Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Recent Advances in Metal-Catalyzed Heterocyclic C-P Bond Formation

Author(s): Feng Xu* and Yu Hui

Volume 18, Issue 4, 2021

Published on: 28 December, 2020

Page: [377 - 387] Pages: 11

DOI: 10.2174/1570179417999201228214930

Price: $65

Abstract

The phosphorus-containing heterocycles are an important class of compounds in organic chemistry. Because of their potential application in many fields, especially, the synthetic pesticides, medicine and catalyst, the phosphorus-containing heterocycles have attracted continuous attention from organic synthesis scientists. The development of efficient and low-cost catalytic systems is of great interest for the construction of heterocycles C-P bond. Usually, the phosphorus-containing heterocycles is prepared via direct carbon–hydrogen (C-H) bond activation or pre-functionalized of heterocycles with phosphorus-hydrogen (P-H) bond of phosphorus compounds reaction by metal-catalyzed. This review summarizes recent progress in the heterocycles C-P bond formation reactions by metal-catalyzed, which mainly focus on the discussion of the reaction mechanism. It aims to provide efficient methods for the future synthesis and application in this field.

Keywords: Phosphorus-containing heterocycles, metal-catalyzed, C-P bond, cross-coupling reaction, C-H bond activation, radical addition.

[1]
Tsuji, H.; Nakamura, E. Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc. Chem. Res., 2017, 50(2), 396-406.
[http://dx.doi.org/10.1021/acs.accounts.6b00595] [PMID: 28165719]
[2]
Takimiya, K.; Osaka, I.; Mori, T.; Nakano, M. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. Acc. Chem. Res., 2014, 47(5), 1493-1502.
[http://dx.doi.org/10.1021/ar400282g] [PMID: 24785263]
[3]
Pan, L.; Woodard, J.L.; Lucas, D.M.; Fuchs, J.R.; Kinghorn, A.D. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat. Prod. Rep., 2014, 31(7), 924-939.
[http://dx.doi.org/10.1039/C4NP00006D] [PMID: 24788392]
[4]
Hiremathad, A.; Patil, M.R. Chethana, K. R.; Chand, Karam; Santos, M. Amelia; Keri, Rangappa S. Benzofuran: an emerging scaffold for antimicrobial agents. RSC Adv, 2015, 5, 96809.
[http://dx.doi.org/10.1039/C5RA20658H]
[5]
Malytskyi, V.; Simon, J-J.; Patrone, L.; Raimundo, J-M. Thiophene-based push-pull chromophores for small molecule organic solar cells (SMOSCs). RSC Adv, 2015, 5, 354.
[http://dx.doi.org/10.1039/C4RA11664J]
[6]
Ke, Z.; Yeung, Y-Y.; Tsui, G.C.; Peng, X-S. Progress in Heterocyclic Chemistry; Elsevier, 2015.
[7]
Wu, X-F.; Li, Y. Transition metal-catalyzed benzofuran synthesis; Elsevier, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809377-1.00004-8]
[8]
Zhao, F.; Masci, D.; Tomarelli, E.; Castagnolo, D. biocatalytic and chemo-enzymatic approaches for the synthesis of heterocycles. Synthesis, 2020, 52(20), 2948-2961.
[9]
Yan, H.; Wang, X. KuoLee, R.; Chen, W. Synthesis and immunostimulatory properties of the phosphorothioate analogues of cdiGMP. Bioorg. Med. Chem. Lett., 2008, 18(20), 5631-5634.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.088] [PMID: 18799311]
[10]
Quin, L.D. A Guide to Organophosphorus Chemistry; Wiley: New York, 2000.
[11]
Hartley, F.R. The Chemistry of Organophosphorus Compounds; Wiley: New York, 1996.
[http://dx.doi.org/10.1002/0470034351]
[12]
Montchamp, J.L. Phosphinate chemistry in the 21st century: A viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc. Chem. Res., 2014, 47(1), 77-87.
[http://dx.doi.org/10.1021/ar400071v] [PMID: 23909275]
[13]
Van der Jeught, S.; Stevens, C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev., 2009, 109(6), 2672-2702.
[http://dx.doi.org/10.1021/cr800315j] [PMID: 19449857]
[14]
Demmer, C.S.; Krogsgaard-Larsen, N.; Bunch, L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev., 2011, 111(12), 7981-8006.
[http://dx.doi.org/10.1021/cr2002646] [PMID: 22010799]
[15]
Kumar, T.S.; Zhou, S-Y.; Joshi, B.V.; Balasubramanian, R.; Yang, T.; Liang, B.T.; Jacobson, K.A. Structure-activity relationship of (N)-Methanocarba phosphonate analogues of 5′-AMP as cardioprotective agents acting through a cardiac P2X receptor. J. Med. Chem., 2010, 53(6), 2562-2576.
[http://dx.doi.org/10.1021/jm9018542] [PMID: 20192270]
[16]
Lassaux, P.; Hamel, M.; Gulea, M.; Delbrück, H.; Mercuri, P.S.; Horsfall, L.; Dehareng, D.; Kupper, M.; Frère, J.M.; Hoffmann, K.; Galleni, M.; Bebrone, C. Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-β-lactamases. J. Med. Chem., 2010, 53(13), 4862-4876.
[http://dx.doi.org/10.1021/jm100213c] [PMID: 20527888]
[17]
Iwase, Y.; Kamada, K.; Ohta, K.; Kondo, K. Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge. J. Mater. Chem., 2003, 13, 1575.
[http://dx.doi.org/10.1039/B211268J]
[18]
Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev., 2016, 45(6), 1529-1541.
[http://dx.doi.org/10.1039/C5CS00434A] [PMID: 26806563]
[19]
Zhang, H.; Zhang, X.Y.; Dong, D.Q.; Wang, Z.L. Copper-catalyzed cross-coupling reactions for C-P bond formation. RSC Adv, 2015, 5(65), 52824-52831.
[http://dx.doi.org/10.1039/C5RA08858E]
[20]
McReynolds, M.D.; Dougherty, J.M.; Hanson, P.R. Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem. Rev., 2004, 104(5), 2239-2258.
[http://dx.doi.org/10.1021/cr020109k] [PMID: 15137790]
[21]
Shao, C.W.; Xu, W.G.; Li, L.X-H. Zhang Recent advances of transition metal-catalyzed P-C coupling reactions. Youji Huaxue, 2017, 37, 335-348.
[http://dx.doi.org/10.6023/cjoc201608030]
[22]
Arbuzov. J. Russ. Phys. Chem. Soc., 1906, 38, 687.
[23]
Andre, V.; Lahrache, H.; Robin, S. Reaction of unsaturated phosphonate monoesters with bromo- and iodo(bis-collidine) hexafluorophosphates. Tetrahedron, 2007, 63, 10059-10066.
[http://dx.doi.org/10.1016/j.tet.2007.07.032]
[24]
Snyder, S.A.; Breazzano, S.P.; Ross, A.G.; Lin, Y.; Zografos, A.L. Total synthesis of diverse carbogenic complexity within the resveratrol class from a common building block. J. Am. Chem. Soc., 2009, 131(5), 1753-1765.
[http://dx.doi.org/10.1021/ja806183r] [PMID: 19143488]
[25]
Hasnik, Z.; Pohl, R.; Hocek, M. Michal. Synthesis of (purin-6-yl)methylphosphonate bases and nucleosides. Tetrahedron Lett., 2010, 51, 2464-2466.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.167]
[26]
Cohen, R.J.; Fox, D.L.; Eubank, J.F. Mild and efficient Cs2CO3-promoted synthesis of phosphonates. Tetrahedron Lett., 2003, 44, 8617-8621.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.045]
[27]
Pudovik, A.N.; Konovalova, I.V. Addition reactions of esters of phosphorus (iii) acids with unsaturated systems. Synthesis, 1979, 2, 81-96.
[http://dx.doi.org/10.1055/s-1979-28566]
[28]
Gelman, D.; Jiang, L.; Buchwald, S.L. Copper-catalyzed C-P bond construction via direct coupling of secondary phosphines and phosphites with aryl and vinyl halides. Org. Lett., 2003, 5(13), 2315-2318.
[http://dx.doi.org/10.1021/ol0346640] [PMID: 12816437]
[29]
Bai, Y.; Liu, N.; Wang, S.; Wang, S.; Ning, S.; Shi, L.; Cui, L.; Zhang, Z.; Xiang, J. Nickel-catalyzed electrochemical phosphorylation of aryl bromides. Org. Lett., 2019, 21(17), 6835-6838.
[http://dx.doi.org/10.1021/acs.orglett.9b02475] [PMID: 31436427]
[30]
Yang, B.; Yang, T.T.; Li, X.A.; Wang, J.J.; Yang, S.D. A mild, selective copper-catalyzed oxidative phosphonation of α-amino ketones. Org. Lett., 2013, 15(19), 5024-5027.
[http://dx.doi.org/10.1021/ol402355a] [PMID: 24053610]
[31]
Moonen, K.; Laureyn, I.; Stevens, C.V. Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem. Rev., 2004, 104(12), 6177-6215.
[http://dx.doi.org/10.1021/cr030451c] [PMID: 15584699]
[32]
Blieck, A.D.; Catak, S.; Verstraelen, T.; Speybroeck, V.V.; Stevens, C.V. Diphosphonylation of aromatic diazaheterocycles and theoretical rationalization of product yields. Eur. J. Org. Chem., 2013, 2(6), 1058-1067.
[http://dx.doi.org/10.1002/ejoc.201201437]
[33]
Huang, L.; Zhang, Z.B.; Guo, S.M.; Cai, H. Nucleophile-controlled mono- and bis-phosphonation of amino-2-en-1-ones via catalyst-free C (sp3)-N bond cleavage. Org. Chem. Front., 2018, 5, 3548.
[http://dx.doi.org/10.1039/C8QO00975A]
[34]
Qian, Y.; Dai, Q.; Li, Z.; Liu, Y.; Zhang, J. O-phosphination of aldehydes/ketones toward phosphoric esters: Experimental and mechanistic studies. Org. Lett., 2020, 22(12), 4742-4748.
[http://dx.doi.org/10.1021/acs.orglett.0c01537] [PMID: 32484695]
[35]
Gong, J.H.; Huang, L.; Guo, S.M.; Cai, H. Metal-free phosphonation of benzoxazoles and benzothiazoles under oxidative conditions. Org. Chem. Front., 2017, 4(9), 1781-1784.
[http://dx.doi.org/10.1039/C7QO00318H]
[36]
Wang, S.; Yang, C.; Sun, S.; Wang, J. Catalyst-free phosphorylation of aryl halides with trialkyl phosphites through electrochemical reduction. Chem. Commun. (Camb.), 2019, 55(93), 14035-14038.
[http://dx.doi.org/10.1039/C9CC07069A] [PMID: 31690903]
[37]
Jian, Y.; Chen, M.; Huang, B.; Jia, W.; Yang, C.; Xia, W. Visible-light-induced c(sp2)-p bond formation by denitrogenative coupling of benzotriazoles with phosphites. Org. Lett., 2018, 20(17), 5370-5374.
[http://dx.doi.org/10.1021/acs.orglett.8b02288] [PMID: 30102045]
[38]
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. A novel synthesis of dialkyl arenephosphonates. Synthesis, 1981, 1, 56-57.
[http://dx.doi.org/10.1055/s-1981-29335]
[39]
Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M.A. Cp*CoI2-dimer as a precursor for cationic Co(III)-catalysis: application to C-H phosphoramidation of indoles. Chem. Commun. (Camb.), 2015, 51(22), 4659-4661.
[http://dx.doi.org/10.1039/C4CC10284C] [PMID: 25690436]
[40]
Huang, C.; Tang, X.; Fu, H.; Jiang, Y.; Zhao, Y. Proline/pipecolinic acid-promoted copper-catalyzed P-arylation. J. Org. Chem., 2006, 71(13), 5020-5022.
[http://dx.doi.org/10.1021/jo060492j] [PMID: 16776539]
[41]
Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester. Chemistry, 2006, 12(13), 3636-3646.
[http://dx.doi.org/10.1002/chem.200501473] [PMID: 16485315]
[42]
Schwan, A.L. Palladium catalyzed cross-coupling reactions for phosphorus-carbon bond formation. Chem. Soc. Rev., 2004, 33(4), 218-224.
[http://dx.doi.org/10.1039/B307538A] [PMID: 15103403]
[43]
Xu, K.; Yang, F.; Zhang, G.; Wu, Y. Palladacycle-catalyzed phosphonation of aryl halides in neat water. Green Chem., 2013, 15, 1055.
[http://dx.doi.org/10.1039/c3gc00030c]
[44]
Xu, W.; Hu, G.; Xu, P.; Gao, Y.; Yin, Y.; Zhao, Y. Palladium-Catalyzed C-P Cross-Coupling of Arylhydrazines with H-Phosphonates via C-N Bond Cleavage. Adv. Synth. Catal., 2014, 356, 2948.
[http://dx.doi.org/10.1002/adsc.201400155]
[45]
Yang, J.; Xiao, J.; Chen, T.; Han, L-B. Nickel-catalyzed phosphorylation of phenol derivatives via c-o/p-h cross-coupling. J. Org. Chem., 2016, 81(9), 3911-3916.
[http://dx.doi.org/10.1021/acs.joc.6b00289] [PMID: 27055171]
[46]
Łastawiecka, E.; Flis, A.; Słowik, G.; Gac, W. P-Arylation of secondary phosphine oxides catalyzed by nickel-supported nanoparticles. Org. Chem. Front., 2018, 5, 2079.
[http://dx.doi.org/10.1039/C8QO00356D]
[47]
Kalek, M.; Stawinski, J. Palladium-catalyzed c-p bond formation: mechanistic studies on the ligand substitution and the reductive elimination. an intramolecular catalysis by the acetate group in pdii complexes. Organometallics, 2008, 27, 5876-5888.
[http://dx.doi.org/10.1021/om800641n]
[48]
Yang, J.; Xiao, J.; Chen, T.; Yin, S.F.; Han, L.B. Efficient nickel-catalyzed phosphinylation of C-S bonds forming C-P bonds. Chem. Commun. (Camb.), 2016, 52(82), 12233-12236.
[http://dx.doi.org/10.1039/C6CC06048J] [PMID: 27711273]
[49]
Liu, C.; Szostak, M. Michal Szostak. Decarbonylative phosphorylation of amides by palladium and nickel catalysis: the Hirao cross-coupling of amide derivatives. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12718-12722.
[http://dx.doi.org/10.1002/anie.201707102] [PMID: 28809072]
[50]
Zhang, M.; Yang, J.L.; Shen, R.W. Copper‐catalyzed dehydrative cyclization of 1‐(2‐hydroxyphenyl)propargyl alcohols with p(o)h compounds for the synthesis of 2‐phosphorylmethylbenzofurans. Adv. Synth. Catal., 2018, 360(2), 334-345.
[http://dx.doi.org/10.1002/adsc.201701368]
[51]
Zhang, H.Y.; Mao, L.L.; Yang, B.; Yang, S.D. Copper-catalyzed radical cascade cyclization for the synthesis of phosphorated indolines. Chem. Commun. (Camb.), 2015, 51(19), 4101-4104.
[http://dx.doi.org/10.1039/C4CC10267C] [PMID: 25666564]
[52]
Gao, Y.; Lu, G.; Zhang, P.; Zhang, L.; Tang, G.; Zhao, Y. A Cascade phosphinoylation/cyclization/desulfonylation process for the synthesis of 3-phosphinoylindoles. Org. Lett., 2016, 18(6), 1242-1245.
[http://dx.doi.org/10.1021/acs.orglett.6b00056] [PMID: 26925953]
[53]
Li, L.; Hao, G.; Zhu, A.; Fan, X.; Zhang, G.; Zhang, L. A copper(I)-catalyzed three-component domino process: Assembly of complex 1,2,3-triazolyl-5-phosphonates from azides, alkynes, and H-phosphates. Chemistry, 2013, 19(43), 14403-14406.
[http://dx.doi.org/10.1002/chem.201303324] [PMID: 24114953]
[54]
Wei, W.; Li, X.; Gu, M.; Yao, H.; Lin, A. Cu/Pd cooperatively catalyzed tandem C-N and C-P bond formation: access to phosphorated 2H-indazoles. Org. Biomol. Chem., 2017, 15(39), 8458-8462.
[http://dx.doi.org/10.1039/C7OB02323E] [PMID: 28953279]
[55]
Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites. Chem. Commun. (Camb.), 2012, 48(42), 5181-5183.
[http://dx.doi.org/10.1039/c2cc30429e] [PMID: 22517113]
[56]
Feng, C.G.; Ye, M.; Xiao, K.J.; Li, S.; Yu, J.Q. Pd(II)-catalyzed phosphorylation of aryl C-H bonds. J. Am. Chem. Soc., 2013, 135(25), 9322-9325.
[http://dx.doi.org/10.1021/ja404526x] [PMID: 23755825]
[57]
Mi, X.; Huang, M.; Zhang, J.; Wang, C.; Wu, Y. Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C-H functionalization. Org. Lett., 2013, 15(24), 6266-6269.
[http://dx.doi.org/10.1021/ol4031167] [PMID: 24274120]
[58]
Baslé, O.; Li, C.J. Copper-catalyzed aerobic phosphonation of sp3 C-H bonds. Chem. Commun. (Camb.), 2009, (27), 4124-4126.
[http://dx.doi.org/10.1039/b905275e] [PMID: 19568654]
[59]
Mu, X.J.; Zou, J.P.; Qian, Q.F.; Zhang, W. Manganese(III) acetate promoted regioselective phosphonation of heteroaryl compounds. Org. Lett., 2006, 8(23), 5291-5293.
[http://dx.doi.org/10.1021/ol062082n] [PMID: 17078700]
[60]
Xiang, C.B.; Bian, Y.J.; Mao, X.R.; Huang, Z.Z. Coupling reactions of heteroarenes with phosphites under silver catalysis. J. Org. Chem., 2012, 77(17), 7706-7710.
[http://dx.doi.org/10.1021/jo301108g] [PMID: 22901007]
[61]
Yuan, J.W.; Li, Y.Z.; Yang, L.R.; Mai, W.P.; Mao, P.; Xiao, Y.M.; Qu, L.B. Silver-catalyzed direct Csp2-H radical phosphorylation of coumarins with H-phosphites. Tetrahedron, 2015, 71, 8178.
[http://dx.doi.org/10.1016/j.tet.2015.08.026]
[62]
Liu, W.J.; Wang, S.H.; Yao, H.G.; Li, Z.Y.; Huang, Y.L.; Kong, C.Y. Regioselective palladium-catalyzed phosphonation of imidazo[2,1-b]thiazoles with dialkyl phosphites. Tetrahedron Lett., 2015, 56(44), 6100-6103.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.078]
[63]
Hu, G.; Chen, W.; Ma, D.; Zhang, Y.; Xu, P.; Gao, Y.; Zhao, Y. Silver-Catalyzed, aldehyde-induced α-C-H functionalization of tetrahydroisoquinolines with concurrent C-P Bond Formation/N-alkylation. J. Org. Chem., 2016, 81(4), 1704-1711.
[http://dx.doi.org/10.1021/acs.joc.5b02625] [PMID: 26757405]
[64]
Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. Silver-catalyzed radical phosphonofluorination of unactivated alkenes. J. Am. Chem. Soc., 2013, 135(38), 14082-14085.
[http://dx.doi.org/10.1021/ja408031s] [PMID: 24025164]
[65]
Zhang, P.B.; Gao, Y.Z.; Tang, G.; Zhao, Y.F. Copper-catalyzed cycloaddition between secondary phosphine oxides and alkynes: Synthesis of benzophosphole oxides. Adv. Synth. Catal., 2016, 358(1), 138-142.
[http://dx.doi.org/10.1002/adsc.201500667]
[66]
Yang, Z.H.; Tan, H.R.; Zhao, S.Y. Regioselective silver-catalyzed carbon-phosphorus difunctionalization of maleimides: one-step construction of phosphonylated indolylmaleimides and pyrrolylmaleimides. Adv. Synth. Catal., 2018, 360(7), 1523-1528.
[http://dx.doi.org/10.1002/adsc.201701431]
[67]
Guo, S.M.; Wang, Y.F.; Cai, H. Copper-catalyzed C2 and C3 phosphonation of benzofuran and benzothiophene with trialkyl phosphites. ChemCatChem, 2018, 10(4), 716-719.
[http://dx.doi.org/10.1002/cctc.201701361]
[68]
Chinthaparthi, R.R. Chandra Sekhar Reddy Gangireddy, Suresh Reddy Cirandur.CeCl3•7H2O: a highly efficient catalyst for the synthesis of 1-substituted-octahydro-[1,3,2]diazaphospholo[1,5-a]pyridine-1- oxide. Tetrahedron Lett., 2013, 54(45), 6071-6076.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.115]
[69]
LJZhang J H Kim, D O Jang. One-pot reaction of 2-formylbenzoates, hexamethyldisilazane, and diethyl phosphite in the presence of Yb(OTf)3: Synthesis of 3-phosphonate phthalides. Tetrahedron Lett., 2017, 20(50), 1985-1988.
[70]
Cai, B.G.; Xuan, J.; Xiao, W.J. Visible light-mediated C-P bond formation reactions. Sci. Bull. (Beijing), 2019, 64(5), 337-350.
[http://dx.doi.org/10.1016/j.scib.2019.02.002]
[71]
Chen, L.; Liu, X.Y.; Zou, Y.X. Recent advances in the construction of phosphorus-substituted heterocycles, 2009-2019. Adv. Synth. Catal., 2020, 362, 1724-1818.
[http://dx.doi.org/10.1002/adsc.201901540]
[72]
Yorimitsu, H. Homolytic substitution at phosphorus for C-P bond formation in organic synthesis. Beilstein J. Org. Chem., 2013, 9, 1269-1277.
[http://dx.doi.org/10.3762/bjoc.9.143] [PMID: 23843922]
[73]
Florian, M.J. Tappe Verena T. Trepohl, Martin Oestreich. Transition-metal-catalyzed C–P cross-coupling reactions. Synthesis, 2010, 18, 3037-3062.
[74]
Dong, X.; Wang, R.; Jin, W.; Liu, C. Electrochemical oxidative dehydrogenative phosphorylation of n-heterocycles with p(o)-h compounds in imidazolium-based ionic liquid. Org. Lett., 2020, 22(8), 3062-3066.
[http://dx.doi.org/10.1021/acs.orglett.0c00814] [PMID: 32255646]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy