Research Article

产抗龋齿的核多角体病毒作为哺乳动物基因治疗的载体的评价

卷 21, 期 2, 2021

发表于: 17 December, 2020

页: [177 - 189] 页: 13

弟呕挨: 10.2174/1566523220999201217155945

价格: $65

摘要

背景:杆状病毒是具有重要生物技术应用的昆虫病原体,已超越了其作为农业害虫的生物控制剂的范围。一种物种,加利福尼亚州的苜蓿芽孢杆菌多核多角体病毒(AcMNPV)已被广泛用作生产重组蛋白的分子平台和哺乳动物基因的传递载体,因为它可以转导广泛的哺乳动物细胞和组织而无需复制或产生后代。 方法:为了研究抗龋齿双核多角体病毒(AgMNPV)物种的萌芽病毒体是否具有相同的能力,通过同源重组将病毒基因组修饰为易感昆虫细胞以整合报告基因,然后在哺乳动物细胞系中进行比较关于源自AcMNPV的等效病毒的表格。此外,测定了AgMNPV病毒粒子在哺乳动物中的复制能力。 结果:进行的实验表明,AgMNPV的重组变体可以转导并支持所传递基因的表达,但不能在哺乳动物细胞中复制。 结论:因此,该昆虫病原体被提议作为人类非感染性病毒的替代品,以探索基于哺乳动物细胞的基因治疗和其他应用中的新方法。

关键词: 杆状病毒,AgMNPV,AcMNPV,BacMam,转导,基因治疗。

« Previous
图形摘要

[1]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[2]
Anguela XM, High KA. Entering the modern era of gene therapy. Annu Rev Med 2019; 70: 273-88.
[http://dx.doi.org/10.1146/annurev-med-012017-043332] [PMID: 30477394]
[3]
Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2003; 2(5): 471-86.
[http://dx.doi.org/10.1177/153303460300200513] [PMID: 14529313]
[4]
Jiao Y, Xia ZL, Ze LJ, Jing H, Xin B, Fu S. Research Progress of nucleic acid delivery vectors for gene therapy. Biomed Microdevices 2020; 22(1): 16.
[http://dx.doi.org/10.1007/s10544-020-0469-7] [PMID: 31989315]
[5]
Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 2011; 12(5): 301-15.
[http://dx.doi.org/10.1038/nrg2985] [PMID: 21445084]
[6]
Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders. In: Prog Brain Res. 2017; 230: pp. 99-132.
[http://dx.doi.org/10.1016/bs.pbr.2016.11.003] [PMID: 28552237]
[7]
Martínez-Morales PL, Revilla A, Ocaña I, et al. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev Rep 2013; 9(5): 685-99.
[http://dx.doi.org/10.1007/s12015-013-9443-6] [PMID: 23681704]
[8]
Tani K. Current status of ex vivo gene therapy for hematological disorders: a review of clinical trials in Japan around the world. Int J Hematol 2016; 104(1): 42-72.
[http://dx.doi.org/10.1007/s12185-016-2030-2] [PMID: 27289360]
[9]
Yang G, Lv F, Wang B, Liu L, Yang Q, Wang S. Multifunctional non-viral delivery systems based on conjugated polymers. Macromol Biosci 2012; 12(12): 1600-14.
[http://dx.doi.org/10.1002/mabi.201200267] [PMID: 23161784]
[10]
Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA. Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 2013; 10(11): 4082-98.
[http://dx.doi.org/10.1021/mp400467x] [PMID: 24093932]
[11]
Dorraj G, Carreras JJ, Nunez H, Abushammala I, Melero A. Lipid Nanoparticles as Potential Gene Therapeutic Delivery Systems for Oral Administration. Curr Gene Ther 2017; 17(2): 89-104.
[http://dx.doi.org/10.2174/1566523217666170510163038] [PMID: 28494737]
[12]
Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8(8): 573-87.
[http://dx.doi.org/10.1038/nrg2141] [PMID: 17607305]
[13]
Asad AS, Moreno Ayala MA, Gottardo MF, et al. Viral gene therapy for breast cancer: progress and challenges. Expert Opin Biol Ther 2017; 17(8): 945-59.
[http://dx.doi.org/10.1080/14712598.2017.1338684] [PMID: 28604109]
[14]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[15]
Ehrke-Schulz E, Zhang W, Schiwon M, et al. Cloning and largescale production of high-capacity adenoviral vectors based on the human adenovirus type 5. J Vis Exp 2016; 28(107)e52894
[PMID: 26863087]
[16]
Yamamoto Y, Nagasato M, Yoshida T, Aoki K. Recent advances in genetic modification of adenovirus vectors for cancer treatment. Cancer Sci 2017; 108(5): 831-7.
[http://dx.doi.org/10.1111/cas.13228] [PMID: 28266780]
[17]
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12(5): 341-55.
[http://dx.doi.org/10.1038/nrg2988] [PMID: 21499295]
[18]
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1(1): 427-51.
[http://dx.doi.org/10.1146/annurev-virology-031413-085355] [PMID: 26958729]
[19]
Choudhury SR, Fitzpatrick Z, Harris AF, et al. In Vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 2016; 24(7): 1247-57.
[http://dx.doi.org/10.1038/mt.2016.84] [PMID: 27117222]
[20]
Coroadinha AS, Gama-Norton L, Amaral AI, Hauser H, Alves PM, Cruz PE. Production of retroviral vectors. [review Curr Gene Ther 2010; 10(6): 456-73.
[http://dx.doi.org/10.2174/156652310793797739] [PMID: 21054246]
[21]
Schambach A, Morgan M. Retroviral vectors for cancer gene therapy. Recent Results Cancer Res 2016; 209: 17-35.
[http://dx.doi.org/10.1007/978-3-319-42934-2_2] [PMID: 28101685]
[22]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[23]
Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem 2009; 108(4): 778-90.
[http://dx.doi.org/10.1002/jcb.22328] [PMID: 19711370]
[24]
Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther 2014; 25(4): 265-84.
[http://dx.doi.org/10.1089/hum.2014.001] [PMID: 24512150]
[25]
Airenne KJ, Makkonen KE, Mähönen AJ, Ylä-Herttuala S. Baculoviruses mediate efficient gene expression in a wide range of vertebrate cells. Methods Mol Biol 2011; 737: 279-301.
[http://dx.doi.org/10.1007/978-1-61779-095-9_12] [PMID: 21590402]
[26]
Ono C, Okamoto T, Abe T, Matsuura Y. Baculovirus as a tool for gene delivery and gene therapy. Viruses 2018; 10(9): 510.
[http://dx.doi.org/10.3390/v10090510] [PMID: 30235841]
[27]
Rohrmann GF. Baculovirus Molecular Biology. 4th ed. National Center for Biotechnology Information Bethesda 2019.
[28]
Szewczyk B, Rabalski L, Krol E, Sihler W. Lobo de Souza M. Baculovirus biopesticides - A safe alternative to chemical protection of plants. J Biopesticides 2009; 2(2): 209-16.
[29]
Haase S, Sciocco-Cap A, Romanowski V. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 2015; 7(5): 2230-67.
[http://dx.doi.org/10.3390/v7052230] [PMID: 25941826]
[30]
Condreay JP, Kost TA. Baculovirus expression vectors for insect and mammalian cells. Curr Drug Targets 2007; 8(10): 1126-31.
[http://dx.doi.org/10.2174/138945007782151351] [PMID: 17979672]
[31]
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 2015; 96(Pt 1): 6-23.
[http://dx.doi.org/10.1099/vir.0.067108-0] [PMID: 25246703]
[32]
Airenne KJ, Hu YC, Kost TA, et al. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013; 21(4): 739-49.
[http://dx.doi.org/10.1038/mt.2012.286] [PMID: 23439502]
[33]
Mansouri M, Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid 2018; 98: 1-7.
[http://dx.doi.org/10.1016/j.plasmid.2018.05.002] [PMID: 29842913]
[34]
Thimiri Govinda Raj DB, Khan NA, Venkatachalam S, Arumugam S. BacMam System for rapid recombinant protein expression in mammalian cells. Methods Mol Biol 2020; 2125: 205-8.
[http://dx.doi.org/10.1007/7651_2019_249] [PMID: 31228126]
[35]
Sung LY, Chen CL, Lin SY, et al. Efficient gene delivery into cell lines and stem cells using baculovirus. Nat Protoc 2014; 9(8): 1882-99.
[http://dx.doi.org/10.1038/nprot.2014.130] [PMID: 25010908]
[36]
Tjia ST, zu Altenschildesche GM, Doerfler W. Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology 1983; 125(1): 107-17.
[http://dx.doi.org/10.1016/0042-6822(83)90067-3] [PMID: 6402854]
[37]
Kost TA, Condreay JP. Innovations-Biotechnology: Baculovirus vectors as gene transfer vectors for mammalian cells: Biosafety considerations. J Am Biol Saf Assoc 2002; 7(3): 167-9.
[http://dx.doi.org/10.1177/153567600200700312]
[38]
Gronowski AM, Hilbert DM, Sheehan KC, Garotta G, Schreiber RD. Baculovirus stimulates antiviral effects in mammalian cells. J Virol 1999; 73(12): 9944-51.
[http://dx.doi.org/10.1128/JVI.73.12.9944-9951.1999] [PMID: 10559307]
[39]
Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y, Takaku H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol 2003; 171(3): 1133-9.
[http://dx.doi.org/10.4049/jimmunol.171.3.1133] [PMID: 12874198]
[40]
Abe T, Hemmi H, Miyamoto H, et al. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol 2005; 79(5): 2847-58.
[http://dx.doi.org/10.1128/JVI.79.5.2847-2858.2005] [PMID: 15709004]
[41]
Abe T, Kaname Y, Wen X, et al. Baculovirus induces type I interferon production through toll-like receptor-dependent and -independent pathways in a cell-type-specific manner. J Virol 2009; 83(15): 7629-40.
[http://dx.doi.org/10.1128/JVI.00679-09] [PMID: 19474102]
[42]
Bocca AL, Barros MC, Martins GK, et al. Immunological effects of Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) by stimulation of mice in vivo and in vitro. Virus Res 2013; 176(1-2): 119-27.
[http://dx.doi.org/10.1016/j.virusres.2013.05.015] [PMID: 23747526]
[43]
Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA. A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 2001; 8(11): 846-54.
[http://dx.doi.org/10.1038/sj.gt.3301459] [PMID: 11423932]
[44]
Luckow VA, Lee SC, Barry GF, Olins PO. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 1993; 67(8): 4566-79.
[http://dx.doi.org/10.1128/JVI.67.8.4566-4579.1993] [PMID: 8392598]
[45]
Yao Lg, Sun Jc, Xu H. Kan Yc, Zhang Xm, Yan HC. A novel economic method for high throughput production of recombinant baculovirus by infecting insect cells with Bacmid-containing diminopimelate-auxotrophic Escherichia coli. J Biotechnol 2010; 145(1): 23-9.
[http://dx.doi.org/10.1016/j.jbiotec.2009.10.003] [PMID: 19835917]
[46]
Buchholz CJ, Friedel T, Büning H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol 2015; 33(12): 777-90.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.008] [PMID: 26497425]
[47]
Kenoutis C, Efrose RC, Swevers L, et al. Baculovirus-mediated gene delivery into Mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression. J Virol 2006; 80(8): 4135-46.
[http://dx.doi.org/10.1128/JVI.80.8.4135-4146.2006] [PMID: 16571829]
[48]
Liu X, Li Y, Hu X, Yi Y, Zhang Z. Gene delivery and gene expression in vertebrate using baculovirus Bombyx mori nucleopolyhedrovirus vector. Oncotarget 2017; 8(62): 106017-25.
[http://dx.doi.org/10.18632/oncotarget.22522] [PMID: 29285311]
[49]
Kataoka C, Kaname Y, Taguwa S, et al. Baculovirus GP64-mediated entry into mammalian cells. J Virol 2012; 86(5): 2610-20.
[http://dx.doi.org/10.1128/JVI.06704-11] [PMID: 22190715]
[50]
Westenberg M, Uijtdewilligen P, Vlak JM. Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells. J Gen Virol 2007; 88(Pt 12): 3302-6.
[http://dx.doi.org/10.1099/vir.0.83240-0] [PMID: 18024899]
[51]
Luz-Madrigal A, Asanov A, Camacho-Zarco AR, Sampieri A, Vaca L. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring of baculovirus to mammalian cells. J Virol 2013; 87(21): 11894-907.
[http://dx.doi.org/10.1128/JVI.01356-13] [PMID: 23986592]
[52]
Harrison RL, Herniou EA, Jehle JA, et al. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Baculoviridae. J Gen Virol 2018; 99(9): 1185-6.
[http://dx.doi.org/10.1099/jgv.0.001107] [PMID: 29947603]
[53]
Jehle JA, Lange M, Wang H, Hu Z, Wang Y, Hauschild R. Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 2006; 346(1): 180-93.
[http://dx.doi.org/10.1016/j.virol.2005.10.032] [PMID: 16313938]
[54]
Miele SA, Garavaglia MJ, Belaich MN, Ghiringhelli PD. Baculovirus: molecular insights on their diversity and conservation. Int J Evol Biol 2011; 2011379424
[http://dx.doi.org/10.4061/2011/379424] [PMID: 21716740]
[55]
Allen G, Knell JD. A nuclear polyhedrosis virus of Anticarsia gemmatalis: Ultrastructure, replication and pathogenicity. Fla Entomol 1977; 60(3): 233-40.
[http://dx.doi.org/10.2307/3493914]
[56]
Moscardi F. A Nucleopolyhedrovirus for control of the velvetbean caterpillar in Brazilian SoybeansBiological Control: A Global Perspective. Wallingford, UK: CAB International 2007; pp. 344-52.
[http://dx.doi.org/10.1079/9781845932657.0344]
[57]
Oliveira JVC, Wolff JLC, Garcia-Maruniak A, et al. Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. J Gen Virol 2006; 87(Pt 11): 3233-50.
[http://dx.doi.org/10.1099/vir.0.82161-0] [PMID: 17030857]
[58]
Sieburth PJ, Maruniak JE. Growth characteristic of a continuous cell line from the velvetbean caterpillar Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol 1988; 24: 195-8.
[http://dx.doi.org/10.1007/BF02623546]
[59]
Sieburth PJ, Maruniak JE. Susceptibility of an established cell line of Anticarsia gemmatalis (Lepidoptera: Noctuidae) to three nuclear polyhedrosis viruses. J Invertebr Pathol 1988; 52(3): 453-8.
[http://dx.doi.org/10.1016/0022-2011(88)90058-4]
[60]
Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 1977; 13(4): 213-7.
[http://dx.doi.org/10.1007/BF02615077] [PMID: 68913]
[61]
King L, Possee R. Propagation, titration and purification of AcMNPV in cell cultureThe Baculovirus Expression System: A Laboratory Guide. London: Chapman & Hall 1992; pp. 106-26.
[http://dx.doi.org/10.1007/978-94-011-2374-7_6]
[62]
O’Reilly DR, Miller L, Luckow VA. Baculovirus Expression Vectors: A Laboratory Manual. New York: Oxford University Press 1994.
[63]
Kwang TW, Zeng X, Wang S. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Mol Ther Methods Clin Dev 2016; 3: 15050.
[http://dx.doi.org/10.1038/mtm.2015.50] [PMID: 26858963]
[64]
Green MR, Sambrook J. Molecular Cloning: A laboratory manual. 4th ed. New York: Cold Spring Harbor Laboratory Press 2012.
[65]
Domier LL, McCoppin NK, D’Arcy CJ. Sequence requirements for translation initiation of Rhopalosiphum padi virus ORF2. Virology 2000; 268(2): 264-71.
[http://dx.doi.org/10.1006/viro.2000.0189] [PMID: 10704335]
[66]
Wu YJ, Teng CY, Chen YJ, et al. Internal ribosome entry site of Rhopalosiphum padi virus is functional in mammalian cells and has cryptic promoter activity in baculovirus-infected Sf21 cells. Acta Pharmacol Sin 2008; 29(8): 965-74.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00820.x] [PMID: 18664329]
[67]
Nasimuzzaman M, van der Loo JCM, Malik P. Production and Purification of Baculovirus for Gene Therapy Application. J Vis Exp 2018; 134(134): 57019.
[http://dx.doi.org/10.3791/57019] [PMID: 29683451]
[68]
Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23(21): 2947-8.
[http://dx.doi.org/10.1093/bioinformatics/btm404] [PMID: 17846036]
[69]
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33(7): 1870-4.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[70]
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14(6): 1188-90.
[http://dx.doi.org/10.1101/gr.849004] [PMID: 15173120]
[71]
Telford WG, Hawley T, Subach F, Verkhusha V, Hawley RG. Flow cytometry of fluorescent proteins. Methods 2012; 57(3): 318-30.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.003] [PMID: 22293036]
[72]
FlowJo™ Software for Windows Version 762 2019.
[73]
Singh C, Roy-Chowdhuri S. Quantitative Real-Time PCR: Recent Advances. Methods Mol Biol 2016; 1392: 161-76.
[http://dx.doi.org/10.1007/978-1-4939-3360-0_15] [PMID: 26843055]
[74]
Miele SAB, Cerrudo CS, Parsza CN, et al. Identification of Multiple Replication Stages and Origins in the Nucleopolyhedrovirus of Anticarsia gemmatalis. Viruses 2019; 11(7): 648.
[http://dx.doi.org/10.3390/v11070648] [PMID: 31311127]
[75]
Jorio H, Tran R, Meghrous J, Bourget L, Kamen A. Analysis of baculovirus aggregates using flow cytometry. J Virol Methods 2006; 134(1-2): 8-14.
[http://dx.doi.org/10.1016/j.jviromet.2005.11.009] [PMID: 16364459]
[76]
Yu IL, Lin YC, Robinson JH, Lung O. Transduction of vertebrate cells with Spodoptera exigua multiple nucleopolyhedrovirus F protein-pseudotyped gp64-null Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 2009; 90(Pt 9): 2282-7.
[http://dx.doi.org/10.1099/vir.0.012138-0] [PMID: 19474242]
[77]
Blissard GW, Theilmann DA. Baculovirus Entry and Egress from Insect Cells. Annu Rev Virol 2018; 5(1): 113-39.
[http://dx.doi.org/10.1146/annurev-virology-092917-043356] [PMID: 30004832]
[78]
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011; 13(4): 215.
[http://dx.doi.org/10.1186/bcr2889] [PMID: 21884641]
[79]
Mengual Gómez DL, Belaich MN, Rodríguez VA, Ghiringhelli PD. Effects of fetal bovine serum deprivation in cell cultures on the production of Anticarsia gemmatalis multinucleopolyhedrovirus. BMC Biotechnol 2010; 10: 68.
[http://dx.doi.org/10.1186/1472-6750-10-68] [PMID: 20843354]
[80]
Micheloud GA, Gioria VV, Eberhardt I, Visnovsky G, Claus JD. Production of the Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line in stirred reactor and airlift reactor. J Virol Methods 2011; 178(1-2): 106-16.
[http://dx.doi.org/10.1016/j.jviromet.2011.08.024] [PMID: 21906626]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy