Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

MicroRNA and Exosome in Retinal-related Diseases: Their Roles in the Pathogenesis and Diagnosis

Author(s): Arash Salmaninejad*, Ghazaleh Pourali, Ali Shahini, Hassan Darabi and Sara Azhdari

Volume 25, Issue 2, 2022

Published on: 30 December, 2020

Page: [211 - 228] Pages: 18

DOI: 10.2174/1386207323999201230205435

Price: $65

Abstract

The precise and exquisite architecture of the retina is directly related to vision. Therefore, any mechanisms associated with disruption of retinal structure could affect the quality of vision. A large number of studies indicated that several cellular and molecular processes are involved in retina pathogenesis. Among different risk factors reported as important players in retina diseases, deregulation of epigenetic contributors has critical roles in the pathogenesis of these diseases. MicroRNAs (miRNAs) are a type of small non-coding RNAs that are involved in various signaling pathways involved in retina diseases. These molecules exert their function by targeting a sequence of cellular and molecular signals. Long-non coding RNAs (lncRNAs) and circular RNAs are other non-coding RNAs, which can exert their regulatory roles via miRNA sponging. In this regard, it has been showed that miRNA sponging could modulate a variety of pathways in retinal diseases. Besides miRNAs, exosomes are other players in the pathogenesis of retinal diseases. Exosomes are biological vectors that could carry their cargos to recipient cells. The cargos of exosomes (i.e., proteins, lncRNAs, miRNAs, and fragments of DNA) change behaviors of host cells. Here, we summarized the roles of miRNAs, miRNAs sponging and exosomes in the pathogenesis of retinal diseases.

Keywords: Retinal diseases, MicroRNAs, microRNAs sponging, exosome, visual disorders, pathogenesis.

Next »
Graphical Abstract

[1]
Nowak, J.Z. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol. Rep., 2006, 58(3), 353-363.
[2]
Romano, G.L.; Platania, C.B.M.; Drago, F.; Salomone, S.; Ragusa, M.; Barbagallo, C.; Di Pietro, C.; Purrello, M.; Reibaldi, M.; Avitabile, T.; Longo, A.; Bucolo, C. Retinal and circulating miRNAs in age-related macular degeneration: an in vivo animal and human study. Front. Pharmacol., 2017, 8, 168.
[http://dx.doi.org/10.3389/fphar.2017.00168] [PMID: 28424619]
[3]
Khani, P.; Nasri, F.; Khani Chamani, F.; Saeidi, F.; Sadri Nahand, J.; Tabibkhooei, A.; Mirzaei, H. Genetic and epigenetic contri-bution to astrocytic gliomas pathogenesis. JNC, 2019, 148(2), 188-203.
[http://dx.doi.org/10.1111/jnc.14616]
[4]
Sadri Nahand, J.; Moghoofei, M.; Salmaninejad, A.; Bahmanpour, Z.; Karimzadeh, M.; Nasiri, M.; Mirzaei, H.R.; Pourhanifeh, M.H.; Bokharaei-Salim, F.; Mirzaei, H.; Hamblin, M.R. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int. J. Cancer, 2020, 146(2), 305-320.
[http://dx.doi.org/10.1002/ijc.32688] [PMID: 31566705]
[5]
Aghdam, A.M.; Amiri, A.; Salarinia, R.; Masoudifar, A.; Ghasemi, F.; Mirzaei, H. MicroRNAs as diagnostic, prognostic, and therapeutic biomarkers in prostate cancer. Crit. Rev. Eukaryot. Gene Expr., 2019, 29(2), 127-139.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025273] [PMID: 31679268]
[6]
Savardashtaki, A; Shabaninejad, Z; Movahedpour, A; Sahebnasagh, R; Mirzaei, H Hamblin, MR miRNAs derived from cancer-associated fibroblasts in colorectal cancer. 2019, 11(14), 1627-1645.
[7]
Ardekani, A.M.; Naeini, M.M. The role of MicroRNAs in human diseases. Avicenna J. Med. Biotechnol., 2010, 2(4), 161-179.
[PMID: 23407304]
[8]
Han, J.; Lee, Y.; Yeom, K.H.; Nam, J.W.; Heo, I.; Rhee, J.K.; Sohn, S.Y.; Cho, Y.; Zhang, B.T.; Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125(5), 887-901.
[http://dx.doi.org/10.1016/j.cell.2006.03.043] [PMID: 16751099]
[9]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[10]
Morlando, M.; Ballarino, M.; Gromak, N.; Pagano, F.; Bozzoni, I.; Proudfoot, N.J. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol., 2008, 15(9), 902-909.
[http://dx.doi.org/10.1038/nsmb.1475] [PMID: 19172742]
[11]
Kim, Y.K.; Kim, V.N. Processing of intronic microRNAs. EMBO J., 2007, 26(3), 775-783.
[http://dx.doi.org/10.1038/sj.emboj.7601512] [PMID: 17255951]
[12]
Filippov, V.; Solovyev, V.; Filippova, M.; Gill, S.S. A novel type of RNase III family proteins in eukaryotes. Gene, 2000, 245(1), 213-221.
[http://dx.doi.org/10.1016/S0378-1119(99)00571-5] [PMID: 10713462]
[13]
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[14]
Diederichs, S.; Haber, D.A. Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res., 2006, 66(12), 6097-6104.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0537] [PMID: 16778182]
[15]
Ruby, J.G.; Jan, C.H.; Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature, 2007, 448(7149), 83-86.
[http://dx.doi.org/10.1038/nature05983] [PMID: 17589500]
[16]
Zakeri, Z.; Salmaninejad, A.; Hosseini, N.; Shahbakhsh, Y.; Fadaee, E.; Shahrzad, M.K.; Fadaei, S. MicroRNA and exosome: Key players in rheumatoid arthritis. J. Cell. Biochem., 2019, 120(7), 10930-10944.
[http://dx.doi.org/10.1002/jcb.28499] [PMID: 30825220]
[17]
Silva, V.A.; Polesskaya, A.; Sousa, T.A.; Corrêa, V.M.; André, N.D.; Reis, R.I.; Kettelhut, I.C.; Harel-Bellan, A.; De Lucca, F.L. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol. Vis., 2011, 17, 2228-2240.
[PMID: 21897745]
[18]
Mortuza, R.; Feng, B.; Chakrabarti, S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia, 2014, 57(5), 1037-1046.
[http://dx.doi.org/10.1007/s00125-014-3197-9] [PMID: 24570140]
[19]
Wang, C.; You, Q.; Cao, X.; Guo, H.; Gao, X.; Peng, X. Micro RNA-19a suppresses interleukin-10 in peripheral B cells of patients with diabetic retinopathy. Am. J. Transl. Res., 2017, 9(3), 1410-1417.
[PMID: 28386366]
[20]
Ye, Z.; Li, Z-H.; He, S-Z. miRNA-1273g-3p Involvement in development of diabetic retinopathy by modulating the autophagy-lysosome pathway. Med. Sci. Monit., 2017, 23, 5744-5751.
[http://dx.doi.org/10.12659/MSM.905336] [PMID: 29197896]
[21]
Chen, Q.; Qiu, F.; Zhou, K.; Matlock, H.G.; Takahashi, Y.; Rajala, R.V.; Yang, Y.; Moran, E.; Ma, J-x. Pathogenic role of MicroRNA-21 in diabetic retinopathy through down-regulation of PPARα. Diabetes, 2017, 66(6), 1671-1682.
[22]
Liu, H-N.; Cao, N-J.; Li, X.; Qian, W.; Chen, X-L. Serum microRNA-211 as a biomarker for diabetic retinopathy via modulating Sirtuin 1. Biochem. Biophys. Res. Commun., 2018, 505(4), 1236-1243.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.052] [PMID: 30333091]
[23]
Wang, J.; Zhang, J.; Chen, X.; Yang, Y.; Wang, F.; Li, W.; Awuti, M.; Sun, Y.; Lian, C.; Li, Z.; Wang, M.; Xu, J.Y.; Jin, C.; Tian, H.; Gao, F.; Zhang, J.; Sinha, D.; Lu, L.; Xu, G.T. miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Exp. Eye Res., 2018, 168, 89-99.
[http://dx.doi.org/10.1016/j.exer.2017.11.006] [PMID: 29196060]
[24]
Zhao, J.; Gao, S.; Zhu, Y.; Shen, X. Significant role of microRNA 219 5p in diabetic retinopathy and its mechanism of action. Mol. Med. Rep., 2018, 18(1), 385-390.
[http://dx.doi.org/10.3892/mmr.2018.8988] [PMID: 29749515]
[25]
Bartoli, M.; Lamoke, F.; Shaw, S.; Gutsaeva, D.; Baban, B. Modulation of cytokine trans-signaling by microRNA-21 (miR-21)-mediated regulation of TACE/ADAM17 in the diabetic retina. Invest. Ophthalmol. Vis. Sci., 2014, 55(13), 1030-1030.
[26]
Wang, Q.; Bozack, S.N.; Yan, Y.; Boulton, M.E.; Grant, M.B.; Busik, J.V. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Invest. Ophthalmol. Vis. Sci., 2014, 55(6), 3986-3994.
[http://dx.doi.org/10.1167/iovs.13-13076] [PMID: 24867582]
[27]
Takahashi, Y.; Chen, Q.; Rajala, R.V.S.; Ma, J.X. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett., 2015, 589(10), 1143-1149.
[http://dx.doi.org/10.1016/j.febslet.2015.03.010] [PMID: 25796186]
[28]
Cao, Y.L.; Liu, D.J.; Zhang, H.G. MiR-7 regulates the PI3K/AKT/VEGF pathway of retinal capillary endothelial cell and retinal pericytes in diabetic rat model through IRS-1 and inhibits cell proliferation. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4427-4430.
[PMID: 30058674]
[29]
Zhang, L-Q.; Cui, H.; Wang, L.; Fang, X.; Su, S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp. Mol. Pathol., 2017, 102(2), 296-302.
[http://dx.doi.org/10.1016/j.yexmp.2017.02.004] [PMID: 28189547]
[30]
Xia, F.; Sun, J.J.; Jiang, Y.Q.; Li, C.F. MicroRNA-384-3p inhibits retinal neovascularization through targeting hexokinase 2 in mice with diabetic retinopathy. J. Cell. Physiol., 2018, 234(1), 721-730.
[http://dx.doi.org/10.1002/jcp.26871] [PMID: 30191948]
[31]
Li, E-H.; Huang, Q-Z.; Li, G-C.; Xiang, Z-Y.; Zhang, X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci. Rep., 2017, 37(2), BSR20160572.
[http://dx.doi.org/10.1042/BSR20160572] [PMID: 28122882]
[32]
Friedrich, J.; Hammes, H.; Krenning, G.; Hammes, A. miR-199a and miR-1983–players involved in Diabetic Retinopathy. Diabetologie und Stoffwechsel, 2014, 9(S01), 273.
[33]
Ling, S.; Birnbaum, Y.; Nanhwan, M.K.; Thomas, B.; Bajaj, M.; Ye, Y. MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina. Cell. Signal., 2013, 25(12), 2840-2847.
[http://dx.doi.org/10.1016/j.cellsig.2013.08.039] [PMID: 24018047]
[34]
Zhang, J.; Wu, L.; Chen, J.; Lin, S.; Cai, D.; Chen, C.; Chen, Z. Downregulation of MicroRNA 29a/b exacerbated diabetic retinopathy by impairing the function of Müller cells via Forkhead box protein O4. Diab. Vasc. Dis. Res., 2018, 15(3), 214-222.
[http://dx.doi.org/10.1177/1479164118756239] [PMID: 29409329]
[35]
Fan, J.; Xu, G.; Jiang, T.; Qin, Y.; Wang, X. MicroRNA-126 regulates heme oxygenase-1-mediated alterations in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2013, 54(15), 6199-6199.
[36]
Yang, T.T.; Song, S.J.; Xue, H.B.; Shi, D.F.; Liu, C.M.; Liu, H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(11), 2010-2015.
[PMID: 26125263]
[37]
Zou, H-L.; Wang, Y.; Gang, Q.; Zhang, Y.; Sun, Y. Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(6), 1159-1166.
[http://dx.doi.org/10.1007/s00417-017-3638-5] [PMID: 28382439]
[38]
Gomaa, A.R.; Elsayed, E.T.; Moftah, R.F. MicroRNA-200b expression in the vitreous humor of patients with proliferative diabetic retinopathy. Ophthalmic Res., 2017, 58(3), 168-175.
[http://dx.doi.org/10.1159/000475671] [PMID: 28571008]
[39]
Metin, T.; Dinç, E.; Görür, A.; Erdoğan, S.; Ertekin, S.; Sarı, A.A.; Tamer, L.; Çelik, Y. Evaluation of the plasma microRNA levels in stage 3 premature retinopathy with plus disease: preliminary study. Eye (Lond.), 2018, 32(2), 415-420.
[http://dx.doi.org/10.1038/eye.2017.193] [PMID: 28960215]
[40]
Fu, Y.; Hou, B.; Weng, C.; Liu, W.; Dai, J.; Zhao, C.; Yin, Z.Q. Functional ectopic neuritogenesis by retinal rod bipolar cells is regulated by miR-125b-5p during retinal remodeling in RCS rats. Sci. Rep., 2017, 7(1), 1011.
[http://dx.doi.org/10.1038/s41598-017-01261-x] [PMID: 28432360]
[41]
Takayama, K.; Kaneko, H.; Hwang, S-J.; Ye, F.; Higuchi, A.; Tsunekawa, T.; Matsuura, T.; Iwase, T.; Asami, T.; Ito, Y.; Ueno, S.; Yasuda, S.; Nonobe, N.; Terasaki, H. Increased ocular levels of microRNA-148a in cases of retinal detachment promote epithelial–mesenchymal transition. Invest. Ophthalmol. Vis. Sci., 2016, 57(6), 2699-2705.
[http://dx.doi.org/10.1167/iovs.15-18660] [PMID: 27191822]
[42]
Zhang, R.; Liu, Z.; Chen, B.; Zhang, J. The impact of miR-26b on retinal pigment epithelium cells in rhegmatogenous retinal detachment model. Int. J. Clin. Exp. Pathol., 2017, 10(8), 8141-8147.
[PMID: 31966666]
[43]
Popp, N.A.; Yu, D.; Green, B.; Chew, E.Y.; Ning, B.; Chan, C.C.; Tuo, J. Functional single nucleotide polymorphism in IL-17A 3′ untranslated region is targeted by miR-4480 in vitro and may be associated with age-related macular degeneration. Environ. Mol. Mutagen., 2016, 57(1), 58-64.
[http://dx.doi.org/10.1002/em.21982] [PMID: 26765636]
[44]
Lin, J.B.; Moolani, H.V.; Sene, A.; Sidhu, R.; Kell, P.; Lin, J.B.; Dong, Z.; Ban, N.; Ory, D.S.; Apte, R.S. Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration. JCI Insight, 2018, 3(7), e120157.
[http://dx.doi.org/10.1172/jci.insight.120157] [PMID: 29618664]
[45]
Ertekin, S.; Yıldırım, O.; Dinç, E.; Ayaz, L.; Fidancı, Ş.B.; Tamer, L. Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol. Vis., 2014, 20, 1057-1066.
[PMID: 25221421]
[46]
Ren, C.; Liu, Q.; Wei, Q.; Cai, W.; He, M.; Du, Y.; Xu, D.; Wu, Y.; Yu, J. Circulating miRNAs as potential biomarkers of age-related macular degeneration. Cell. Physiol. Biochem., 2017, 41(4), 1413-1423.
[http://dx.doi.org/10.1159/000467941] [PMID: 28315863]
[47]
Szemraj, M.; Bielecka-Kowalska, A.; Oszajca, K.; Krajewska, M.; Goś, R.; Jurowski, P.; Kowalski, M.; Szemraj, J. Serum MicroRNAs as potential biomarkers of AMD. Med. Sci. Monit., 2015, 21, 2734-2742.
[http://dx.doi.org/10.12659/MSM.893697] [PMID: 26366973]
[48]
Shen, F.; Mo, M-H.; Chen, L.; An, S.; Tan, X.; Fu, Y.; Rezaei, K.; Wang, Z.; Zhang, L.; Fu, S.W. MicroRNA-21 down-regulates Rb1 expression by targeting PDCD4 in retinoblastoma. J. Cancer, 2014, 5(9), 804-812.
[http://dx.doi.org/10.7150/jca.10456] [PMID: 25520758]
[49]
Huang, Y.X.; Nie, X.G.; Li, G.D.; Fan, D.S.; Song, L.L.; Zhang, X.L. Downregulation of microRNA 182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation. Int. J. Oncol., 2018, 53(6), 2615-2626.
[http://dx.doi.org/10.3892/ijo.2018.4587] [PMID: 30320366]
[50]
Chen, X-K.; Ouyang, L-J.; Yin, Z-Q.; Xia, Y-Y.; Chen, X-R.; Shi, H.; Xiong, Y.; Pi, L-H. Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model. Am. J. Transl. Res., 2017, 9(2), 791-801.
[PMID: 28337307]
[51]
Yuan, S-H.; Gao, Q-L.; Yuan, D-W.; Yuan, L.; Pang, Y.; Du, X-Y. MicroRNA-410 alleviates retinopathy of prematurity in a mouse model by inhibiting vascular endothelial growth factor expression. Int. J. Clin. Exp. Pathol., 2016, 9(9), 8911-8921.
[52]
Fu, C.; Lu, L.; Wu, H.; Shaman, J.; Cao, Y.; Fang, F.; Yang, Q.; He, Q.; Yang, Z.; Wang, M. Placental antibody transfer efficiency and maternal levels: specific for measles, coxsackievirus A16, enterovirus 71, poliomyelitis I-III and HIV-1 antibodies. Sci. Rep., 2016, 6, 38874.
[http://dx.doi.org/10.1038/srep38874] [PMID: 27934956]
[53]
Lumayag, S.; Haldin, C.E.; Corbett, N.J.; Wahlin, K.J.; Cowan, C.; Turturro, S.; Larsen, P.E.; Kovacs, B.; Witmer, P.D.; Valle, D.; Zack, D.J.; Nicholson, D.A.; Xu, S. Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc. Natl. Acad. Sci. USA, 2013, 110(6), E507-E516.
[http://dx.doi.org/10.1073/pnas.1212655110] [PMID: 23341629]
[54]
Wang, L.; Lee, A.Y.W.; Wigg, J.P.; Peshavariya, H.; Liu, P.; Zhang, H. miR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model. Int. J. Mol. Sci., 2016, 17(6), 895.
[http://dx.doi.org/10.3390/ijms17060895] [PMID: 27338342]
[55]
Murad, N.; Kokkinaki, M.; Gunawardena, N.; Gunawan, M.S.; Hathout, Y.; Janczura, K.J.; Theos, A.C.; Golestaneh, N. miR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration. FEBS J., 2014, 281(23), 5251-5264.
[http://dx.doi.org/10.1111/febs.13066] [PMID: 25251993]
[56]
Jiang, C.; Qin, B.; Liu, G.; Sun, X.; Shi, H.; Ding, S.; Liu, Y.; Zhu, M.; Chen, X.; Zhao, C. MicroRNA-184 promotes differentiation of the retinal pigment epithelium by targeting the AKT2/mTOR signaling pathway. Oncotarget, 2016, 7(32), 52340-52353.
[http://dx.doi.org/10.18632/oncotarget.10566] [PMID: 27418134]
[57]
Russo, A.; Ragusa, M.; Barbagallo, C.; Longo, A.; Avitabile, T.; Uva, M.G.; Bonfiglio, V.; Toro, M.D.; Caltabiano, R.; Mariotti, C.; Boscia, F.; Romano, M.; Di Pietro, C.; Barbagallo, D.; Purrello, M.; Reibaldi, M. miRNAs in the vitreous humor of patients affected by idiopathic epiretinal membrane and macular hole. PLoS One, 2017, 12(3), e0174297.
[http://dx.doi.org/10.1371/journal.pone.0174297] [PMID: 28328945]
[58]
Yorston, D. What’s new in age-related macular degeneration? Community Eye Health, 2006, 19(57), 4-5.
[PMID: 17491733]
[59]
Gemenetzi, M.; Lotery, A.J. Complement pathway biomarkers and age-related macular degeneration. Eye (Lond.), 2016, 30(1), 1-14.
[http://dx.doi.org/10.1038/eye.2015.203] [PMID: 26493033]
[60]
Stanton, C.M.; Wright, A.F. Inflammatory biomarkers for AMD. Adv. Exp. Med. Biol., 2014, 801, 251-257.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_32] [PMID: 24664705]
[61]
Seddon, J.M.; Gensler, G.; Rosner, B. C-reactive protein and CFH, ARMS2/HTRA1 gene variants are independently associated with risk of macular degeneration. Ophthalmology, 2010, 117(8), 1560-1566.
[http://dx.doi.org/10.1016/j.ophtha.2009.11.020] [PMID: 20346514]
[62]
Vine, A.K.; Stader, J.; Branham, K.; Musch, D.C.; Swaroop, A. Biomarkers of cardiovascular disease as risk factors for age-related macular degeneration. Ophthalmology, 2005, 112(12), 2076-2080.
[http://dx.doi.org/10.1016/j.ophtha.2005.07.004] [PMID: 16225921]
[63]
Dasch, B; Fuhs, A; Behrens, T; Meister, A; Wellmann, J; Fobker, M; Pauleikhoff, D; Hense, HW Inflammatory markers in agerelated maculopathy: cross-sectional analysis from the Muenster Aging and Retina Study. Arch. Ophthalmol., (Chicago, Ill:1960), 2005, 123(11), 1501-1506.
[http://dx.doi.org/10.1001/archopht.123.11.1501]
[64]
Berber, P.; Grassmann, F.; Kiel, C.; Weber, B.H. An eye on age-related macular degeneration: the role of MicroRNAs in disease pathology. Mol. Diagn. Ther., 2017, 21(1), 31-43.
[http://dx.doi.org/10.1007/s40291-016-0234-z] [PMID: 27658786]
[65]
Farajipour, H.; Rahimian, S.; Taghizadeh, M. Curcumin: A new candidate for retinal disease therapy? J. Cell. Biochem., 2018. Online ahead of print.
[PMID: 30548307]
[66]
Schaal, K.B.; Munk, M.R.; Wyssmueller, I.; Berger, L.E.; Zinkernagel, M.S.; Wolf, S. Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging. Retina, 2019, 39(1), 79-87.
[http://dx.doi.org/10.1097/IAE.0000000000001938] [PMID: 29135803]
[67]
Control, D.; Group, CTR. Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch. Ophthalmol., (Chicago, Ill:1960), 1998, 116, 874-886.
[68]
Corcostegui, B.; Duran, S.; Gonzalez-Albarran, M.O.; Hernandez, C.; Ruiz-Moreno, J.M.; Salvador, J. Update on diagnosis and treatment of diabetic retinopathy: a consensus guideline of the working group of ocular health (spanish society of diabetes and spanish vitreous and retina society). J. Ophthalmol., 2017, 2017, 8234186.
[69]
Chen, K.C.; Hsi, E.; Hu, C.Y.; Chou, W.W.; Liang, C.L.; Juo, S.H. MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Invest. Ophthalmol. Vis. Sci., 2012, 53(6), 2732-2739.
[http://dx.doi.org/10.1167/iovs.11-9272] [PMID: 22447870]
[70]
Adijanto, J.; Castorino, J.J.; Wang, Z.X.; Maminishkis, A.; Grunwald, G.B.; Philp, N.J. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 2012, 287(24), 20491-20503.
[http://dx.doi.org/10.1074/jbc.M112.354761] [PMID: 22523078]
[71]
Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev., 2005, 85(3), 845-881.
[http://dx.doi.org/10.1152/physrev.00021.2004] [PMID: 15987797]
[72]
Pastor, J.C.; de la Rúa, E.R.; Martín, F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog. Retin. Eye Res., 2002, 21(1), 127-144.
[http://dx.doi.org/10.1016/S1350-9462(01)00023-4] [PMID: 11906814]
[73]
Kovacs, B.; Lumayag, S.; Cowan, C.; Xu, S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4402-4409.
[http://dx.doi.org/10.1167/iovs.10-6879] [PMID: 21498619]
[74]
Feng, B.; Chen, S.; McArthur, K.; Wu, Y.; Sen, S.; Ding, Q.; Feldman, R.D.; Chakrabarti, S. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 2011, 60(11), 2975-2984.
[http://dx.doi.org/10.2337/db11-0478] [PMID: 21885871]
[75]
Golabchi, K.; Soleimani-Jelodar, R.; Aghadoost, N.; Momeni, F.; Moridikia, A.; Nahand, J.S.; Masoudifar, A.; Razmjoo, H.; Mirzaei, H. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers. J. Cell. Physiol., 2018, 233(4), 3016-3023.
[http://dx.doi.org/10.1002/jcp.26070]
[76]
Qiu, R.; Liu, Y.; Wu, J.Y.; Liu, K.; Mo, W.; He, R. Misexpression of miR-196a induces eye anomaly in Xenopus laevis. Brain Res. Bull., 2009, 79(1), 26-31.
[http://dx.doi.org/10.1016/j.brainresbull.2008.12.009] [PMID: 19146930]
[77]
Wang, J.; Wang, X.; Wu, G.; Hou, D.; Hu, Q. MiR-365b-3p, down-regulated in retinoblastoma, regulates cell cycle progression and apoptosis of human retinoblastoma cells by targeting PAX6. FEBS Lett., 2013, 587(12), 1779-1786.
[http://dx.doi.org/10.1016/j.febslet.2013.04.029] [PMID: 23660406]
[78]
Conkrite, K.; Sundby, M.; Mukai, S.; Thomson, J.M.; Mu, D.; Hammond, S.M.; MacPherson, D. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev., 2011, 25(16), 1734-1745.
[http://dx.doi.org/10.1101/gad.17027411] [PMID: 21816922]
[79]
Yang, Y.; Mei, Q. miRNA signature identification of retinoblastoma and the correlations between differentially expressed miRNAs during retinoblastoma progression. Mol. Vis., 2015, 21, 1307-1317.
[http://dx.doi.org/10.3390/molecules21101307] [PMID: 26730174]
[80]
Salmaninejad, A.; Bedoni, N.; Ravesh, Z.; Quinodoz, M.; Shoeibi, N.; Mojarrad, M.; Pasdar, A.; Rivolta, C. Whole exome sequencing and homozygosity mapping reveals genetic defects in consanguineous Iranian families with inherited retinal dystrophies. Sci. Rep., 2020, 10(1), 19413.
[http://dx.doi.org/10.1038/s41598-020-75841-9] [PMID: 33173045]
[81]
Salmaninejad, A.; Motaee, J.; Farjami, M.; Alimardani, M.; Esmaeilie, A.; Pasdar, A. Next-generation sequencing and its application in diagnosis of retinitis pigmentosa. Ophthalmic Genet., 2019, 40(5), 393-402.
[http://dx.doi.org/10.1080/13816810.2019.1675178] [PMID: 31755340]
[82]
Sundermeier, T.R.; Zhang, N.; Vinberg, F.; Mustafi, D.; Kohno, H.; Golczak, M.; Bai, X.; Maeda, A.; Kefalov, V.J.; Palczewski, K. DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice. FASEB J., 2014, 28(8), 3780-3791.
[http://dx.doi.org/10.1096/fj.14-254292] [PMID: 24812086]
[83]
Anasagasti, A.; Ezquerra-Inchausti, M.; Barandika, O.; Muñoz-Culla, M.; Caffarel, M.M.; Otaegui, D.; López de Munain, A.; Ruiz-Ederra, J. Expression profiling analysis reveals key microrna-mrna interactions in early retinal degeneration in Retinitis Pigmentosa. Invest. Ophthalmol. Vis. Sci., 2018, 59(6), 2381-2392.
[http://dx.doi.org/10.1167/iovs.18-24091] [PMID: 29847644]
[84]
Chang, B.; Hawes, N.L.; Pardue, M.T.; German, A.M.; Hurd, R.E.; Davisson, M.T.; Nusinowitz, S.; Rengarajan, K.; Boyd, A.P.; Sidney, S.S.; Phillips, M.J.; Stewart, R.E.; Chaudhury, R.; Nickerson, J.M.; Heckenlively, J.R.; Boatright, J.H. Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vision Res., 2007, 47(5), 624-633.
[http://dx.doi.org/10.1016/j.visres.2006.11.020] [PMID: 17267005]
[85]
Gargini, C.; Terzibasi, E.; Mazzoni, F.; Strettoi, E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J. Comp. Neurol., 2007, 500(2), 222-238.
[http://dx.doi.org/10.1002/cne.21144] [PMID: 17111372]
[86]
McLaughlin, M.E.; Ehrhart, T.L.; Berson, E.L.; Dryja, T.P. Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive Retinitis pigmentosa. Proc. Natl. Acad. Sci. USA, 1995, 92(8), 3249-3253.
[http://dx.doi.org/10.1073/pnas.92.8.3249] [PMID: 7724547]
[87]
Zacks, D.N.; Han, Y.; Zeng, Y.; Swaroop, A. Activation of signaling pathways and stress-response genes in an experimental model of retinal detachment. Invest. Ophthalmol. Vis. Sci., 2006, 47(4), 1691-1695.
[http://dx.doi.org/10.1167/iovs.05-1209] [PMID: 16565410]
[88]
Zacks, D.N.; Hänninen, V.; Pantcheva, M.; Ezra, E.; Grosskreutz, C.; Miller, J.W. Caspase activation in an experimental model of retinal detachment. Invest. Ophthalmol. Vis. Sci., 2003, 44(3), 1262-1267.
[http://dx.doi.org/10.1167/iovs.02-0492] [PMID: 12601057]
[89]
Zacks, D.N.; Zheng, Q-D.; Han, Y.; Bakhru, R.; Miller, J.W. FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Invest. Ophthalmol. Vis. Sci., 2004, 45(12), 4563-4569.
[http://dx.doi.org/10.1167/iovs.04-0598] [PMID: 15557468]
[90]
Hisatomi, T.; Sakamoto, T.; Murata, T.; Yamanaka, I.; Oshima, Y.; Hata, Y.; Ishibashi, T.; Inomata, H.; Susin, S.A.; Kroemer, G. Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am. J. Pathol., 2001, 158(4), 1271-1278.
[91]
Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Mohammadi, S.; Fathullahzadeh, S.; Mirzaei, H.R.; Namdar, A.; Savardashtaki, A.; Mirzaei, H. Long non-coding RNAs as epigenetic regulators in cancer. Curr. Pharm. Des., 2019, 25(33), 3563-3577.
[http://dx.doi.org/10.2174/1381612825666190830161528] [PMID: 31470781]
[92]
Saeedi Borujeni, M.J.; Esfandiary, E.; Baradaran, A.; Valiani, A.; Ghanadian, M.; Codoñer-Franch, P.; Basirat, R.; Alonso-Iglesias, E.; Mirzaei, H.; Yazdani, A. Molecular aspects of pancreatic β-cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. J. Cell. Physiol., 2019, 234(6), 8411-8425.
[http://dx.doi.org/10.1002/jcp.27755] [PMID: 30565679]
[93]
Puthanveetil, P.; Chen, S.; Feng, B.; Gautam, A.; Chakrabarti, S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med., 2015, 19(6), 1418-1425.
[http://dx.doi.org/10.1111/jcmm.12576] [PMID: 25787249]
[94]
Liu, J.Y.; Yao, J.; Li, X.M.; Song, Y.C.; Wang, X.Q.; Li, Y.J.; Yan, B.; Jiang, Q. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis., 2014, 5.
[http://dx.doi.org/10.1038/cddis.2014.466] [PMID: 25356875]
[95]
Gong, Q.; Xie, J.; Liu, Y.; Li, Y.; Su, G. Differentially Expressed MicroRNAs in the Development of Early Diabetic Retinopathy. J. Diabetes Res., 2017, 2017, Article ID 4727942.
[96]
Chang, S.M.; Hu, W.W. Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J. Cell. Physiol., 2018, 233(4), 3384-3396.
[97]
Muramatsu, F.; Kidoya, H.; Naito, H.; Sakimoto, S.; Takakura, N. microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene, 2013, 32(4), 414-421.
[http://dx.doi.org/10.1038/onc.2012.68] [PMID: 22391569]
[98]
Liu, P.; Jia, SB.; Shi, JM.; Li, WJ.; Tang, LS.; Zhu, XH.; Tong, P. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci. Rep., 2019, 39(5), BSR20181469.
[99]
Mishra, M.; Duraisamy, A.J.; Kowluru, R.A. Sirt1: A Guardian of the Development of Diabetic Retinopathy. Diabetes, 2018, 67(4), 745-754.
[http://dx.doi.org/10.2337/db17-0996]
[100]
Liu, J.; Zhang, S.; Cheng, B. Epigenetic roles of PIWI interacting RNAs (piRNAs) in cancer metastasis (Review). Oncol. Rep., 2018, 40(5), 2423-2434.
[http://dx.doi.org/10.3892/or.2018.6684] [PMID: 30226604]
[101]
Huang, X.; Gao, Y.; Qin, J.; Lu, S. The mechanism of long non-coding RNA MEG3 for hepatic ischemia-reperfusion: Mediated by miR-34a/Nrf2 signaling pathway. J. Cell. Biochem., 2018, 119(1), 1163-1172.
[102]
Xi, L.; Zhang, Y.; Kong, S.; Liang, W. miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression. Biosci. Rep., 2018, 38(3)
[http://dx.doi.org/10.1042/BSR20180078] [PMID: 29895719]
[103]
Shen, Y.; Xu, H.; Pan, X.; Wu, W.; Wang, H.; Yan, L.; Zhang, M.; Liu, X.; Xia, S.; Shao, Q. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp. Ther. Med., 2017, 14(6), 5589-5596.
[http://dx.doi.org/10.3892/etm.2017.5254] [PMID: 29285097]
[104]
Tong, P.; Peng, Q-H.; Gu, L-M.; Xie, W-W.; Li, W-J. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp. Mol. Pathol., 2019, 107, 102-109.
[http://dx.doi.org/10.1016/j.yexmp.2018.12.003] [PMID: 30529346]
[105]
Liu, P.; Jia, S-B.; Shi, J-M.; Li, W-J.; Tang, L-S.; Zhu, X-H.; Tong, P. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci. Rep., 2019, 39(5)
[http://dx.doi.org/10.1042/BSR20181469] [PMID: 30988072]
[106]
Zhang, J.; Chen, M.; Chen, J.; Lin, S.; Cai, D.; Chen, C.; Chen, Z. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci. Rep., 2017, 37(2)
[http://dx.doi.org/10.1042/BSR20170036] [PMID: 28246353]
[107]
Ke, N.; Pi, L-H.; Liu, Q.; Chen, L. Long noncoding RNA SNHG7 inhibits high glucose-induced human retinal endothelial cells angiogenesis by regulating miR-543/SIRT1 axis. Biochem. Biophys. Res. Commun., 2019, 514(2), 503-509.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.141] [PMID: 31056258]
[108]
Zhou, L-Y.; Zhai, M.; Huang, Y.; Xu, S.; An, T.; Wang, Y-H.; Zhang, R-C.; Liu, C-Y.; Dong, Y-H.; Wang, M. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ., 2019, 26(7), 1299-1315.
[PMID: 30349076]
[109]
Tao, S.; Wang, W.; Liu, P.; Wang, H.; Chen, W. Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN. Korean J. Physiol. Pharmacol., 2019, 23(6), 449-458.
[http://dx.doi.org/10.4196/kjpp.2019.23.6.449] [PMID: 31680766]
[110]
Huang, A.; Zhang, L.; Li, W.; Ma, Z.; Shuo, S.; Yao, T. Controlled fluorescence quenching by antibody-conjugated graphene oxide to measure tau protein. R. Soc. Open Sci., 2018, 5(4)
[http://dx.doi.org/10.1098/rsos.171808] [PMID: 29765647]
[111]
Cheng, Y.; Chang, Q.; Zheng, B.; Xu, J.; Li, H.; Wang, R. LncRNA XIST promotes the epithelial to mesenchymal transition of retinoblastoma via sponging miR-101. Eur. J. Pharmacol., 2019, 843, 210-216.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.028] [PMID: 30472203]
[112]
Wu, X-Z.; Cui, H-P.; Lv, H-J.; Feng, L. Knockdown of lncRNA PVT1 inhibits retinoblastoma progression by sponging miR-488-3p. Biomed. Pharmacother., 2019, 112, 108627.
[http://dx.doi.org/10.1016/j.biopha.2019.108627] [PMID: 30797143]
[113]
Yan, G.; Su, Y.; Ma, Z.; Yu, L.; Chen, N. Long Noncoding RNA LINC00202 Promotes Tumor Progression by Sponging miR-3619-5p in Retinoblastoma. Cell Struct. Funct., 2019, 44(1), 51-60.
[http://dx.doi.org/10.1247/csf.18033] [PMID: 30905893]
[114]
Yu, F.; Pang, G.; Zhao, G. RETRACTED: ANRIL acts as onco-lncRNA by regulation of microRNA-24/c-Myc, MEK/ERK and Wnt/β-catenin pathway in retinoblastoma. Int. J. Biol. Macromol., 2019, 128, 583-592.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.157] [PMID: 30703428]
[115]
Naeli, P.; Pourhanifeh, M.H.; Karimzadeh, M.R.; Shabaninejad, Z.; Movahedpour, A.; Tarrahimofrad, H.; Mirzaei, H.R.; Bafrani, H.H.; Savardashtaki, A.; Mirzaei, H.; Hamblin, M.R. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit. Rev. Oncol. Hematol., 2020, 145, 102854.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102854] [PMID: 31877535]
[116]
Shabaninejad, Z.; Vafadar, A.; Movahedpour, A.; Ghasemi, Y.; Namdar, A.; Fathizadeh, H.; Pourhanifeh, M.H.; Savardashtaki, A.; Mirzaei, H. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J. Ovarian Res., 2019, 12(1), 84.
[http://dx.doi.org/10.1186/s13048-019-0558-5] [PMID: 31481095]
[117]
Borran, S.; Ahmadi, G.; Rezaei, S.; Anari, M.M.; Modabberi, M.; Azarash, Z.; Razaviyan, J.; Derakhshan, M.; Akhbari, M.; Mirzaei, H. Circular RNAs: New players in thyroid cancer. Pathol. Res. Pract., 2020, 216(10), 153217.
[http://dx.doi.org/10.1016/j.prp.2020.153217] [PMID: 32987339]
[118]
Nahand, J.S.; Jamshidi, S.; Hamblin, M.R.; Mahjoubin-Tehran, M.; Vosough, M.; Jamali, M.; Khatami, A.; Moghoofei, M.; Baghi, H.B.; Mirzaei, H. Circular RNAs: New Epigenetic Signatures in Viral Infections. Front. Microbiol., 2020, 11, 1853.
[http://dx.doi.org/10.3389/fmicb.2020.01853] [PMID: 32849445]
[119]
Dana, P.M.; Taghavipour, M.; Mirzaei, H.; Yousefi, B.; Moazzami, B.; Chaichian, S.; Asemi, Z. Circular RNA as a potential diagnostic and/or therapeutic target for endometriosis. Biomarkers Med., 2020, 14(13), 1277-1287.
[http://dx.doi.org/10.2217/bmm-2020-0167] [PMID: 33021386]
[120]
Yousefi, F.; Shabaninejad, Z.; Vakili, S.; Derakhshan, M.; Movahedpour, A.; Dabiri, H.; Ghasemi, Y.; Mahjoubin-Tehran, M.; Nikoozadeh, A.; Savardashtaki, A.; Mirzaei, H.; Hamblin, M.R. TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun. Signal., 2020, 18(1), 87.
[http://dx.doi.org/10.1186/s12964-020-00555-4] [PMID: 32517807]
[121]
Hallajzadeh, J.; Amirani, E.; Mirzaei, H.; Shafabakhsh, R.; Mirhashemi, S.M.; Sharifi, M.; Yousefi, B.; Mansournia, M.A.; Asemi, Z. Circular RNAs: new genetic tools in melanoma. Biomarkers Med., 2020, 14(7), 563-571.
[http://dx.doi.org/10.2217/bmm-2019-0567] [PMID: 32462914]
[122]
Shao, Y.; Chen, Y. Roles of Circular RNAs in Neurologic Disease. Front. Mol. Neurosci., 2016, 9, 25.
[http://dx.doi.org/10.3389/fnmol.2016.00025] [PMID: 27147959]
[123]
Wang, J-J.; Shan, K.; Liu, B-H.; Liu, C.; Zhou, R-M.; Li, X-M.; Dong, R.; Zhang, S-J.; Zhang, S-H.; Wu, J-H.; Yan, B. Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration. Cell Death Dis., 2018, 9(5), 540.
[http://dx.doi.org/10.1038/s41419-018-0597-7] [PMID: 29748605]
[124]
Shan, K.; Liu, C.; Liu, B-H.; Chen, X.; Dong, R.; Liu, X.; Zhang, Y-Y.; Liu, B.; Zhang, S-J.; Wang, J-J.; Zhang, S.H.; Wu, J.H.; Zhao, C.; Yan, B. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation, 2017, 136(17), 1629-1642.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029004] [PMID: 28860123]
[125]
Kulinski, M.; Achkar, I.W. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk. Lymphoma, 2018, 59(5), 1051-1063.
[http://dx.doi.org/10.1080/10428194.2017.1359740]
[126]
Du, S.; Wang, S.; Zhang, F.; Lv, Y. SKP2, positively regulated by circ_ODC1/miR-422a axis, promotes the proliferation of retinoblastoma. J. Cell. Biochem., 2020, 121(1), 322-331.
[http://dx.doi.org/10.1002/jcb.29177] [PMID: 31297892]
[127]
Wang, J-J.; Liu, C.; Shan, K.; Liu, B-H.; Li, X-M.; Zhang, S-J.; Zhou, R-M.; Dong, R.; Yan, B.; Sun, X-H. Circular RNA-ZNF609 regulates retinal neurodegeneration by acting as miR-615 sponge. Theranostics, 2018, 8(12), 3408-3415.
[http://dx.doi.org/10.7150/thno.25156] [PMID: 29930739]
[128]
Zhu, K.; Hu, X.; Chen, H.; Li, F.; Yin, N.; Liu, A-L.; Shan, K.; Qin, Y-W.; Huang, X.; Chang, Q.; Xu, G.Z.; Wang, Z. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine, 2019, 49, 341-353.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.004] [PMID: 31636010]
[129]
Xing, L.; Zhang, L.; Feng, Y.; Cui, Z.; Ding, L. Downregulation of circular RNA hsa_circ_0001649 indicates poor prognosis for retinoblastoma and regulates cell proliferation and apoptosis via AKT/mTOR signaling pathway. Biomed. Pharmacother., 2018, 105, 326-333.
[http://dx.doi.org/10.1016/j.biopha.2018.05.141] [PMID: 29864621]
[130]
Saeedi Borujeni, M.J.; Esfandiary, E.; Taheripak, G.; Codoñer-Franch, P.; Alonso-Iglesias, E.; Mirzaei, H. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J. Cell. Biochem., 2018, 119(2), 1257-1272.
[http://dx.doi.org/10.1002/jcb.26271] [PMID: 28688216]
[131]
Amiri, A.; Pourhanifeh, M.H.; Mirzaei, H.R.; Nahand, J.S.; Moghoofei, M.; Sahebnasagh, R.; Mirzaei, H.; Hamblin, M.R. Exosomes and Lung cancer: Roles in pathophysiology, diagnosis and therapeutic applications. Curr. Med. Chem., 2021, 28(2), 308-328.
[http://dx.doi.org/10.2174/0929867327666200204141952] [PMID: 32013817]
[132]
Asgarpour, K.; Shojaei, Z.; Amiri, F.; Ai, J.; Mahjoubin-Tehran, M.; Ghasemi, F. ArefNezhad, R.; Hamblin, M.R.; Mirzaei, H. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun. Signal., 2020, 18(1), 149.
[http://dx.doi.org/10.1186/s12964-020-00650-6] [PMID: 32917227]
[133]
Ghaemmaghami, A.B.; Mahjoubin-Tehran, M.; Movahedpour, A.; Morshedi, K.; Sheida, A.; Taghavi, S.P.; Mirzaei, H.; Hamblin, M.R. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun. Signal., 2020, 18(1), 120.
[http://dx.doi.org/10.1186/s12964-020-00623-9] [PMID: 32746854]
[134]
Nahand, J.S.; Mahjoubin-Tehran, M.; Moghoofei, M.; Pourhanifeh, M.H.; Mirzaei, H.R.; Asemi, Z.; Khatami, A.; Bokharaei-Salim, F.; Mirzaei, H.; Hamblin, M.R. Exosomal miRNAs: novel players in viral infection. Epigenomics, 2020, 12(4), 353-370.
[http://dx.doi.org/10.2217/epi-2019-0192] [PMID: 32093516]
[135]
Pourhanifeh, M.H.; Mahjoubin-Tehran, M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Mirzaei, H.; Asemi, Z. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life, 2020, 72(3), 314-333.
[http://dx.doi.org/10.1002/iub.2211] [PMID: 31828868]
[136]
Sadri Nahand, J.; Bokharaei-Salim, F.; Karimzadeh, M.; Moghoofei, M.; Karampoor, S.; Mirzaei, H.R.; Tabibzadeh, A.; Jafari, A.; Ghaderi, A.; Asemi, Z.; Mirzaei, H.; Hamblin, M.R. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med., 2020, 21(4), 246-278.
[http://dx.doi.org/10.1111/hiv.12822] [PMID: 31756034]
[137]
Mianehsaz, E.; Mirzaei, H.R.; Mahjoubin-Tehran, M.; Rezaee, A.; Sahebnasagh, R.; Pourhanifeh, M.H.; Mirzaei, H.; Hamblin, M.R. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res. Ther., 2019, 10(1), 340.
[http://dx.doi.org/10.1186/s13287-019-1445-0] [PMID: 31753036]
[138]
Mirzaei, H.; Sahebkar, A.; Jaafari, M.R.; Goodarzi, M.; Mirzaei, H.R. Diagnostic and Therapeutic Potential of Exosomes in Cancer: The Beginning of a New Tale? J. Cell. Physiol., 2017, 232(12), 3251-3260.
[http://dx.doi.org/10.1002/jcp.25739] [PMID: 27966794]
[139]
Manjithaya, R.; Subramani, S. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol., 2011, 21(2), 67-73.
[http://dx.doi.org/10.1016/j.tcb.2010.09.009] [PMID: 20961762]
[140]
Zhang, M.; Schekman, R. Cell biology. Unconventional secretion, unconventional solutions. Science, 2013, 340(6132), 559-561.
[http://dx.doi.org/10.1126/science.1234740] [PMID: 23641104]
[141]
Banikazemi, Z; Haji, HA; Mohammadi, M; Taheripak, G; Iranifar, E; Poursadeghiyan, M; Moridikia, A; Rashidi, B; Taghizadeh, M; Mirzaei, H Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. 2018, 119(1), 185- 196.
[http://dx.doi.org/10.1002/jcb.26244]
[142]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[PMID: 3597417]
[143]
Maxfield, F.R.; McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell Biol., 2004, 5(2), 121-132.
[http://dx.doi.org/10.1038/nrm1315] [PMID: 15040445]
[144]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[145]
Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L.F.; Théry, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci., 2013, 126(Pt 24), 5553-5565.
[http://dx.doi.org/10.1242/jcs.128868] [PMID: 24105262]
[146]
Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J. Cell. Biochem., 2018, 119(5), 3783-3797.
[http://dx.doi.org/10.1002/jcb.26599]
[147]
Saadatpour, L.; Fadaee, E.; Fadaei, S.; Nassiri Mansour, R.; Mohammadi, M.; Mousavi, S.M.; Goodarzi, M.; Verdi, J.; Mirzaei, H. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther., 2016, 23(12), 415-418.
[http://dx.doi.org/10.1038/cgt.2016.48] [PMID: 27834360]
[148]
Mohammadi, S.; Yousefi, F.; Shabaninejad, Z.; Movahedpour, A.; Mahjoubin Tehran, M.; Shafiee, A.; Moradizarmehri, S.; Hajighadimi, S.; Savardashtaki, A.; Mirzaei, H. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life, 2020, 72(4), 724-748.
[http://dx.doi.org/10.1002/iub.2182] [PMID: 31618516]
[149]
Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F.; Mokhtari, R.; Mirzaei, H. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J. Cell. Biochem., 2018, 119(5), 3783-3797.
[http://dx.doi.org/10.1002/jcb.26599] [PMID: 29236313]
[150]
Banikazemi, Z.; Haji, H.A.; Mohammadi, M.; Taheripak, G.; Iranifar, E.; Poursadeghiyan, M.; Moridikia, A.; Rashidi, B.; Taghizadeh, M.; Mirzaei, H. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J. Cell. Biochem., 2018, 119(1), 185-196.
[http://dx.doi.org/10.1002/jcb.26244] [PMID: 28657651]
[151]
Klingeborn, M.; Dismuke, W.M.; Bowes Rickman, C.; Stamer, W.D. Roles of exosomes in the normal and diseased eye. Prog. Retin. Eye Res., 2017, 59, 158-177.
[http://dx.doi.org/10.1016/j.preteyeres.2017.04.004] [PMID: 28465248]
[152]
Kang, G-Y.; Bang, J.Y.; Choi, A.J.; Yoon, J.; Lee, W-C.; Choi, S.; Yoon, S.; Kim, H.C.; Baek, J-H.; Park, H.S.; Lim, H.J.; Chung, H. Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. J. Proteome Res., 2014, 13(2), 581-595.
[http://dx.doi.org/10.1021/pr400751k] [PMID: 24400796]
[153]
Mirzaei, H.; Sahebkar, A.; Avan, A.; Jaafari, M.R.; Salehi, R.; Salehi, H.; Baharvand, H.; Rezaei, A.; Hadjati, J.; Pawelek, J.M.; Mirzaei, H.R. Application of Mesenchymal Stem Cells in Melanoma: A Potential Therapeutic Strategy for Delivery of Targeted Agents. Curr. Med. Chem., 2016, 23(5), 455-463.
[http://dx.doi.org/10.2174/0929867323666151217122033] [PMID: 26674785]
[154]
Mohammadi, M.; Jaafari, M.R.; Mirzaei, H.R.; Mirzaei, H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther., 2016, 23(9), 285-286.
[http://dx.doi.org/10.1038/cgt.2016.35] [PMID: 27650780]
[155]
Moradian Tehrani, R.; Verdi, J.; Noureddini, M.; Salehi, R.; Salarinia, R.; Mosalaei, M.; Simonian, M.; Alani, B.; Ghiasi, M.R.; Jaafari, MR Mesenchymal stem cells: A new platform for targeting suicide genes in cancer 2018, 233(5), 3831-3845.
[http://dx.doi.org/10.1002/jcp.26094]
[156]
Goradel, N.H.; Hour, F.G.; Negahdari, B.; Malekshahi, Z.V.; Hashemzehi, M.; Masoudifar, A.; Mirzaei, H. Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases. J. Cell. Biochem., 2018, 119(1), 95-104.
[http://dx.doi.org/10.1002/jcb.26169]
[157]
Yu, B.; Shao, H.; Su, C.; Jiang, Y.; Chen, X.; Bai, L.; Zhang, Y.; Li, Q.; Zhang, X.; Li, X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci. Rep., 2016, 6, 34562.
[http://dx.doi.org/10.1038/srep34562] [PMID: 27686625]
[158]
Bonventre, J.V. Microvesicles from mesenchymal stromal cells protect against acute kidney injury. J. Am. Soc. Nephrol., 2009, 20(5), 927-928.
[http://dx.doi.org/10.1681/ASN.2009030322] [PMID: 19389839]
[159]
Yu, B.; Zhang, X.; Li, X. Exosomes derived from mesenchymal stem cells. Int. J. Mol. Sci., 2014, 15(3), 4142-4157.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[160]
Herberts, C.A.; Kwa, M.S.; Hermsen, H.P. Risk factors in the development of stem cell therapy. J. Transl. Med., 2011, 9(1), 29.
[http://dx.doi.org/10.1186/1479-5876-9-29] [PMID: 21418664]
[161]
Jafari, S.H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F.; Mokhtari, M.; Nahand, J.S.; Rahmati, M.; Mirzaei, H. Breast cancer diagnosis: Imaging techniques and biochemical markers. 2018, 233(7), 5200-5213.
[http://dx.doi.org/10.1002/jcp.26379]
[162]
Huang, C.; Fisher, K.P.; Hammer, S.S.; Navitskaya, S.; Blanchard, G.J.; Busik, J.V. Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy (DR) by Activating Classical Complement Pathway. Diabetes, 2018, 67(8), 1639-1649.
[163]
Dellett, M.; Brown, E.D.; Guduric-Fuchs, J.; O’Connor, A.; Stitt, A.W.; Medina, R.J.; Simpson, D.A. MicroRNA-containing extracellular vesicles released from endothelial colony-forming cells modulate angiogenesis during ischaemic retinopathy. J. Cell. Mol. Med., 2017, 21(12), 3405-3419.
[http://dx.doi.org/10.1111/jcmm.13251] [PMID: 28631889]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy