.; Li, H-S.; Xu, S.; Duan, G-Y. Silver-catalyzed C2-selective direct alkylation of heteroarenes with tertiary cycloalkanols. Org. Biomol. Chem., 2017, 15(2), 324-327.
[http://dx.doi.org/10.1039/C6OB02330D] [PMID: 27918053]
[30]
Nikolaev, A.; Legault, C.Y.; Zhang, M.; Orellana, A. The acid-free cyclopropanol-Minisci reaction reveals the catalytic role of silver–pyridine complexes. Org. Lett., 2018, 20(3), 796-799.
[http://dx.doi.org/10.1021/acs.orglett.7b03938] [PMID: 29350043]
[31]
Deng, G.; Li, C-J. Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes. Org. Lett., 2009, 11(5), 1171-1174.
[http://dx.doi.org/10.1021/ol900070x] [PMID: 19193046]
[32]
Biaco, J.L.; Jones, S.L.; Barker, T. Lewis acid-catalyzed borono-Minisci reactions of arylboronic acids and heterocycles. J. Heterocycles, 2016, 92, 1687-1697.
[http://dx.doi.org/10.3987/COM-16-13506]
[33]
Galloway, J.D.; Mai, D.N.; Baxter, R.D. Silver-catalyzed Minisci reactions using selectfluor as a mild oxidant. Org. Lett., 2017, 19(21), 5772-5775.
[http://dx.doi.org/10.1021/acs.orglett.7b02706] [PMID: 29043819]
[34]
Wang, S.; Fan, Y.; Zhao, H.; Wang, J.; Zhang, S.; Wang, W. Silver-promoted versatile cross-dehydrogenative coupling of quinaldine with usual ethers. Synlett, 2019, 30, 2096-2100.
[http://dx.doi.org/10.1055/s-0039-1690697]
[35]
Wang, S.; Xing, S.; Zhang, Y.; Fan, Y.; Zhao, H.; Wang, J.; Zhang, S.; Wang, W. The Ag-promoted α-C–H arylation of alcohols. RSC Advances, 2019, 9, 41847-41850.
[http://dx.doi.org/10.1039/C9RA09954A]
[36]
Lin, G.; Wang, Y.; Zhou, Q.; Tang, W.; Wang, J.; Lu, T. A facile synthesis of 1-substituted β-carboline derivatives via Minisci-reaction. Synth. Commun., 2011, 41, 3541-3550.
[http://dx.doi.org/10.1080/00397911.2010.519092]
[37]
Regan, C.F.; Pierre, F.; Schwaebe, M.K.; Haddach, M.; Jung, M.E.; Ryckman, D.M. A facile synthesis of 5-halopyrimidine-4-carboxylic acid esters via a Minisci reaction. Synlett, 2012, 23, 443-447.
[http://dx.doi.org/10.1055/s-0031-1290136]
[38]
Bohman, B.; Berntsson, B.; Dixon, R.C.M.; Stewart, C.D.; Barrow, R.A. Alkylations and hydroxymethylations of pyrazines via green Minisci-type reactions. Org. Lett., 2014, 16(11), 2787-2789.
[http://dx.doi.org/10.1021/ol500776j] [PMID: 24824440]
[39]
Lo, J.C.; Kim, D.; Pan, C-M.; Edwards, J.T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M.W.; Holland, P.L.; Baran, P.S. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc., 2017, 139(6), 2484-2503.
[http://dx.doi.org/10.1021/jacs.6b13155] [PMID: 28094980]
[40]
Liang, B.; Wang, Q.; Liu, Z-Q.A. Fe(III)/NaBH4-promoted free-radical hydroheteroarylation of alkenes. Org. Lett., 2017, 19(24), 6463-6465.
[http://dx.doi.org/10.1021/acs.orglett.7b03313] [PMID: 29182286]
[41]
Bordi, S.; Starr, J.T. Hydropyridylation of olefins by intramolecular Minisci reaction. Org. Lett., 2017, 19(9), 2290-2293.
[http://dx.doi.org/10.1021/acs.orglett.7b00833] [PMID: 28440081]
[42]
Srinivasulu, A.; Shantharjun, B.; Vani, D.; Ashalu, K.C.; Mohd, A.; Wencel-Delord, J.; Colobert, F.; Reddy, K.R. Iron-catalyzed Minisci type acetylation of N-Heteroarenes Mediated by CH(OEt)3/TBHP. Eur. J. Org. Chem., 2019, 1815-1819.
[http://dx.doi.org/10.1002/ejoc.201900033]
[43]
Wang, X-Z.; Zeng, C-C. Iron-catalyzed Minisci acylation of N-heteroarenes with α-keto acids. Tetrahedron, 2019, 75, 1425-1430.
[http://dx.doi.org/10.1016/j.tet.2019.01.060]
[44]
Monteiro, J.L.; Carneiro, P.F.; Elsner, P.; Roberge, D.M.; Wuts, P.G.M.; Kurjan, K.C.; Gutmann, B.; Kappe, C.O. Continuous flow homolytic aromatic substitution with electrophilic radicals: a fast and scalable protocol for trifluoromethylation. Chemistry, 2017, 23(1), 176-186.
[http://dx.doi.org/10.1002/chem.201604579] [PMID: 27775849]
[45]
Bume, D.D.; Pitts, C.R.; Lectka, T. Tandem C–C bond cleavage of cyclopropanols and oxidative aromatization by manganese(IV) oxide in a direct C–H to C–C functionalization of heteroaromatics. Eur. J. Org. Chem., 2016, 2016(1), 26-30.
[http://dx.doi.org/10.1002/ejoc.201501405]
[46]
Tan, D-H.; Zeng, Y-F.; Liu, Y.; Lv, W-X.; Li, Q.; Wang, H. Direct assembly of prenylated heteroarenes through a cascade Minisci reaction/dehydration sequence. ChemistryOpen, 2016, 5(6), 535-539.
[http://dx.doi.org/10.1002/open.201600096] [PMID: 28032022]
[47]
Wan, M.; Lou, H.; Liu, L. C1-Benzyl and benzoyl isoquinoline synthesis through direct oxidative cross-dehydrogenative coupling with methyl arenes. Chem. Commun. (Camb.), 2015, 51(73), 13953-13956.
[http://dx.doi.org/10.1039/C5CC04791A] [PMID: 26242872]
[48]
Ma, X.; Herzon, S.B. Intermolecular hydropyridylation of unactivated alkenes. J. Am. Chem. Soc., 2016, 138(28), 8718-8721.
[http://dx.doi.org/10.1021/jacs.6b05271] [PMID: 27384921]
[49]
Ma, X.; Dang, H.; Rose, J.A.; Rablen, P.; Herzon, S.B. l Rablen, P.; Herzon, S. B. Hydroheteroarylation of unactivated alkenes using N-methoxyhetero-arenium salts. J. Am. Chem. Soc., 2017, 139(16), 5998-6007.
[http://dx.doi.org/10.1021/jacs.7b02388] [PMID: 28359149]
[50]
Ali, W.; Behera, A.; Guin, S.; Patel, B.K. Regiospecific benzoylation of electron-deficient N-heterocycles with methylbenzenes via a Minisci-type reaction. J. Org. Chem., 2015, 80(11), 5625-5632.
[http://dx.doi.org/10.1021/acs.joc.5b00501] [PMID: 25938383]
[51]
He, Z-Y.; Huang, C-F.; Tian, S-K. Highly regioselective carbamoylation of electron-deficient nitrogen heteroarenes with hydrazinecarboxamides. Org. Lett., 2017, 19(18), 4850-4853.
[http://dx.doi.org/10.1021/acs.orglett.7b02312] [PMID: 28846434]
[52]
Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Cu-catalyzed deoxygenative C2-sulfonylation reaction of quinoline N-oxides with sodium sulfinate. Org. Lett., 2016, 18(16), 4144-4147.
[http://dx.doi.org/10.1021/acs.orglett.6b02289] [PMID: 27509292]
[53]
Garza-Sanchez, R.A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. Visible light-mediated direct decarboxylative C–H functionalization of heteroarenes. ACS Catal., 2017, 7, 4057-4061.
[http://dx.doi.org/10.1021/acscatal.7b01133]
[54]
Wang, J.; Li, G-X.; He, G.; Chen, G. Photoredox-mediated minisci alkylation of N-heteroarenes using carboxylic acids and hypervalent iodine. Asian J. Org. Chem., 2018, 7, 1307-1310.
[http://dx.doi.org/10.1002/ajoc.201800197]
[55]
Sherwood, T.C.; Li, N.; Yazdani, A.N.; Dhar, T.G.M. Organocatalyzed, visible-light photoredox-mediated, one-pot Minisci reaction using carboxylic acids via N-(acyloxy)phthalimides. J. Org. Chem., 2018, 83(5), 3000-3012.
[http://dx.doi.org/10.1021/acs.joc.8b00205] [PMID: 29420898]
[56]
Huang, H.; Li, X.; Yu, C.; Zhang, Y.; Mariano, P.S.; Wang, W. Visible-light-promoted nickel- and organic-dye-cocatalyzed formylation reaction of aryl halides and triflates and vinyl bromides with diethoxyacetic acid as a formyl equivalent. Angew. Chem. Int. Ed. Engl., 2017, 56(6), 1500-1505.
[http://dx.doi.org/10.1002/anie.201610108] [PMID: 28066982]
[57]
Nielsen, M.K.; Shields, B.J.; Liu, J.; Williams, M.J.; Zacuto, M.J.; Doyle, A.G. Mild, redox-neutral formylation of aryl chlorides through the photocatalytic generation of chlorine radicals. Angew. Chem. Int. Ed. Engl., 2017, 56(25), 7191-7194.
[http://dx.doi.org/10.1002/anie.201702079] [PMID: 28471521]
[58]
Jia, W.; Jian, Y.; Huang, B.; Yang, C.; Xia, W. Photoredox-catalyzed decarboxylative C–H acylation of heteroarenes. Synlett, 2018, 29, 1881-1886.
[http://dx.doi.org/10.1055/s-0037-1609911]
[59]
Manna, S.; Prabhu, K.R. Visible-light-mediated direct decarboxylative acylation of electron-deficient heteroarenes using α-ketoacids. J. Org. Chem., 2019, 84(9), 5067-5077.
[http://dx.doi.org/10.1021/acs.joc.9b00004] [PMID: 30933509]
[60]
Huff, C.A.; Cohen, R.D.; Dykstra, K.D.; Streckfuss, E.; DiRocco, D.A.; Krska, S.W. Photoredox-catalyzed hydroxymethylation of heteroaromatic bases. J. Org. Chem., 2016, 81(16), 6980-6987.
[http://dx.doi.org/10.1021/acs.joc.6b00811] [PMID: 27315015]
[61]
Zhao, Z.; Li, Z.; Jin, J. Green oxidant H2O2 as a hydrogen atom transfer reagent for visible light-mediated Minisci reaction. New J. Chem., 2019, 43, 12533-12537.
[http://dx.doi.org/10.1039/C9NJ03106E]
[62]
Vijeta, A.; Reisner, E. Carbon nitride as a heterogeneous visible-light photocatalyst for the Minisci reaction and coupling to H2 production. Chem. Commun. (Camb.), 2019, 55(93), 14007-14010.
[http://dx.doi.org/10.1039/C9CC07348E] [PMID: 31690891]
[63]
Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Tertiary-alcohol-directed functionalization of remote C(sp3)−H bonds by sequential hydrogen atom and heteroaryl migrations. Angew. Chem. Int. Ed. Engl., 2018, 57(6), 1640-1644.
[http://dx.doi.org/10.1002/anie.201709025] [PMID: 29276816]
[64]
Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Metal-free alcohol-directed regioselective heteroarylation of remote unactivated C(sp3)-H bonds. Nat. Commun., 2018, 9(1), 3343.
[http://dx.doi.org/10.1038/s41467-018-05522-9] [PMID: 30131495]
[65]
Li, G-X.; Hu, X.; He, G.; Chen, G. Photoredox-mediated remote C(sp3)-H heteroarylation of free alcohols. Chem. Sci. (Camb.), 2018, 10(3), 688-693.
[http://dx.doi.org/10.1039/C8SC04134B] [PMID: 30774869]
[66]
Jia, K.; Pan, Y.; Chen, Y. Selective carbonyl−C(sp3) bond cleavage to construct ynamides, ynoates, and ynones by photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2017, 56(9), 2478-2481.
[http://dx.doi.org/10.1002/anie.201611897] [PMID: 28121070]
[67]
Hu, X.; Li, G-X.; He, G.; Chen, G. Minisci C–H alkylation of N-heteroarenes with aliphatic alcohols via β-scission of alkoxy radical intermediates. Org. Chem. Front., 2019, 6, 3205-3209.
[http://dx.doi.org/10.1039/C9QO00786E]
[68]
Wang, Y.; Yang, L.; Liu, S.; Huang, L.; Liu, Z-Q. Surgical cleavage of unstrained C(sp3)−C(sp3) bonds in general alcohols for heteroaryl C−H alkylation and acylation. Adv. Synth. Catal., 2019, 361, 4568-4574.
[http://dx.doi.org/10.1002/adsc.201900975]
[69]
Jin, J.; MacMillan, D.W.C. Alcohols as alkylating agents in heteroarene C-H functionalization. Nature, 2015, 525(7567), 87-90.
[http://dx.doi.org/10.1038/nature14885] [PMID: 26308895]
[70]
Liu, W.; Yang, X.; Zhou, Z-Z.; Li, C-J. Simple and clean photo-induced methylation of heteroarenes with MeOH. Chem, 2017, 2, 688-702.
[http://dx.doi.org/10.1016/j.chempr.2017.03.009]
[71]
McCallum, T.; Pitre, S.P.; Morin, M.; Scaiano, J.C.; Barriault, L. The photochemical alkylation and reduction of heteroarenes. Chem. Sci. (Camb.), 2017, 8(11), 7412-7418.
[http://dx.doi.org/10.1039/C7SC03768F] [PMID: 29163892]
[72]
Zidan, M.; Morris, A.O.; McCallum, T.; Barriault, L. The alkylation and reduction of heteroarenes with slcohols using photoredox catalyzed hydrogen atom transfer via chlorine atom generation. Eur. J. Org. Chem., 2020, 1453-1458.
[http://dx.doi.org/10.1002/ejoc.201900786]
[73]
Pitre, S.P.; Muuronen, M.; Fishman, D.A.; Overman, L.E. Tertiary alcohols as radical precursors for the introduction of tertiary substituents into heteroarenes. ACS Catal., 2019, 9, 3413-3418.
[http://dx.doi.org/10.1021/acscatal.9b00405]
[74]
Devari, S.; Shah, B.A. Visible light-promoted C-H functionalization of ethers and electron-deficient arenes. Chem. Commun. (Camb.), 2016, 52(7), 1490-1493.
[http://dx.doi.org/10.1039/C5CC08817H] [PMID: 26660120]
[75]
Jin, J.; MacMillan, D.W.C. Direct α-arylation of ethers through the combination of photoredox-mediated C-H functionalization and the Minisci reaction. Angew. Chem. Int. Ed. Engl., 2015, 54(5), 1565-1569.
[http://dx.doi.org/10.1002/anie.201410432] [PMID: 25470570]
[76]
Zhang, Y.; Teuscher, K.B.; Ji, H. Direct α-heteroarylation of amides (α to nitrogen) and ethers through a benzaldehyde-mediated photoredox reaction. Chem. Sci. (Camb.), 2016, 7(3), 2111-2118.
[http://dx.doi.org/10.1039/C5SC03640B] [PMID: 29899938]
[77]
Wang, Z.; Ji, X.; Han, T.; Deng, G-J.; Huang, H. LiBr-promoted photoredox Minisci-type alkylations of quinolines with ethers. Adv. Synth. Catal., 2019, 361, 5643-5647.
[http://dx.doi.org/10.1002/adsc.201901168]
[78]
Huang, C-Y.; Li, J.; Liu, W.; Li, C-J. Diacetyl as a “traceless” visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. Chem. Sci. (Camb.), 2019, 10(19), 5018-5024.
[http://dx.doi.org/10.1039/C8SC05631E] [PMID: 31183051]
[79]
Matcha, K.; Antonchick, A.P. Metal-free cross-dehydrogenative coupling of heterocycles with aldehydes. Angew. Chem. Int. Ed. Engl., 2013, 52(7), 2082-2086.
[http://dx.doi.org/10.1002/anie.201208851] [PMID: 23307313]
[80]
Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. The synergistic effect of self-assembly and visible-light induced the oxidative C-H acylation of N-heterocyclic aromatic compounds with aldehydes. Chem. Commun. (Camb.), 2018, 54(45), 5744-5747.
[http://dx.doi.org/10.1039/C8CC02342E] [PMID: 29780998]
[81]
Wang, Z.; Ji, X.; Zhao, J.; Huang, H. Visible-light-mediated photoredox decarbonylative Minisci-type alkylation with aldehydes under ambient air conditions. Green Chem., 2019, 21, 5512-5516.
[http://dx.doi.org/10.1039/C9GC03008E]
[82]
Wang, Z.; Liu, Q.; Ji, X.; Deng, G-J.; Huang, H. Bromide-promoted visible-light-induced reductive Minisci reaction with aldehydes. ACS Catal., 2020, 10, 154-159.
[http://dx.doi.org/10.1021/acscatal.9b04411]
[83]
McCallum, T.; Barriault, L. Direct alkylation of heteroarenes with unactivated bromoalkanes using photoredox gold catalysis. Chem. Sci. (Camb.), 2016, 7(7), 4754-4758.
[http://dx.doi.org/10.1039/C6SC00807K] [PMID: 30155127]
[84]
Dong, J.; Lyu, X.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Visible-light-mediated Minisci C-H alkylation of heteroarenes with unactivated alkyl halides using O2 as an oxidant. Chem. Sci. (Camb.), 2018, 10(4), 976-982.
[http://dx.doi.org/10.1039/C8SC04892D] [PMID: 30774891]
[85]
Perkins, J.J.; Shubert, J.W.; Streckfuss, E.C.; Balsells, J.; ElMarrouni, A. Photoredox catalysis for silyl-mediated C-H alkylation of heterocycles with non-activated alkyl bromides. Eur. J. Org. Chem., 2020, 1515-1522.
[http://dx.doi.org/10.1002/ejoc.201900611]
[86]
Chang, R.; Fang, J.; Chen, J-Q.; Liu, D.; Xu, G-Q.; Xu, P-F. Visible light-mediated direct C–H aroylation and alkylation of heteroarenes. ACS Omega, 2019, 4(9), 14021-14031.
[http://dx.doi.org/10.1021/acsomega.9b01674] [PMID: 31497720]
[87]
Nuhant, P.; Oderinde, M.S.; Genovino, J.; Juneau, A.; Gagné, Y.; Allais, C.; Chinigo, G.M.; Choi, C.; Sach, N.W.; Bernier, L.; Fobian, Y.M.; Bundesmann, M.W.; Khunte, B.; Frenette, M.; Fadeyi, O.O. Visible-light-initiated manganese catalysis for C−H alkylation of heteroarenes: Applications and mechanistic studies. Angew. Chem. Int. Ed. Engl., 2017, 56(48), 15309-15313.
[http://dx.doi.org/10.1002/anie.201707958] [PMID: 28960645]
[88]
Wang, Z.; Dong, J.; Hao, Y.; Li, Y.; Liu, Y.; Song, H.; Wang, Q. Photoredox-mediated Minisci C–H alkylation reactions between N-heteroarenes and alkyl iodides with peroxyacetate as a radical relay initiator. J. Org. Chem., 2019, 84(24), 16245-16253.
[http://dx.doi.org/10.1021/acs.joc.9b02848] [PMID: 31769680]
[89]
Kammer, L.M.; Rahman, A.; Opatz, T. A visible light-driven Minisci-type reaction with N-hydroxyphthalimide esters. Molecules, 2018, 23(4), 764.
[http://dx.doi.org/10.3390/molecules23040764] [PMID: 29584642]
[90]
Proctor, R.S.J.; Davis, H.J.; Phipps, R.J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science, 2018, 360(6387), 419-422.
[http://dx.doi.org/10.1126/science.aar6376] [PMID: 29622723]
[91]
Reid, J.P.; Proctor, R.S.J.; Sigman, M.S.; Phipps, R.J. Predictive multivariate linear regression analysis guides successful catalytic enantioselective Minisci reactions of diazines. J. Am. Chem. Soc., 2019, 141(48), 19178-19185.
[http://dx.doi.org/10.1021/jacs.9b11658] [PMID: 31710210]
[92]
Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Organocatalytic enantioselective addition of α-aminoalkyl radicals to isoquinolines. Org. Lett., 2018, 20(19), 6298-6301.
[http://dx.doi.org/10.1021/acs.orglett.8b02791] [PMID: 30256118]
[93]
Fu, M-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science, 2019, 363(6434), 1429-1434.
[http://dx.doi.org/10.1126/science.aav3200] [PMID: 30923218]
[94]
Lyu, X-L.; Huang, S-S.; Song, H-J.; Liu, Y-X.; Wang, Q-M. Visible-light-induced copper-catalyzed decarboxylative coupling of redox-active esters with N-heteroarenes. Org. Lett., 2019, 21(14), 5728-5732.
[http://dx.doi.org/10.1021/acs.orglett.9b02105] [PMID: 31251074]
[95]
Li, X.; Zhang, Q.; Zhang, W.; Wang, Y.; Pan, Y. Decarboxylative alkylation of heteroarenes using N-hydroxybenzimidoyl chloride esters. J. Org. Chem., 2019, 84(21), 14360-14368.
[http://dx.doi.org/10.1021/acs.joc.9b02318] [PMID: 31596084]
[96]
Okugawa, N.; Moriyama, K.; Togo, H. Introduction of quinolines and isoquinolines onto Nonactivated α-C–H bond of tertiary amides through a radical pathway. J. Org. Chem., 2017, 82(1), 170-178.
[http://dx.doi.org/10.1021/acs.joc.6b02303] [PMID: 27976909]
[97]
Bosset, C.; Beucher, H.; Bretel, G.; Pasquier, E.; Queguiner, L.; Henry, C.; Vos, A.; Edwards, J.P.; Meerpoel, L.; Berthelot, D. Minisci-photoredox-mediated α-heteroarylation of N-protected secondary amines: remarkable selectivity of azetidines. Org. Lett., 2018, 20(19), 6003-6006.
[http://dx.doi.org/10.1021/acs.orglett.8b00991] [PMID: 30252482]
[98]
Grainger, R.; Heightman, T.D.; Ley, S.V.; Lima, F.; Johnson, C.N. Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines. Chem. Sci. (Camb.), 2018, 10(8), 2264-2271.
[http://dx.doi.org/10.1039/C8SC04789H] [PMID: 30881651]
[99]
Chen, H.; Fan, W.; Yuan, X-A.; Yu, S. Site-selective remote C(sp3)-H heteroarylation of amides via organic photoredox catalysis. Nat. Commun., 2019, 10(1), 4743.
[http://dx.doi.org/10.1038/s41467-019-12722-4] [PMID: 31628325]
[100]
Deng, Z.; Li, G-X.; He, G.; Chen, G. Photoredox-mediated remote C(sp3)–H heteroarylation of N-alkyl sulfonamides. J. Org. Chem., 2019, 84(24), 15777-15787.
[http://dx.doi.org/10.1021/acs.joc.9b02502] [PMID: 31804068]
[101]
Klauck, F.J.R.; James, M.J.; Glorius, F. Deaminative strategy for the visible-light-mediated generation of alkyl radicals. Angew. Chem. Int. Ed. Engl., 2017, 56(40), 12336-12339.
[http://dx.doi.org/10.1002/anie.201706896] [PMID: 28762257]
[102]
Quattrini, M.C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis. Chem. Commun. (Camb.), 2017, 53(15), 2335-2338.
[http://dx.doi.org/10.1039/C6CC09725A] [PMID: 28164184]
[103]
Li, G-X.; Hu, X.; He, G.; Chen, G. Photoredox-mediated Minisci-type alkylation of N-heteroarenes with alkanes with high methylene selectivity. ACS Catal., 2018, 8, 11847-11853.
[http://dx.doi.org/10.1021/acscatal.8b04079]
[104]
Sharma, S.; Kumar, M.; Vishwakarma, R.A.; Verma, M.K.; Singh, P.P. Room temperature metal-catalyzed oxidative acylation of electron-deficient heteroarenes with alkynes, its mechanism, and application studies. J. Org. Chem., 2018, 83(20), 12420-12431.
[http://dx.doi.org/10.1021/acs.joc.8b01475] [PMID: 30238752]
[105]
Sultan, S.; Rizvi, M.A.; Kumar, J.; Shah, B.A. Acyl radicals from terminal alkynes: photoredox-catalyzed acylation of heteroarenes. Chemistry, 2018, 24(42), 10617-10620.
[http://dx.doi.org/10.1002/chem.201801628] [PMID: 29799659]
[106]
Li, G-X.; Morales-Rivera, C.A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Photoredox-mediated Minisci C-H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chem. Sci. (Camb.), 2016, 7(10), 6407-6412.
[http://dx.doi.org/10.1039/C6SC02653B] [PMID: 28451096]
[107]
Matsui, J.K.; Primer, D.N.; Molander, G.A. Metal-free C-H alkylation of heteroarenes with alkyltrifluoroborates: a general protocol for 1°, 2° and 3° alkylation. Chem. Sci. (Camb.), 2017, 8(5), 3512-3522.
[http://dx.doi.org/10.1039/C7SC00283A] [PMID: 28507725]
[108]
Matsui, J.K.; Molander, G.A. Organocatalyzed, photoredox heteroarylation of 2-trifluoroboratochromanones via C–H functionalization. Org. Lett., 2017, 19(4), 950-953.
[http://dx.doi.org/10.1021/acs.orglett.7b00196] [PMID: 28157320]
[109]
Garza-Sanchez, R.A.; Patra, T.; Tlahuext-Aca, A.; Strieth-Kalthoff, F.; Glorius, F. DMSO as a switchable alkylating agent in heteroarene C−H functionalization. Chemistry, 2018, 24, 10064-10068.
[http://dx.doi.org/10.1002/chem.201802352] [PMID: 29750378]
[110]
Bieszczad, B.; Perego, L.A.; Melchiorre, P. Photochemical C−H hydroxyalkylation of quinolines and isoquinolines. Angew. Chem. Int. Ed. Engl., 2019, 58(47), 16878-16883.
[http://dx.doi.org/10.1002/anie.201910641] [PMID: 31529788]
[111]
Jian, Y.; Chen, M.; Yang, C.; Xia, W-J. Minisci-Type C-H cyanoalkylation of heteroarenes through N-O/C-C bonds cleavage. Eur. J. Org. Chem., 2020, 1439-1442.
[http://dx.doi.org/10.1002/ejoc.201900406]
[112]
Tang, R-J.; Kang, L.; Yang, L. Metal-free oxidative decarbonylative coupling of aliphatic aldehydes with azaarenes: Successful Minisci-type alkylation of various heterocycles. Adv. Synth. Catal., 2015, 357, 2055-2060.
[http://dx.doi.org/10.1002/adsc.201500268]
[113]
Chen, J.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. TBHP/TFA mediated oxidative cross-dehydrogenative coupling of N-heterocycles with aldehydes. Org. Biomol. Chem., 2015, 13(47), 11561-11566.
[http://dx.doi.org/10.1039/C5OB01763G] [PMID: 26463462]
[114]
Siddaraju, Y.; Prabhu, K.R. Transition metal-free Minisci reaction promoted by NCS, and TBHP: acylation of heteroarenes. Tetrahedron, 2016, 72, 959-967.
[http://dx.doi.org/10.1016/j.tet.2015.12.065]
[115]
Yuan, J-W.; Fu, J-H.; Liu, S-N.; Xiao, Y-M.; Mao, P.; Qu, L-B. Metal-free oxidative coupling of quinoxalin-2(1H)-ones with arylaldehydes leading to 3-acylated quinoxalin-2(1H)-ones. Org. Biomol. Chem., 2018, 16(17), 3203-3212.
[http://dx.doi.org/10.1039/C8OB00206A] [PMID: 29658033]
[116]
Shi, X.; Zhang, F.; Luo, W-K.; Yang, L. Oxidant-triggered C1-benzylation of isoquinoline by iodine-catalyzed cross-dehydrogenative-coupling with methylarenes. Synlett, 2016, 28, 494-498.
[http://dx.doi.org/10.1055/s-0036-1588331]
[117]
Revil-Baudard, V.L.; Vors, J-P.; Zard, S.Z. Xanthate-mediated incorporation of quaternary centers into heteroarenes. Org. Lett., 2018, 20(12), 3531-3535.
[http://dx.doi.org/10.1021/acs.orglett.8b01299] [PMID: 29856227]
[118]
Huang, Q.; Qin, L.; Zard, S.Z. Xanthate-mediated intermolecular alkylation of pyrazines. Tetrahedron, 2018, 74, 5804-5817.
[http://dx.doi.org/10.1016/j.tet.2018.08.040]
[119]
Zeng, Y.; Qian, B.; Li, Y.; Bao, H. A metal-free approach for brønsted acid promoted C–H alkylation of heteroarenes with alkyl peroxides. Synthesis, 2018, 50, 3250-3256.
[http://dx.doi.org/10.1055/s-0037-1609965]
[120]
Lytkina, M.A.; Eliseenkov, E.V.; Boyarskii, V.P.; Petrov, A.A. Sodium difluoromethanesulfinate-A difluoromethylating agent toward protonated heterocyclic bases. Russ. J. Org. Chem., 2017, 53, 539-546.
[http://dx.doi.org/10.1134/S1070428017040066]
[121]
Wang, J.; Li, J.; Huang, J.; Zhu, Q. Transition metal-free amidoalkylation of benzothiazoles and amidoalkylarylation of activated alkenes with N,N-dialkylamides. J. Org. Chem., 2016, 81(7), 3017-3022.
[http://dx.doi.org/10.1021/acs.joc.6b00096] [PMID: 26974600]
[122]
Truscello, A.M.; Gambarotti, C. Revisiting the minisci reaction: New mild amidoalkylation of benzo-fused N-heteroaromatic bases under metal-free conditions. Org. Process Res. Dev., 2019, 23, 1450-1457.
[http://dx.doi.org/10.1021/acs.oprd.8b00447]
[123]
McCallum, T.; Jouanno, L-A.; Cannillo, A.; Barriault, L. Persulfate-enabled direct C–H alkylation of heteroarenes with unactivated ethers. Synlett, 2016, 27, 1282-1286.
[http://dx.doi.org/10.1055/s-0035-1561338]
[124]
Laha, J.K.; Patel, K.V.; Dubey, G.; Jethava, K.P. Intramolecular Minisci acylation under silver-free neutral conditions for the synthesis of azafluorenones and fluorenones. Org. Biomol. Chem., 2017, 15(10), 2199-2210.
[http://dx.doi.org/10.1039/C7OB00077D] [PMID: 28221391]
[125]
Sutherland, D.R.; Veguillas, M.; Oates, C.L.; Lee, A-L. Metal-, photocatalyst-, and light-free, late-stage C–H alkylation of heteroarenes and 1,4-quinones using carboxylic acids. Org. Lett., 2018, 20(21), 6863-6867.
[http://dx.doi.org/10.1021/acs.orglett.8b02988] [PMID: 30354158]
[126]
Dong, J.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Metal-, photocatalyst-, and light-free Minisci C-H alkylation of N-heteroarenes with oxalates. J. Org. Chem., 2019, 84(11), 7532-7540.
[http://dx.doi.org/10.1021/acs.joc.9b00972] [PMID: 31088070]
[127]
Liu, Z.; Liu, Z-Q. An intermolecular azidoheteroarylation of simple alkenes via free-radical multicomponent cascade reactions. Org. Lett., 2017, 19(20), 5649-5652.
[http://dx.doi.org/10.1021/acs.orglett.7b02788] [PMID: 28961001]
[128]
Wang, L.; Zhang, Y.; Li, F.; Hao, X.; Zhang, H-Y.; Zhao, J. Direct C−H trifluoromethylation of quinoxalin-2(1H)-ones under transition-metal-free conditions. Adv. Synth. Catal., 2018, 360, 3969-3977.
[http://dx.doi.org/10.1002/adsc.201800863]
[129]
Wang, L.; Zhao, J.; Sun, Y.; Zhang, H-Y.; Zhang, Y. A catalyst-free Minisci-type reaction: the C–H alkylation of quinoxalinones with sodium alkylsulfinates and phenyliodine(III) dicarboxylates. Eur. J. Org. Chem., 2019, 6935-6944.
[http://dx.doi.org/10.1002/ejoc.201901266]
[130]
Paul, S.; Guin, J. Dioxygen-mediated decarbonylative C-H alkylation of heteroaromatic bases with aldehydes. Chemistry, 2015, 21(49), 17618-17622.
[http://dx.doi.org/10.1002/chem.201503809] [PMID: 26493363]
[131]
Zhang, L.; Liu, Z-Q. Molecular oxygen-mediated Minisci-type radical alkylation of heteroarenes with boronic acids. Org. Lett., 2017, 19(24), 6594-6597.
[http://dx.doi.org/10.1021/acs.orglett.7b03297] [PMID: 29185775]
[132]
Thirumoorthi, N.T.; Adsool, V.A. A practical metal-free homolytic aromatic alkylation protocol for the synthesis of 3-(pyrazin-2-yl)bicyclo[1.1.1]pentane-1-carboxylic acid. Org. Biomol. Chem., 2016, 14(40), 9485-9489.
[http://dx.doi.org/10.1039/C6OB01799A] [PMID: 27714331]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy