Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Virus as a Nanocarrier for Drug Delivery Redefining Medical Therapeutics - A Status Report

Author(s): Sanjay Kumar Ojha*, Ritesh Pattnaik, Puneet Kumar Singh, Shubha Dixit, Snehasish Mishra, Sreyasi Pal and Subrat Kumar*

Volume 25, Issue 10, 2022

Published on: 18 December, 2020

Page: [1619 - 1629] Pages: 11

DOI: 10.2174/1386207323666201218115850

Price: $65

Abstract

Over the last two decades, drug delivery systems have evolved at a tremendous pace. Synthetic nanoparticles have played an important role in vaccine design and delivery as these have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in biomedicine. A successful nanocarrier must possess specific properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and the ability to release the active material into the cytoplasm. The virus can perform some or all of these functions, making it a suitable candidate as a naturally occurring nanocarrier. Viruses could be made non-infectious and non-replicative without compromising their ability to penetrate cells, making them useful for a vast spectrum of applications. Currently, many such carrier molecules as bio-nanocapsules are at various development stages. This review covers the advances in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus-inspired nanocarriers. These virus-based nanocarriers could provide solutions to address pressing and emerging concerns in infectious diseases in the future.

Keywords: Drug delivery, synthetic nanoparticles, nanocarrier, virus, bio-nanocapsules, infectious disease.

[1]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[2]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26. [https://doi.org/10.1155/2019/3702518
[3]
Somiya, M.; Liu, Q.; Kuroda, S. Current progress of virus-mimicking nanocarriers for drug delivery. Nanotheranostics, 2017, 1(4), 415-429.
[http://dx.doi.org/10.7150/ntno.21723] [PMID: 29188175]
[4]
Khalifa, A.M.; Elsheikh, M.A.; Khalifa, A.M.; Elnaggar, Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release, 2019, 311-312, 125-137.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.034] [PMID: 31476342]
[5]
Tharkar, P.; Varanasi, R.; Wong, W.S.F.; Jin, C.T.; Chrzanowski, W. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front. Bioeng. Biotechnol., 2019, 7, 324.
[http://dx.doi.org/10.3389/fbioe.2019.00324] [PMID: 31824930]
[6]
Seleci, M.; Seleci, D.A.; Joncyzk, R.; Stahl, F.; Blume, C.; Scheper, T. Smart multifunctional nanoparticles in nanomedicine. Bio Nano Materials, 2016, 17(1-2), 33-41.
[7]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[8]
Paradise, J. Regulating Nanomedicine at the Food and Drug Administration. AMA J. Ethics, 2019, 21(4), E347-E355.
[http://dx.doi.org/10.1001/amajethics.2019.347] [PMID: 31012422]
[9]
Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17, 849-865.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[10]
Yu, X.; Trase, I.; Ren, M.; Duval, K.; Guo, X.; Chen, Z. Design of nanoparticle-based carriers for targeted drug delivery. J. Nanomat, 2016, 1-15.
[11]
Garnett, M.C.; Kallinteri, P. Nanomedicines and nanotoxicology: some physiological principles. Occup. Med. (Lond.), 2006, 56(5), 307-311.
[http://dx.doi.org/10.1093/occmed/kql052] [PMID: 16868128]
[12]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[13]
Kant, S. Satinder Kumar.; Parashar Bharat. A complete review on: Liposomes. Inter Res J Pharma, 2012, 3(7), 14.
[14]
Li, R.; Deng, L.; Cai, Z.; Zhang, S.; Wang, K.; Li, L.; Ding, S.; Zhou, C. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater. Sci. Eng. C, 2017, 80, 156-164.
[http://dx.doi.org/10.1016/j.msec.2017.05.136] [PMID: 28866151]
[15]
Devender, S. Aara Aashiya.; Ali E.; Trivedi.; Leena. An Updated Review On: Liposomes as Drug Delivery System. PharmaTutor, 2018, 6(2), 50-62.
[http://dx.doi.org/10.29161/PT.v6.i2.2018.50]
[16]
Chelazzi, D.; Giorgi, R.; Baglioni, P. Microemulsions, micelles, and functional gels: how colloids and soft matter preserve works of art. Angew. Chem. Int. Ed. Engl., 2018, 57(25), 7296-7303.
[http://dx.doi.org/10.1002/anie.201710711] [PMID: 29214696]
[17]
Krassimir, D. Danov.; Peter A. Kralchevsky.; Simeon D. Stoyanov.; Joanne L. Cook.; Ian P. Stott.; Eddie G. Pelan. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment. Adv. Colloid Interface Sci., 2018, 256, 1-22.
[http://dx.doi.org/10.1016/j.cis.2018.05.006]
[18]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[19]
Noriega-Luna, B. Applications of Dendrimers in Drug Delivery Agents, Diagnosis, Therapy, and Detection; J Nanomat, 2020, pp. 1-13.
[20]
Nagpal, K.; Kumar, P.; Mohan, A.; Thakur, S. Dendrimers for Therapeutic Delivery: Compositions, Characterizations, and Current Status. Critical Reviews™ in Therap Drug Car Sys., 2019, 36(4)
[21]
Elham, A. Fekri Aval.; Sedigheh.; Akbarzadeh Abolfazl.; Milani Morteza.; Nasrabadi Hamid.; Joo Sang.; Hanifehpour Younes.; Nejati-Koshki Kazem.; Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9, 247.
[22]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[23]
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1, 217-223.
[http://dx.doi.org/10.4103/2278-344X.107832]
[24]
Nagavarma, B.V.N. Yadav Hemant.; Ayaz A.; Vasudha L.; Sivakumar H. Different techniques for preparation of polymeric nanoparticles- A review. Asian J. Pharm. Clin. Res., 2012, 5, 16-23.
[25]
Vinod, P. Jasmine Meshak. Polymeric Nanoparticles- the new face in Drug Delivery and Cancer Therapy. Malaya J. Biosci., 2014, 1(1), 1-7.
[26]
Sergey, S. Mermet Alain.; Bergoin Max.; Ward V.; Etten James. Viruses as nanoparticles: Structure versus collective dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2014, 90.
[http://dx.doi.org/10.1103/PhysRevE.90.022718]
[27]
van Kan-Davelaar, H.E.; van Hest, J.C.M.; Cornelissen, J.J.L.M.; Koay, M.S.T. Using viruses as nanomedicines. Br. J. Pharmacol., 2014, 171(17), 4001-4009.
[http://dx.doi.org/10.1111/bph.12662] [PMID: 24571489]
[28]
Yildiz, I.; Shukla, S.; Steinmetz, N.F. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol., 2011, 22(6), 901-908.
[http://dx.doi.org/10.1016/j.copbio.2011.04.020] [PMID: 21592772]
[29]
Zdanowicz, M.; Chroboczek, J. Virus-like particles as drug delivery vectors. Acta Biochim. Pol., 2016, 63(3), 469-473.
[http://dx.doi.org/10.18388/abp.2016_1275] [PMID: 27474402]
[30]
Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Del Rev, 2020, 30070-30073.
[31]
Chamundeeswari, M.; Jeslin, J.G.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2018, 17, 849-865.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[32]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[33]
Alemzadeh, E.; Dehshahri, A.; Izadpanah, K.; Ahmadi, F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf. B Biointerfaces, 2018, 167, 20-27.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.026] [PMID: 29625419]
[34]
Pitek, A.S.; Jameson, S.A.; Veliz, F.A.; Shukla, S.; Steinmetz, N.F. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials, 2016, 89, 89-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.032] [PMID: 26950168]
[35]
Somiya, M.; Kuroda, S. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Adv. Drug Deliv. Rev., 2015, 95, 77-89.
[http://dx.doi.org/10.1016/j.addr.2015.10.003] [PMID: 26482188]
[36]
Berardi, A.; Evans, D.J.; Baldelli Bombelli, F.; Lomonossoff, G.P. Stability of plant virus-based nanocarriers in gastrointestinal fluids. Nanoscale, 2018, 10(4), 1667-1679.
[http://dx.doi.org/10.1039/C7NR07182E] [PMID: 29231944]
[37]
Masarapu, H.; Patel, B.K.; Chariou, P.L.; Hu, H.; Gulati, N.M.; Carpenter, B.L.; Ghiladi, R.A.; Shukla, S.; Steinmetz, N.F. Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs. Biomacromolecules, 2017, 18(12), 4141-4153.
[http://dx.doi.org/10.1021/acs.biomac.7b01196] [PMID: 29144726]
[38]
Blandino, A.; Lico, C.; Baschieri, S.; Barberini, L.; Cirotto, C.; Blasi, P.; Santi, L. In vitro and in vivo toxicity evaluation of plant virus nanocarriers. Colloids Surf. B Biointerfaces, 2015, 129, 130-136.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.039] [PMID: 25847457]
[39]
Eiben, S.; Koch, C.; Altintoprak, K.; Southan, A.; Tovar, G.; Laschat, S.; Weiss, I.M.; Wege, C. Plant virus-based materials for biomedical applications: Trends and prospects. Adv. Drug Deliv. Rev., 2019, 145, 96-118.
[http://dx.doi.org/10.1016/j.addr.2018.08.011] [PMID: 30176280]
[40]
Beatty, P.H.; Lewis, J.D. Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Adv. Drug Deliv. Rev., 2019, 145, 130-144.
[http://dx.doi.org/10.1016/j.addr.2019.04.005] [PMID: 31004625]
[41]
Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol., 2016, 11(3), 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[42]
Hefferon, K.L. Repurposing plant virus nanoparticles. Vaccines (Basel), 2018, 6(1), 11.
[http://dx.doi.org/10.3390/vaccines6010011] [PMID: 29443902]
[43]
Czapar, A.E.; Steinmetz, N.F. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Curr. Opin. Chem. Biol., 2017, 38, 108-116.
[http://dx.doi.org/10.1016/j.cbpa.2017.03.013] [PMID: 28426952]
[44]
Patel, R.; Czapar, A.E.; Fiering, S.; Oleinick, N.L.; Steinmetz, N.F. Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega, 2018, 3(4), 3702-3707.
[http://dx.doi.org/10.1021/acsomega.8b00227] [PMID: 29732445]
[45]
Wang, C.; Beiss, V.; Steinmetz, N.F. Cowpea mosaic virus nanoparticles and empty virus-like particles show distinct but overlapping immunostimulatory properties. J. Virol., 2019, 93(21), e00129-e19.
[http://dx.doi.org/10.1128/JVI.00129-19] [PMID: 31375592]
[46]
Madden, A.J.; Oberhardt, B.; Lockney, D.; Santos, C.; Vennam, P.; Arney, D.; Franzen, S.; Lommel, S.A.; Miller, C.R.; Gehrig, P.; Zamboni, W.C. Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomedicine (Lond.), 2017, 12(20), 2519-2532.
[http://dx.doi.org/10.2217/nnm-2016-0421] [PMID: 28952882]
[47]
Shoeb, E.; Hefferon, K. Future of cancer immunotherapy using plant virus-based nanoparticles. Fut Sci, OA., 2019, 5, FS0401.
[48]
Wen, A.M.; Lee, K.L.; Steinmetz, N.F. Plant virus-based nanotechnologies.Women in Nanotechnology; Springer: Cham, 2020, pp. 57-69.
[http://dx.doi.org/10.1007/978-3-030-19951-7_5]
[49]
Aljabali, A.A.; Berardi, A.; Evans, D.J. Nature’s nanoparticles: using viruses as nanomedicines and for bioimaging.Fund Nanopar; Elsevier, 2018, pp. 29-50.
[http://dx.doi.org/10.1016/B978-0-323-51255-8.00002-1]
[50]
Bäcker, M.; Koch, C.; Eiben, S.; Geiger, F.; Eber, F.; Gliemann, H.; Poghossian, A.; Wege, C.; Schöning, M.J. Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors. Sens. Actuators B Chem., 2017, 238, 716-722.
[http://dx.doi.org/10.1016/j.snb.2016.07.096]
[51]
Bruckman, M.A.; Czapar, A.E.; VanMeter, A.; Randolph, L.N.; Steinmetz, N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. J. Control. Release, 2016, 231, 103-113.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.045] [PMID: 26941034]
[52]
Marín-Caba, L.; Chariou, P.L.; Pesquera, C.; Correa-Duarte, M.A.; Steinmetz, N.F. Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery. Langmuir, 2019, 35(1), 203-211.
[http://dx.doi.org/10.1021/acs.langmuir.8b03337] [PMID: 30576145]
[53]
Gamper, C.; Spenlé, C.; Boscá, S.; van der Heyden, M.; Erhardt, M.; Orend, G.; Bagnard, D.; Heinlein, M. Functionalized tobacco mosaic virus coat protein monomers and oligomers as nanocarriers for anti-cancer peptides. Cancers (Basel), 2019, 11(10), 1609.
[http://dx.doi.org/10.3390/cancers11101609] [PMID: 31652529]
[54]
Bakhshinejad, B.; Karimi, M.; Khalaj-Kondori, M. Phage display: development of nanocarriers for targeted drug delivery to the brain. Neural Regen. Res., 2015, 10(6), 862-865.
[http://dx.doi.org/10.4103/1673-5374.158330] [PMID: 26199590]
[55]
Karimi, M.; Mirshekari, H.; Moosavi Basri, S.M.; Bahrami, S.; Moghoofei, M.; Hamblin, M.R. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 45-62.
[http://dx.doi.org/10.1016/j.addr.2016.03.003] [PMID: 26994592]
[56]
Garg, P. Filamentous bacteriophage: A prospective platform for targeting drugs in phage-mediated cancer therapy. J. Cancer Res. Ther., 2019, 15(Suppl.), S1-S10.
[http://dx.doi.org/10.4103/jcrt.JCRT_218_18] [PMID: 30900613]
[57]
Namdee, K.; Khongkow, M.; Boonrungsiman, S.; Nittayasut, N.; Asavarut, P.; Temisak, S.; Saengkrit, N.; Puttipipatkhachorn, S.; Hajitou, A.; Ruxrungtham, K.; Yata, T. Thermoresponsive bacteriophage nanocarrier as a gene delivery vector targeted to the gastrointestinal tract. Mol. Ther. Nucleic Acids, 2018, 12, 33-44.
[http://dx.doi.org/10.1016/j.omtn.2018.04.012] [PMID: 30195771]
[58]
Zhang, L.; Wang, P.; Wang, C.; Wu, Y.; Feng, X.; Huang, H.; Ren, L.; Liu, B.F.; Gao, S.; Liu, X. Bacteriophage T4 capsid as a nanocarrier for Peptide-N-Glycosidase F immobilization through self-assembly. Sci. Rep., 2019, 9(1), 4865.
[http://dx.doi.org/10.1038/s41598-019-41378-9] [PMID: 30890747]
[59]
Czapar, A.E.; Tiu, B.D.B.; Veliz, F.A.; Pokorski, J.K.; Steinmetz, N.F. Slow‐release formulation of cowpea mosaic virus for in situ vaccine delivery to treat ovarian cancer. Adv. Sci. (Weinh.), 2018, 5(5)
[http://dx.doi.org/10.1002/advs.201700991] [PMID: 29876220]
[60]
Rohovie, M.J.; Nagasawa, M.; Swartz, J.R. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med., 2017, 2(1), 43-57.
[http://dx.doi.org/10.1002/btm2.10049] [PMID: 29313023]
[61]
Naskalska, A.; Pyrć, K. Virus like particles as immunogens and universal nanocarriers. Pol. J. Microbiol., 2015, 64(1), 3-13.
[http://dx.doi.org/10.33073/pjm-2015-001] [PMID: 26094310]
[62]
Fuenmayor, J.; Gòdia, F.; Cervera, L. Production of virus-like particles for vaccines. N. Biotechnol., 2017, 39(Pt B), 174-180.
[http://dx.doi.org/10.1016/j.nbt.2017.07.010] [PMID: 28778817]
[63]
Shirbaghaee, Z.; Bolhassani, A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016, 105(3), 113-132.
[http://dx.doi.org/10.1002/bip.22759] [PMID: 26509554]
[64]
Yan, D.; Wei, Y.Q.; Guo, H.C.; Sun, S.Q. The application of virus-like particles as vaccines and biological vehicles. Appl. Microbiol. Biotechnol., 2015, 99(24), 10415-10432.
[http://dx.doi.org/10.1007/s00253-015-7000-8] [PMID: 26454868]
[65]
Rother, M.; Nussbaumer, M.G.; Renggli, K.; Bruns, N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem. Soc. Rev., 2016, 45(22), 6213-6249.
[http://dx.doi.org/10.1039/C6CS00177G] [PMID: 27426103]
[66]
Grime, J.M.A.; Dama, J.F.; Ganser-Pornillos, B.K.; Woodward, C.L.; Jensen, G.J.; Yeager, M.; Voth, G.A. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat. Commun., 2016, 7, 11568.
[http://dx.doi.org/10.1038/ncomms11568] [PMID: 27174390]
[67]
Mateu, M.G. Assembly.; engineering and applications of virus-based protein nanoparticles. InProtein-based Eng Nanostruc; Springer: Cham, 2016, pp. 83-120.
[68]
Bhaskar, S.; Lim, S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater., 2017, 9(4)
[http://dx.doi.org/10.1038/am.2016.128] [PMID: 32218880]
[69]
Aumiller, W.M.; Uchida, M.; Douglas, T. Protein cage assembly across multiple length scales. Chem. Soc. Rev., 2018, 47(10), 3433-3469.
[http://dx.doi.org/10.1039/C7CS00818J] [PMID: 29497713]
[70]
Capek, I. Viral nanoparticles, noble metal decorated viruses and their nanoconjugates. Adv. Colloid Interface Sci., 2015, 222, 119-134.
[http://dx.doi.org/10.1016/j.cis.2014.04.008] [PMID: 24836299]
[71]
Duncan, R.; Vicent, M.J. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev., 2013, 65(1), 60-70.
[http://dx.doi.org/10.1016/j.addr.2012.08.012] [PMID: 22981753]
[72]
Rajagopal, P.; Duraiswamy, S.; Sethuraman, S.; Giridhara Rao, J.; Krishnan, U.M. Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J. Gene Med., 2018, 20(4)
[http://dx.doi.org/10.1002/jgm.3011] [PMID: 29423922]
[73]
Venkataraman, S.; Reddy, V.S.; Khurana, S.P. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy.NanoBioMedicine; Springer: Singapore, 2020, pp. 213-236.
[http://dx.doi.org/10.1007/978-981-32-9898-9_9]
[74]
Bora, N.S.; Mazumder, B.; Pathak, M.P.; Joshi, K.; Chattopadhyay, P. Nanotechnology in Preventive and Emergency Healthcare.Nanotechnol: Ther; Nutr, Cosmetic Adv, 2019, p. 221.
[75]
Zeng, X.; de Groot, A.M.; Sijts, A.J.; Broere, F.; Oude Blenke, E.; Colombo, S.; van Eden, W.; Franzyk, H.; Nielsen, H.M.; Foged, C. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro. Nanoscale, 2015, 7(46), 19687-19698.
[http://dx.doi.org/10.1039/C5NR04807A] [PMID: 26553270]
[76]
Mishra, D.K.; Balekar, N.; Mishra, P.K. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv. Transl. Res., 2017, 7(2), 346-358.
[http://dx.doi.org/10.1007/s13346-016-0352-5] [PMID: 28050890]
[77]
Shi, P.; Gustafson, J.A.; MacKay, J.A. Genetically engineered nanocarriers for drug delivery. Int. J. Nanomedicine, 2014, 9, 1617-1626.
[PMID: 24741309]
[78]
Wenk, E.; Merkle, H.P.; Meinel, L. Silk fibroin as a vehicle for drug delivery applications. J. Control. Release, 2011, 150(2), 128-141.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.007] [PMID: 21059377]
[79]
Zhi, X.; Zheng, C.; Xiong, J.; Li, J.; Zhao, C.; Shi, L.; Zhang, Z. Nanofilamentous Virus-Based Dynamic Hydrogels with Tunable Internal Structures, Injectability, Self-Healing, and Sugar Responsiveness at Physiological pH. Langmuir, 2018, 34(43), 12914-12923.
[http://dx.doi.org/10.1021/acs.langmuir.8b02526] [PMID: 30298737]
[80]
Srivastava, A.S.; Kaido, T.; Carrier, E. Immunological factors that affect the in vivo fate of T7 phage in the mouse. J. Virol. Methods, 2004, 115(1), 99-104.
[http://dx.doi.org/10.1016/j.jviromet.2003.09.009] [PMID: 14656466]
[81]
Aanei, I.L.; Huynh, T.; Seo, Y.; Francis, M.B. Vascular Cell Adhesion Molecule-Targeted MS2 Viral Capsids for the Detection of Early-Stage Atherosclerotic Plaques. Bioconjug. Chem., 2018, 29(8), 2526-2530.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00453] [PMID: 30059611]
[82]
Petrenko, V.A. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality. Ther. Deliv., 2017, 8(12), 1063-1075.
[http://dx.doi.org/10.4155/tde-2017-0086] [PMID: 29125066]
[83]
Frenkel, D.; Solomon, B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5675-5679.
[http://dx.doi.org/10.1073/pnas.072027199] [PMID: 11960022]
[84]
Ghosh, D.; Lee, Y.; Thomas, S.; Kohli, A.G.; Yun, D.S.; Belcher, A.M.; Kelly, K.A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol., 2012, 7(10), 677-682.
[http://dx.doi.org/10.1038/nnano.2012.146] [PMID: 22983492]
[85]
Suthiwangcharoen, N.; Li, T.; Li, K.; Thompson, P.; You, S.; Wang, Q. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res., 2011, 4, 483-493.
[http://dx.doi.org/10.1007/s12274-011-0104-2]
[86]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; Brinker, C.J. Caldeira, Jdo.C.; Chackerian, B.; Wharton, W.; Peabody, D.S. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano, 2011, 5(7), 5729-5745.
[http://dx.doi.org/10.1021/nn201397z] [PMID: 21615170]
[87]
Zeng, Q.; Wen, H.; Wen, Q.; Chen, X.; Wang, Y.; Xuan, W.; Liang, J.; Wan, S. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials, 2013, 34(19), 4632-4642.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.017] [PMID: 23528229]
[88]
Das, R.P.; Gandhi, V.V.; Singh, B.G.; Kunwar, A. Passive and Active Drug Targeting: Role of Nanocarriers in Rational Design of Anticancer Formulations. Curr. Pharm. Des., 2019, 25(28), 3034-3056.
[http://dx.doi.org/10.2174/1381612825666190830155319] [PMID: 31470779]
[89]
Lee, K.L.; Carpenter, B.L.; Wen, A.M.; Ghiladi, R.A.; Steinmetz, N.F. High Aspect Ratio Nanotubes Formed by Tobacco Mosaic Virus for Delivery of Photodynamic Agents Targeting Melanoma. ACS Biomater. Sci. Eng., 2016, 2(5), 838-844.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00061] [PMID: 28713855]
[90]
Yildiz, I.; Lee, K.L.; Chen, K.; Shukla, S.; Steinmetz, N.F. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery. J. Control. Release, 2013, 172(2), 568-578.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.023] [PMID: 23665254]
[91]
DePorter, S.M.; McNaughton, B.R. Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells. Bioconjug. Chem., 2014, 25(9), 1620-1625.
[http://dx.doi.org/10.1021/bc500339k] [PMID: 25134017]
[92]
Hoskins, J.M.; Carey, L.A.; McLeod, H.L. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat. Rev. Cancer, 2009, 9(8), 576-586.
[http://dx.doi.org/10.1038/nrc2683] [PMID: 19629072]
[93]
Sánchez-Sánchez, L.; Cadena-Nava, R.D.; Palomares, L.A.; Ruiz-Garcia, J.; Koay, M.S.T.; Cornelissen, J.J.M.T.; Vazquez-Duhalt, R. Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450. Enzyme Microb. Technol., 2014, 60, 24-31.
[http://dx.doi.org/10.1016/j.enzmictec.2014.04.003] [PMID: 24835096]
[94]
Yacoby, I.; Shamis, M.; Bar, H.; Shabat, D.; Benhar, I. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob. Agents Chemother., 2006, 50(6), 2087-2097.
[http://dx.doi.org/10.1128/AAC.00169-06] [PMID: 16723570]
[95]
Suci, P.A.; Varpness, Z.; Gillitzer, E.; Douglas, T.; Young, M. Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir, 2007, 23(24), 12280-12286.
[http://dx.doi.org/10.1021/la7021424] [PMID: 17949022]
[96]
Brasch, M.; de la Escosura, A.; Ma, Y.; Uetrecht, C.; Heck, A.J.R.; Torres, T.; Cornelissen, J.J.L.M. Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J. Am. Chem. Soc., 2011, 133(18), 6878-6881.
[http://dx.doi.org/10.1021/ja110752u] [PMID: 21506537]
[97]
Chariou, P.L.; Wang, L.; Desai, C.; Park, J.; Robbins, L.K.; von Recum, H.A.; Ghiladi, R.A.; Steinmetz, N.F. Let there be light: targeted photodynamic therapy using high aspect ratio plant viral nanoparticles. Macromol. Biosci., 2019, 19(5)
[http://dx.doi.org/10.1002/mabi.201800407] [PMID: 30721575]
[98]
Ngweniform, P.; Abbineni, G.; Cao, B.; Mao, C. Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery. Small, 2009, 5(17), 1963-1969.
[http://dx.doi.org/10.1002/smll.200801902] [PMID: 19415651]
[99]
Oh, M.H.; Yu, J.H.; Kim, I.; Nam, Y.S. genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl. Mater. Interfaces, 2015, 7(40), 22578-22586.
[http://dx.doi.org/10.1021/acsami.5b07029] [PMID: 26413999]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy