Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Mucoadhesive Low Molecular Chitosan Complexes to Protect rHuKGF from Proteolysis: In-vitro Characterization and FHs 74 Int Cell Proliferation Studies

Author(s): Yi N. Tee, Palanirajan V. Kumar*, Marwan A.A. Maki, Manogaran Elumalai, Shiek A.K.M.E.H. Rahman and Shiau-Chuen Cheah

Volume 22, Issue 7, 2021

Published on: 18 December, 2020

Page: [969 - 982] Pages: 14

DOI: 10.2174/1389201021666201218124450

Price: $65

Abstract

Background: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

Objective: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

Methods: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

Results: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

Conclusion: The developed complex improved the stability and the biological function of rHuKGF.

Keywords: Chitosan, recombinant Human Keratinocyte Growth Factor (rHuKGF), complexation, proteolysis, cell proliferation, rejuvenation cancer therapy, FHs 74 Int.

Graphical Abstract

[1]
Peterson, D.E.; Lalla, R.V. Oral mucositis: The new paradigms. Curr. Opin. Oncol., 2010, 22(4), 318-322.
[http://dx.doi.org/10.1097/CCO.0b013e32833a9fab] [PMID: 20485169]
[2]
Radtke, M.L.; Kolesar, J.M.M.L. Palifermin (Kepivance) for the treatment of oral mucositis in patients with hematologic malignancies requiring hematopoietic stem cell support. J. Oncol. Pharm. Pract., 2005, 11(3), 121-125.
[http://dx.doi.org/10.1191/1078155205jp159oa] [PMID: 16390600]
[3]
Finch, P.W.; Rubin, J.S. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv. Cancer Res., 2004, 91, 69-136.
[http://dx.doi.org/10.1016/S0065-230X(04)91003-2] [PMID: 15327889]
[4]
Poorebrahim, M.; Sadeghi, S.; Ghorbani, R.; Asghari, M.; Abazari, M.F.; Kalhor, H.; Rahimi, H. In silico enhancement of the stability and activity of keratinocyte growth factor. J. Theor. Biol., 2017, 418, 111-121.
[http://dx.doi.org/10.1016/j.jtbi.2017.01.009] [PMID: 28093295]
[5]
Blijlevens, N.; Sonis, S. Palifermin (recombinant keratinocyte growth factor-1): A pleiotropic growth factor with multiple biological activities in preventing chemotherapy- and radiotherapy-induced mucositis. Ann. Oncol., 2007, 18(5), 817-826.
[http://dx.doi.org/10.1093/annonc/mdl332] [PMID: 17030544]
[6]
Warburton, D.; Schwarz, M.; Tefft, D.; Flores-Delgado, G.; Anderson, K.D.; Cardoso, W.V. The molecular basis of lung morphogenesis. Mech. Dev., 2000, 92(1), 55-81.
[http://dx.doi.org/10.1016/S0925-4773(99)00325-1] [PMID: 10704888]
[7]
Takahashi, M.; Ota, S.; Nishimura, S.; Ogura, K.; Maeda, S.; Toda, N.; Hamada, E.; Terano, A.; Omata, M. Keratinocyte growth factor is an endogenous stimulant of rabbit gastric epithelial cell proliferation and migration in primary culture. J. Gastroenterol. Hepatol., 1996, 11(11), 1089-1096.
[http://dx.doi.org/10.1111/j.1440-1746.1996.tb00042.x] [PMID: 8985836]
[8]
Kepivance- palifermin injection, powder, lyophilized, for solution 2014.
[9]
Patel, A.; Cholkar, K.; Mitra, A.K. Recent developments in protein and peptide parenteral delivery approaches. Ther. Deliv., 2014, 5(3), 337-365.
[http://dx.doi.org/10.4155/tde.14.5] [PMID: 24592957]
[10]
Smart, A.L.; Gaisford, S.; Basit, A.W. Oral peptide and protein delivery: Intestinal obstacles and commercial prospects. Expert Opin. Drug Deliv., 2014, 11(8), 1323-1335.
[http://dx.doi.org/10.1517/17425247.2014.917077] [PMID: 24816134]
[11]
Bordoli, L.; Schwede, T. Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol. Biol., 2012, 857, 107-136.
[http://dx.doi.org/10.1007/978-1-61779-588-6_5] [PMID: 22323219]
[12]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[13]
Bailey, D.; Carpenter, E.P.; Coker, A.; Coker, S.; Read, J.; Jones, A.T.; Erskine, P.; Aguilar, C.F.; Badasso, M.; Toldo, L.; Rippmann, F.; Sanz-Aparicio, J.; Albert, A.; Blundell, T.L.; Roberts, N.B.; Wood, S.P.; Cooper, J.B. An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 5), 541-552.
[http://dx.doi.org/10.1107/S0907444912004817] [PMID: 22525752]
[14]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 53(3), W363-367.
[15]
Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model., 2009, 49(2), 444-460.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[16]
Scheiner, S.; Kar, T.; Pattanayak, J. Comparison of various types of hydrogen bonds involving aromatic amino acids. J. Am. Chem. Soc., 2002, 124(44), 13257-13264.
[http://dx.doi.org/10.1021/ja027200q] [PMID: 12405854]
[17]
Horowitz, S.; Trievel, R.C. Carbon-oxygen hydrogen bonding in biological structure and function. J. Biol. Chem., 2012, 287(50), 41576-41582.
[http://dx.doi.org/10.1074/jbc.R112.418574] [PMID: 23048026]
[18]
Das, S.N.; Wagenknecht, M.; Nareddy, P.K.; Bhuvanachandra, B.; Niddana, R.; Balamurugan, R.; Swamy, M.J.; Moerschbacher, B.M.; Podile, A.R. Amino groups of chitosan are crucial for binding to a family 32 carbohydrate binding module of a chitosanase from Paenibacillus elgii. J. Biol. Chem., 2016, 291(36), 18977-18990.
[http://dx.doi.org/10.1074/jbc.M116.721332] [PMID: 27405759]
[19]
Ways, T.M.; Lau, W.M.; Khutoryanskiy, V.V.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers (Basel), 2018, 10(3), 267.
[http://dx.doi.org/10.3390/polym10030267] [PMID: 30966302]
[20]
Rodríguez-vázquez, M.; Vega-ruiz, B.; Ramos-zúñiga, R.; Saldaña-koppel, D.A.; Quiñones-olvera, L.F. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res. Int., 2015., Article ID 821279.
[http://dx.doi.org/10.1155/2015/821279]
[21]
FGF7 (human). 2015.
[22]
Liu, L.; Randolph, T.W.; Carpenter, J.F. Particles shed from syringe filters and their effects on agitation-induced protein aggregation. J. Pharm. Sci., 2012, 101(8), 2952-2959.
[http://dx.doi.org/10.1002/jps.23225] [PMID: 22674153]
[23]
Zhang, J.; Cousenst, L.S.; Barrt, P.J.; Sprang, S.R. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1,8; Protein Crystalography/Heparin Binding Site/Receptor Recognit, 1991, Vol. 88, .
[24]
Ahmed, K.F.; Aschi, A.; Nicolai, T. Formation and characterization of chitosan-protein particles with fractal whey protein aggregates. Colloids Surf. B Biointerfaces, 2018, 169, 257-264.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.030] [PMID: 29783151]
[25]
Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules, 2008, 9(7), 1837-1842.
[http://dx.doi.org/10.1021/bm800276d] [PMID: 18540644]
[26]
Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm., 2013, 455(1-2), 219-228.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.034] [PMID: 23886649]
[27]
Çabuk, M. Colloidal Colloidal Behaviors Behaviors of of Conducting Conducting Polymer / Chitosan Polymer / Chitosan Composite Particles Composite Particles; IntechOpen, 2016.
[28]
Ye, L.; Chen, H. Characterization of the interactions between chitosan/whey protein at different conditions. Food Sci. Technol., 2019, 39(1), 163-169.
[http://dx.doi.org/10.1590/fst.29217]
[29]
Furtado, G.T.F. da S.; Fideles, T.B. Cruz, R. de C. A. L.; Souza, J. W. de L.; Rodriguez B.M.A.; Fook, M.V.L. Chitosan/NaF particles prepared via ionotropic gelation: Evaluation of particles size and morphology. Mater. Res., 2018, 21(4)
[http://dx.doi.org/10.1590/1980-5373-mr-2018-0101]
[30]
Zvezdova, D. Synthesis and characterization of chitosan from marine sources in black sea. Sci. Pap. Univ. Russ., 2010, 49, 65-69.
[31]
Stodolak-Zych, E.; Jeleń, P.; Dzierzkowska, E.; Krok-Borkowicz, M.; Zych, Ł.; Boguń, M.; Rapacz-Kmita, A.; Kolesińska, B. Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix. J. Mol. Struct., 2020, 1211, 128061.
[http://dx.doi.org/10.1016/j.molstruc.2020.128061]
[32]
Yasmeen, S.; Kabiraz, M.; Saha, B.; Qadir, M.; Gafur, M.; Masum, S. Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. Int. Res. J. Pure Appl. Chem., 2016, 10(4), 1-14.
[http://dx.doi.org/10.9734/IRJPAC/2016/23315]
[33]
Luo, Y.; Teng, Z.; Wang, Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J. Agric. Food Chem., 2012, 60(3), 836-843.
[http://dx.doi.org/10.1021/jf204194z] [PMID: 22224939]
[34]
Ichiba, H.; Kusuda, S.; Itagane, Y.; Fujita, K.; Issiki, G. Measurement of growth promoting activity in human milk using a fetal small intestinal cell line. Biol. Neonate, 1992, 61(1), 47-53.
[http://dx.doi.org/10.1159/000243530] [PMID: 1567928]
[35]
Kanwar, J.R.; Kanwar, R.K. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC Immunol., 2009, 10, 7.
[http://dx.doi.org/10.1186/1471-2172-10-7] [PMID: 19183498]
[36]
Cho, K.; Ishiwata, T.; Uchida, E.; Nakazawa, N.; Korc, M.; Naito, Z.; Tajiri, T. Enhanced expression of keratinocyte growth factor and its receptor correlates with venous invasion in pancreatic cancer. Am. J. Pathol., 2007, 170(6), 1964-1974.
[http://dx.doi.org/10.2353/ajpath.2007.060935] [PMID: 17525264]
[37]
Chen, R. MTT assay of cell numbers after drug/toxin treatment. Bio-p Protocol., 2011, 1(7), 4-5.
[38]
Visco, V.; Bava, F.A.; d’Alessandro, F.; Cavallini, M.; Ziparo, V.; Torrisi, M.R. Human colon fibroblasts induce differentiation and proliferation of intestinal epithelial cells through the direct paracrine action of keratinocyte growth factor. J. Cell. Physiol., 2009, 220(1), 204-213.
[http://dx.doi.org/10.1002/jcp.21752] [PMID: 19326389]
[39]
Howling, G.I.; Dettmar, P.W.; Goddard, P.A.; Hampson, F.C.; Dornish, M.; Wood, E.J. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 2001, 22(22), 2959-2966.
[http://dx.doi.org/10.1016/S0142-9612(01)00042-4] [PMID: 11575470]
[40]
Pérez, Y.A.; Urista, C.M.; Martínez, J.I.; Nava, M.D.C.D.; Rodríguez, F.A.R. Functionalized polymers for enhance oral bioavailability of sensitive molecules. Polymers (Basel), 2016, 8(6), 1-22.
[http://dx.doi.org/10.3390/polym8060214] [PMID: 30979310]
[41]
Gupta, S.; Jain, A.; Chakraborty, M.; Sahni, J.K.; Ali, J.; Dang, S. Oral delivery of therapeutic proteins and peptides: A review on recent developments. Drug Deliv., 2013, 20(6), 237-246.
[http://dx.doi.org/10.3109/10717544.2013.819611] [PMID: 23869787]
[42]
Roy, K.; Kanwar, R.K.; Krishnakumar, S.; Cheung, C.H.A.; Kanwar, J.R. Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model. Int. J. Nanomedicine, 2015, 10(1), 1019-1043.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy