Review Article

微生物中潜在的非编码RNA及其在不同人类癌症治疗中的治疗应用

卷 21, 期 3, 2021

发表于: 30 December, 2020

页: [207 - 215] 页: 9

弟呕挨: 10.2174/1566523220999201230204814

价格: $65

摘要

癌症治疗是指对癌症的治疗,通常采用手术、化疗和放疗。此外,RNA干扰(RNAi)可能被认为是一种新的、替代的沉默子/靶向癌症相关基因的治疗方法。RNAi可以通过靶向功能性致癌分子或敲除癌相关基因的基因产物来发挥抗增殖和促凋亡的作用。然而,与传统的癌症治疗相比,基于RNAi的治疗似乎有更少的副作用。转录信号序列和保守序列分析表明,微生物可能是非编码rna的一个有效来源。这篇综述的结论是,RNAi机制的定位和基于RNAi的药物传递方法有望为癌症治疗带来更好的前景。

关键词: 癌症治疗,RNA干扰,致癌,微生物,药物传递,RNAi基础治疗

图形摘要

[1]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[2]
Chan HK, Ismail S. Side effects of chemotherapy among cancer patients in a Malaysian General Hospital: experiences, perceptions and informational needs from clinical pharmacists. Asian Pac J Cancer Prev 2014; 15(13): 5305-9.
[http://dx.doi.org/10.7314/APJCP.2014.15.13.5305] [PMID: 25040993]
[3]
Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front Pharmacol 2018; 9: 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[4]
Alfarouk KO, Stock CM, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 2015; 15: 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[5]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[6]
Maduri S. Applicability of RNA interference in cancer therapy: Current status. Indian J Cancer 2015; 52(1): 11-21.
[http://dx.doi.org/10.4103/0019-509X.175598] [PMID: 26837960]
[7]
Mosallaei M, Simonian M, Ehtesham N, et al. Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 2020; 27: 854-68.
[http://dx.doi.org/10.1038/s41417-020-0179-6] [PMID: 32418986]
[8]
Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta 2011; 1812(5): 592-601.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.002] [PMID: 21315819]
[9]
Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene Ther 2006; 13(6): 464-77.
[http://dx.doi.org/10.1038/sj.gt.3302694] [PMID: 16341059]
[10]
Babu A, Munshi A, Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm 2017; 43(9): 1391-401.
[http://dx.doi.org/10.1080/03639045.2017.1313861] [PMID: 28523942]
[11]
Dang THY, Tyagi S, D’Cunha G, Bhave M, Crawford R, Ivanova EP. Computational prediction of microRNAs in marine bacteria of the genus Thalassospira. PLoS One 2019; 14(3): e0212996.
[http://dx.doi.org/10.1371/journal.pone.0212996] [PMID: 30861013]
[12]
Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol 2017; 14(7): 914-25.
[http://dx.doi.org/10.1080/15476286.2017.1306175] [PMID: 28296577]
[13]
Eisenhardt KMH, Reuscher CM, Klug G. PcrX, an sRNA derived from the 3′- UTR of the Rhodobacter sphaeroides puf operon modulates expression of puf genes encoding proteins of the bacterial photosynthetic apparatus. Mol Microbiol 2018; 110(3): 325-34.
[http://dx.doi.org/10.1111/mmi.14076] [PMID: 29995316]
[14]
Cousin FJ, Lynch DB, Chuat V, et al. A long and abundant non-coding RNA in Lactobacillus salivarius. Microb Genom 2017; 3(9): e000126.
[http://dx.doi.org/10.1099/mgen.0.000126] [PMID: 29114404]
[15]
Wels M, Bongers RS, Boekhorst J, et al. Large intergenic cruciform-like supermotifs in the Lactobacillus plantarum genome. J Bacteriol 2009; 191(10): 3420-3.
[http://dx.doi.org/10.1128/JB.01672-08] [PMID: 19286810]
[16]
Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 2007; 35(3): 962-74.
[http://dx.doi.org/10.1093/nar/gkl1096] [PMID: 17259222]
[17]
Mujahid S, Bergholz TM, Oliver HF, Boor KJ, Wiedmann M. Exploration of the role of the non-coding RNA SbrE in L. monocytogenes stress response. Int J Mol Sci 2013; 14(5): 9685.
[http://dx.doi.org/10.3390/ijms14059685] [PMID: 23644892]
[18]
Meyer MM, Ames TD, Smith DP, et al. Identification of candidate structured RNAs in the marine organism ‘Candidatus Pelagibacter ubique’. BMC Genomics 2009; 10: 268.
[http://dx.doi.org/10.1186/1471-2164-10-268] [PMID: 19531245]
[19]
Woolfit M, Algama M, Keith JM, McGraw EA, Popovici J. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One 2015; 10(3): e0118595.
[http://dx.doi.org/10.1371/journal.pone.0118595] [PMID: 25739023]
[20]
Vogel J, Wagner EGH. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 2007; 10(3): 262-70.
[http://dx.doi.org/10.1016/j.mib.2007.06.001] [PMID: 17574901]
[21]
Henderson CA, Vincent HA, Stone CM, et al. Characterization of MicA interactions suggests a potential novel means of gene regulation by small non-coding RNAs. Nucleic Acids Res 2013; 41(5): 3386-97.
[http://dx.doi.org/10.1093/nar/gkt008] [PMID: 23361466]
[22]
Wu Z, Qin W, Wu S, Zhu G, Bao W, Wu S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol Direct 2016; 11(1): 59.
[http://dx.doi.org/10.1186/s13062-016-0160-3] [PMID: 27809935]
[23]
Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14(1): e0211430.
[http://dx.doi.org/10.1371/journal.pone.0211430] [PMID: 30682134]
[24]
Boisset S, Geissmann T, Huntzinger E, et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 2007; 21(11): 1353-66.
[http://dx.doi.org/10.1101/gad.423507] [PMID: 17545468]
[25]
Chevalier C, Boisset S, Romilly C, et al. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 2010; 6(3): e1000809.
[http://dx.doi.org/10.1371/journal.ppat.1000809] [PMID: 20300607]
[26]
Bardill JP, Hammer BK. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 2012; 9(4): 392-401.
[http://dx.doi.org/10.4161/rna.19975] [PMID: 22546941]
[27]
Stav S, Atilho RM, Mirihana Arachchilage G, Nguyen G, Higgs G, Breaker RR. Genome-wide discovery of structured noncoding RNAs in bacteria. BMC Microbiol 2019; 19(1): 66.
[http://dx.doi.org/10.1186/s12866-019-1433-7] [PMID: 30902049]
[28]
Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet 2019; 35(12): 892-902.
[http://dx.doi.org/10.1016/j.tig.2019.09.006] [PMID: 31662190]
[29]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[30]
Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin WC. Identification of homologous microRNAs in 56 animal genomes. Genomics 2010; 96(1): 1-9.
[http://dx.doi.org/10.1016/j.ygeno.2010.03.009] [PMID: 20347954]
[31]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[32]
Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113(25): 6411-8.
[http://dx.doi.org/10.1182/blood-2008-07-170589] [PMID: 19211935]
[33]
He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447(7148): 1130-4.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
[34]
Okada N, Lin CP, Ribeiro MC, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28(5): 438-50.
[http://dx.doi.org/10.1101/gad.233585.113] [PMID: 24532687]
[35]
Zhang J, Du YY, Lin YF, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun 2008; 377(1): 136-40.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.089] [PMID: 18834857]
[36]
Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009; 66(2): 169-75.
[http://dx.doi.org/10.1016/j.lungcan.2009.01.010] [PMID: 19223090]
[37]
Guo C, Sah JF, Beard L, Willson JKV, Markowitz SD, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 2008; 47(11): 939-46.
[http://dx.doi.org/10.1002/gcc.20596] [PMID: 18663744]
[38]
Jiang X, Huang H, Li Z, et al. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012; 22(4): 524-35.
[http://dx.doi.org/10.1016/j.ccr.2012.08.028] [PMID: 23079661]
[39]
Rokah OH, Granot G, Ovcharenko A, et al. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One 2012; 7(4): e35501.
[http://dx.doi.org/10.1371/journal.pone.0035501] [PMID: 22511990]
[40]
Ward A, Balwierz A, Zhang JD, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 2013; 32(9): 1173-82.
[http://dx.doi.org/10.1038/onc.2012.128] [PMID: 22508479]
[41]
Romano G, Acunzo M, Garofalo M, et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proc Natl Acad Sci USA 2012; 109(41): 16570-5.
[http://dx.doi.org/10.1073/pnas.1207917109] [PMID: 23012423]
[42]
Li Z, Cao Y, Jie Z, et al. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett 2012; 323(1): 41-7.
[http://dx.doi.org/10.1016/j.canlet.2012.03.029] [PMID: 22469786]
[43]
Lee HJ, Hong SH. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing. FEMS Microbiol Lett 2012; 326(2): 131-6.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02441.x] [PMID: 22092283]
[44]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[45]
Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 2004; 58: 303-28.
[http://dx.doi.org/10.1146/annurev.micro.58.030603.123841] [PMID: 15487940]
[46]
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36(Database issue): D149-53.
[http://dx.doi.org/10.1093/nar/gkm995] [PMID: 18158296]
[47]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): 55-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[48]
Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 2013; 29(5): 638-44.
[http://dx.doi.org/10.1093/bioinformatics/btt014] [PMID: 23325619]
[49]
Li Z, Zhang Z, Li Y, et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 2013; 121(8): 1422-31.
[http://dx.doi.org/10.1182/blood-2012-07-442004] [PMID: 23264595]
[50]
Berger AH, Imielinski M, Duke F, et al. Oncogenic RIT1 mutations in lung adenocarcinoma. Oncogene 2014; 33(35): 4418-23.
[http://dx.doi.org/10.1038/onc.2013.581] [PMID: 24469055]
[51]
Shen Z, Li Y, Fang Y, et al. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14(2): 387-406.
[http://dx.doi.org/10.1002/1878-0261.12626] [PMID: 31876369]
[52]
Singleton DC, Rouhi P, Zois CE, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene 2015; 34(36): 4713-22.
[http://dx.doi.org/10.1038/onc.2014.396] [PMID: 25486436]
[53]
Vanaja GR, Ramulu HG, Kalle AM. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun Signal 2018; 16(1): 20.
[http://dx.doi.org/10.1186/s12964-018-0231-4] [PMID: 29716651]
[54]
Sun MY, Zhang H, Tao J, Ni ZH, Wu QX, Tang QF. Expression and biological function of rhotekin in gastric cancer through regulating p53 pathway. Cancer Manag Res 2019; 11: 1069-80.
[http://dx.doi.org/10.2147/CMAR.S185345] [PMID: 30774435]
[55]
Zhang W, Liang Z, Li J. Inhibition of rhotekin exhibits antitumor effects in lung cancer cells. Oncol Rep 2016; 35(5): 2529-34.
[http://dx.doi.org/10.3892/or.2016.4634] [PMID: 26935528]
[56]
Timofeeva OA, Zhang X, Ressom HW, et al. Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. Int J Oncol 2009; 35(4): 751-60.
[PMID: 19724911]
[57]
Cai D, Choi PS, Gelbard M, Meyerson M. Identification and characterization of oncogenic SOS1 mutations in lung adenocarcinoma. Mol Cancer Res 2019; 17(4): 1002-12.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0316] [PMID: 30635434]
[58]
Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci 2016; 23(1): 53.
[http://dx.doi.org/10.1186/s12929-016-0269-9] [PMID: 27411336]
[59]
Fischer K, Pflugfelder GO. Putative breast cancer driver mutations in TBX3 cause impaired transcriptional repression. Front Oncol 2015; 5: 244.
[http://dx.doi.org/10.3389/fonc.2015.00244] [PMID: 26579496]
[60]
Fang Y, Yuan Y, Zhang LL, Lu JW, Feng JF, Hu SN. Downregulated GBX2 gene suppresses proliferation, invasion and angiogenesis of breast cancer cells through inhibiting the Wnt/β-catenin signaling pathway. Cancer Biomark 2018; 23(3): 405-18.
[http://dx.doi.org/10.3233/CBM-181466] [PMID: 30223390]
[61]
Gao AC, Lou W, Isaacs JT. Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene. Clin Cancer Res 2000; 6(2): 493-7.
[PMID: 10690529]
[62]
Peracaula R, Cleary KR, Lorenzo J, de Llorens R, Frazier ML. Human pancreatic ribonuclease 1: expression and distribution in pancreatic adenocarcinoma. Cancer 2000; 89(6): 1252-8.
[http://dx.doi.org/10.1002/1097-0142(20000915)89:6<1252::AID-CNCR9>3.0.CO;2-C] [PMID: 11002220]
[63]
Karagiannis GS, Pastoriza JM, Wang Y, et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 2017; 9(397): 1-15.
[http://dx.doi.org/10.1126/scitranslmed.aan0026] [PMID: 28679654]
[64]
Mongre RK, Jung S, Mishra CB, Lee BS, Kumari S, Lee MS. Prognostic and Clinicopathological Significance of SERTAD1 in Various Types of Cancer Risk: A Systematic Review and Retrospective Analysis. Cancers (Basel) 2019; 11(3): 337.
[http://dx.doi.org/10.3390/cancers11030337] [PMID: 30857225]
[65]
Kudryavtseva AV, Nyushko KM, Zaretsky AR, Shagin DA, Kaprin AD, Alekseev BY. Upregulation of Rarb, Rarg, and Rorc Genes in Clear Cell Renal Cell Carcinoma. Biomed Pharmacol J 2016; 9: 967-75.
[http://dx.doi.org/10.13005/bpj/1036]
[66]
Subramani R, Camacho FA, Levin CI, et al. FOXC1 plays a crucial role in the growth of pancreatic cancer. Oncogenesis 2018; 7(7): 52.
[http://dx.doi.org/10.1038/s41389-018-0061-7] [PMID: 29976975]
[67]
Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget 2017; 9(8): 8165-78.
[http://dx.doi.org/10.18632/oncotarget.22742] [PMID: 29487724]
[68]
Sato N, Koinuma J, Fujita M, et al. Activation of WD repeat and high-mobility group box DNA binding protein 1 in pulmonary and esophageal carcinogenesis. Clin Cancer Res 2010; 16(1): 226-39.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1405] [PMID: 20028748]
[69]
Jaffer T, Ma D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl Cancer Res 2016; 5: 616-28.
[http://dx.doi.org/10.21037/tcr.2016.10.06]
[70]
Hershberg R, Altuvia S, Margalit H. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res 2003; 31(7): 1813-20.
[http://dx.doi.org/10.1093/nar/gkg297] [PMID: 12654996]
[71]
Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet 2014; 15(6): 423-37.
[http://dx.doi.org/10.1038/nrg3722] [PMID: 24776770]
[72]
Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 2011; 21(9): 1487-97.
[http://dx.doi.org/10.1101/gr.119370.110] [PMID: 21665928]
[73]
Lei LI. Hoi Shan Kwan. A novel computational approach for genome-wide prediction of small RNAs in bacteria. bioRxiv 2014; 1-24.
[http://dx.doi.org/10.1101/011668]
[74]
Argaman L, Elgrably-Weiss M, Hershko T, Vogel J, Altuvia S. RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proc Natl Acad Sci USA 2012; 109(12): 4621-6.
[http://dx.doi.org/10.1073/pnas.1113113109] [PMID: 22393021]
[75]
Argaman L, Hershberg R, Vogel J, et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 2001; 11(12): 941-50.
[http://dx.doi.org/10.1016/S0960-9822(01)00270-6] [PMID: 11448770]
[76]
Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 2001; 15(13): 1637-51.
[http://dx.doi.org/10.1101/gad.901001] [PMID: 11445539]
[77]
Rivas E, Klein RJ, Jones TA, Eddy SR. Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 2001; 11(17): 1369-73.
[http://dx.doi.org/10.1016/S0960-9822(01)00401-8] [PMID: 11553332]
[78]
Chen S, Lesnik EA, Hall TA, et al. A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems 2002; 65(2-3): 157-77.
[http://dx.doi.org/10.1016/S0303-2647(02)00013-8] [PMID: 12069726]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy