Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Catalyst-free Synthesis of Aminomethylphenol Derivatives in Cyclopentyl Methyl Ether via Petasis Borono-Mannich Reaction

Author(s): Jia-Qi Di, Hao-Jie Wang, Zhen-Shui Cui, Jin-Yong Hu* and Zhan-Hui Zhang*

Volume 18, Issue 3, 2021

Published on: 16 December, 2020

Page: [294 - 300] Pages: 7

DOI: 10.2174/1570179417666201216161143

Price: $65

Abstract

Objective: Aminomethylphenol molecules have wider applications in pharmaceuticals, agrochemicals, plant protection and promising functional materials. The development of an efficient and practical method to prepare this class of compound is highly desirable from both environmental and economical points of view.

Materials and Methods: In order to establish an effective synthetic method for preparing aminomethylphenol derivatives, the Petasis borono-Mannich reaction of salicylaldehyde, phenylboronic acid and 1,2,3,4- tetrahydroisoquinoline was selected as a model reaction. A variety of reaction conditions are investigated, including solvent and temperature. The generality and limitation of the established method were also evaluated.

Results and Discussion: It was found that model reaction can be carried out in cyclopentyl methyl ether at 80 °C under catalyst-free conditions. This protocol, with broad substrate applicability, the reaction of various arylboronic acid, secondary amine and salicylaldehyde proceeded smoothly under optimal reaction conditions to afford various aminomethylphenol derivatives in high yields. A practical, scalable, and high-yielding synthesis of aminomethylphenol derivatives was successfully accomplished.

Conclusion: A catalyst-free practical method for the synthesis of minomethylphenol derivatives based on Petasis borono–Mannich (PBM) reaction of various arylboronic acid, secondary amine and salicylaldehyde in cyclopentyl methyl ether has been developed. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvents, use of cyclopentyl methyl ether as the reaction medium, clean reaction profiles, easy operation, and high to excellent yield.

Keywords: Catalyst-free, cyclopentyl methyl ether, green synthesis, minomethylphenol derivatives, multicomponent reactions, Petasis borono– Mannich reaction.

Graphical Abstract

[1]
Abdellattif, M.H.; Ali, O.A.; Arief, M.M.H.; Hussien, M.A. A One-pot synthesis of novel derivatives of oxadiazine-4-thione, and its antibacterial activity, and molecular modeling studies. Curr. Org. Synth., 2020, 17(3), 230-242.
[http://dx.doi.org/10.2174/1570179417666200218092047] [PMID: 32067618]
[2]
Damghani, F.K.; Pourmousavi, S.A.; Kiyani, H. Sulfonic acid-functionalized magnetic nanoparticles as an efficient catalyst for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimide derivatives, 2-aminobenzothia zolomethylnaphthols and 1-amidoalkyl-2-naphthols. Curr. Org. Synth., 2019, 16(7), 1040-1054.
[http://dx.doi.org/10.2174/1570179416666190725101422] [PMID: 31984885]
[3]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent Reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[4]
Wan, J.P.; Gan, L.; Liu, Y. Transition metal-catalyzed C-H bond functionalization in multicomponent reactions: a tool toward molecular diversity. Org. Biomol. Chem., 2017, 15(43), 9031-9043.
[http://dx.doi.org/10.1039/C7OB02011B] [PMID: 29075706]
[5]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green. Sustain. Chem, 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[6]
Zhang, M.; Fu, Q.Y.; Gao, G.; He, H.Y.; Zhang, Y.; Wu, Y.S.; Zhang, Z.H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain. Chem.& Eng., 2017, 5(7), 6175-6182.
[http://dx.doi.org/10.1021/acssuschemeng.7b01102]
[7]
Xu, C.; Xiao, Z.Q.; Li, H.M.; Han, X.; Wang, Z.Q.; Fu, W.J.; Ji, B.M.; Hao, X.Q.; Song, M.P. Ligand-free Pd/C-catalyzed one-pot, three-component synthesis of aryl-substituted benzimidazoles by hydrogen-transfer and suzuki reactions in water. Eur. J. Org. Chem., 2015, (34), 7427-7432.
[http://dx.doi.org/10.1002/ejoc.201501169]
[8]
Das, S.; Banik, R.; Kumar, B.; Roy, S. Noorussabah; Amhad, K.; Sukul, P.K. A green approach for organic transformations using microwave reactor. Curr. Org. Synth., 2019, 16(5), 730-764.
[http://dx.doi.org/10.2174/1570179416666190412160048] [PMID: 31984890]
[9]
Malamiri, F.; Khaksar, S.; Badri, R.; Tahanpesar, E. Solvent-mediated highly efficient synthesis of [1,2,4]triazolo/benzimidazoloquinazolinone derivatives. Curr. Org. Synth., 2019, 16(8), 1185-1190.
[http://dx.doi.org/10.2174/1570179416666191018145142] [PMID: 31984925]
[10]
Pandey, Y.K.; Mishra, A.; Rai, P.; Singh, J.; Singh, J.; Singh, R.K. DBU catalysis: An efficient synthetic strategy for 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines. Curr. Org. Synth., 2020, 17(1), 73-80.
[http://dx.doi.org/10.2174/1570179417666191216123339] [PMID: 32103720]
[11]
Gao, G.; Wang, P.; Liu, P.; Zhang, W.H.; Mo, L.P.; Zhang, Z.H. Deep eutectic solvent catalyzed one-pot synthesis of 4,7-dihydro-1H-pyrazolo[3,4-b] pyridine-5-carbonitriles. Chin. J. Org. Chem, 2018, 38(4), 846-854.
[http://dx.doi.org/10.6023/cjoc201711014]
[12]
Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[13]
Kahandal, S.S.; Kale, S.R.; Gawande, M.B.; Jayaram, R.V. A mild route for one pot synthesis of 5,6-unsubstituted 1,4-dihydropyridines catalyzed by sulphated mixed metal oxides. Catal. Sci. Technol., 2014, 4(3), 672-680.
[http://dx.doi.org/10.1039/C3CY00651D]
[14]
Candeias, N.R.; Montalbano, F.; Cal, P.M.; Gois, P.M.P. Boronic acids and esters in the Petasis-borono Mannich multicomponent reaction. Chem. Rev., 2010, 110(10), 6169-6193.
[http://dx.doi.org/10.1021/cr100108k] [PMID: 20677749]
[15]
Muncipinto, G.; Moquist, P.N.; Schreiber, S.L.; Schaus, S.E. Catalytic diastereoselective petasis reactions. Angew. Chem. Int. Ed., 2011, 50(35), 8172-8175.
[http://dx.doi.org/10.1002/anie.201103271] [PMID: 21751322]
[16]
Yu, T.; Li, H.; Wu, X.Y.; Yang, J. Progress in Petasis reaction. Chin. J. Org. Chem, 2012, 32(10), 1836-1845.
[http://dx.doi.org/10.6023/cjoc1202092]
[17]
Li, H.; Cui, C.X.; Zhang, G.H.; Li, X.Q.; Yang, J. Regioselective synthesis of functionalized dihydropyrones via the Petasis reaction. J. Org. Chem., 2020, 85(2), 1285-1290.
[http://dx.doi.org/10.1021/acs.joc.9b02651] [PMID: 31852188]
[18]
Carrera, D.E. The acid promoted Petasis reaction of organotrifluoroborates with imines and enamines. Chem. Commun., 2017, 53(81), 11185-11188.
[http://dx.doi.org/10.1039/C7CC04397J] [PMID: 28956041]
[19]
Yi, J.; Badir, S.O.; Alam, R.; Molander, G.A. Photoredox-catalyzed multicomponent Petasis reaction with alkyltrifluoroborates. Org. Lett., 2019, 21(12), 4853-4858.
[http://dx.doi.org/10.1021/acs.orglett.9b01747] [PMID: 31145628]
[20]
Noushini, S.; Mahdavi, M.; Firoozpour, L.; Moghimi, S.; Shafiee, A.; Foroumadi, A. Efficient multi-component synthesis of 1,4-benzodiazepine-3,5-diones: a Petasis-based approach. Tetrahedron, 2015, 71(36), 6272-6275.
[http://dx.doi.org/10.1016/j.tet.2015.06.060]
[21]
Rimpiläinen, T.; Andrade, J.; Nunes, A.; Ntungwe, E.; Fernandes, A.S.; Vale, J.R.; Rodrigues, J.; Gomes, J.P.; Rijo, P.; Candeias, N.R. Aminobenzylated 4-nitrophenols as antibacterial agents obtained from 5-nitrosalicylaldehyde through a Petasis Borono-Mannich reaction. ACS Omega, 2018, 3(11), 16191-16202.
[http://dx.doi.org/10.1021/acsomega.8b02381] [PMID: 31458255]
[22]
McCallum, F.J.; Birrell, G.W.; Chavchich, M.; Harris, I.; Obaldia, N., III; Van Breda, K.; Heffernan, G.D.; Jacobus, D.P.; Shanks, D.; Edstein, M.D. In vivo efficacy and pharmacokinetics of the 2-aminomethylphenol antimalarial JPC-3210 in the aotus monkey-human malaria model. Antimicrob. Agents Chemother., 2020, 64(3), e01538-e19.
[http://dx.doi.org/10.1128/aac.01335-17] [PMID: 31843994]
[23]
Neto, Í.; Andrade, J.; Fernandes, A.S.; Pinto Reis, C.; Salunke, J.K.; Priimagi, A.; Candeias, N.R.; Rijo, P. Multicomponent Petasis-borono Mannich preparation of alkylaminophenols and antimicrobial activity studies. ChemMedChem, 2016, 11(18), 2015-2023.
[http://dx.doi.org/10.1002/cmdc.201600244] [PMID: 27457409]
[24]
Doan, P.; Nguyen, T.; Yli-Harja, O.; Candeias, N.R.; Kandhavelu, M. Effect of alkylaminophenols on growth inhibition and apoptosis of bone cancer cells. Eur. J. Pharm. Sci., 2017, 107, 208-216.
[http://dx.doi.org/10.1016/j.ejps.2017.07.016] [PMID: 28728976]
[25]
Takahashi, N.; Honda, T.; Ohba, T. Anticancer and superoxide scavenging activities of p-alkylaminophenols having various length alkyl chains. Bioorg. Med. Chem., 2006, 14(2), 409-417.
[http://dx.doi.org/10.1016/j.bmc.2005.08.016] [PMID: 16203149]
[26]
Chacko, P.; Shivashankar, K. Synthesis of aminomethylphenol derivatives via magnetic nano Fe3O4 catalyzed one pot Petasis borono- Mannich reaction. J. Chem. Sci., 2018, 130(11), 154.
[http://dx.doi.org/10.1007/s12039-018-1560-y]
[27]
Fodor, A.; Hell, Z.; Pirault-Roy, L. Catalytic activity of metal-doped porous materials in the salicylaldehyde Petasis-Borono Mannich reaction. Monatsh. Chem., 2016, 147(4), 749-753.
[http://dx.doi.org/10.1007/s00706-016-1681-2]
[28]
Reddy, B.N.; Rani, C.R.; Reddy, S.M.; Pathak, M. An efficient and green La(OTf)3 catalyzed Petasis borono-Mannich reaction for the synthesis of tertiary amines. Res. Chem. Intermed., 2016, 42(10), 7533-7549.
[http://dx.doi.org/10.1007/s11164-016-2551-6]
[29]
Dandia, A.; Bansal, S.; Sharma, R.; Rathore, K.S.; Parewa, V. Microwave-assisted nanocatalysis: A CuO NPs/rGO composite as an efficient and recyclable catalyst for the Petasis-borono-Mannich reaction. RSC Advances, 2018, 8(53), 30280-33028.
[http://dx.doi.org/10.1039/C8RA05203D]
[30]
Kulkarni, A.M.; Pandit, K.S.; Chavan, P.V.; Desai, U.V.; Wadgaonkar, P.P. Cobalt ferrite nanoparticles: a magnetically separable and reusable catalyst for Petasis-Borono-Mannich reaction. RSC Advances, 2015, 5(86), 70586-70594.
[http://dx.doi.org/10.1039/C5RA10693A]
[31]
Reddy, B.R.P.; Reddy, P.V.G.; Kumar, D.P.; Reddy, B.N.; Shankar, M.V. Rapid synthesis of alkylaminophenols via the Petasis borono-Mannich reaction using protonated trititanate nanotubes as robust solid-acid catalysts. RSC Advances, 2016, 6(18), 14682-14691.
[http://dx.doi.org/10.1039/C5RA25064A]
[32]
Shi, X.; Hebrault, D.; Humora, M.; Kiesman, W.F.; Peng, H.; Talreja, T.; Wang, Z.; Xin, Z. Acceleration of Petasis reactions of salicylaldehyde derivatives with molecular sieves. J. Org. Chem., 2012, 77(2), 1154-1160.
[http://dx.doi.org/10.1021/jo202117u] [PMID: 22171661]
[33]
Reddy, S.R.S.; Reddy, B.R.P.; Reddy, P.V.G. Chitosan: highly efficient, green, and reusable biopolymer catalyst for the synthesis of alkylaminophenols via Petasis borono-Mannich reaction. Tetrahedron Lett., 2015, 56(35), 4984-4989.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.004]
[34]
Yadav, J.S.; Reddy, B.S.; Lakshmi, P.N. Ionic liquid accelerated Petasis reaction: A green protocol for the synthesis of alkylaminophenols. J. Mol. Catal. Chem., 2007, 274(1-2), 101-104.
[http://dx.doi.org/10.1016/j.molcata.2007.04.026]
[35]
Nun, P.; Martinez, J.; Lamaty, F. Microwave-assisted neat procedure for the Petasis reaction. Synthesis, 2010, (12), 2063-2068.
[http://dx.doi.org/10.1055/s-0029-1218727]
[36]
Hosseinzadeh, R.; Lasemi, Z.; Oloub, M.; Pooryousef, M. A green protocol for the one-pot multicomponent Petasis boronic Mannich reaction using ball milling. J. Iran. Chem. Soc., 2017, 14(2), 347-355.
[http://dx.doi.org/10.1007/s13738-016-0983-y]
[37]
Watanabe, K.; Yamagiwa, N.; Torisawa, Y. Cyclopentyl methyl ether as a new and alternative process solvent. Org. Process Res. Dev., 2007, 11(2), 251-258.
[http://dx.doi.org/10.1021/op0680136]
[38]
Azzena, U.; Carraro, M.; Pisano, L.; Monticelli, S.; Bartolotta, R.; Pace, V. Cyclopentyl methyl ether: an elective ecofriendly ethereal solvent in classical and modern organic chemistry. ChemSusChem, 2019, 12(1), 40-70.
[http://dx.doi.org/10.1002/cssc.201801768] [PMID: 30246930]
[39]
Zhang, H.X.; Liu, G.Y.; Li, C.; Zhang, L. Liquid-liquid equilibria of water plus acetic acid plus cyclopentyl methyl ether (CPME) system at different temperatures. J. Chem. Eng. Data, 2012, 57(11), 2942-2946.
[http://dx.doi.org/10.1021/je300676w]
[40]
Watanabe, K. The toxicological assessment of cyclopentyl methyl ether (CPME) as a green solvent. Molecules, 2013, 18(3), 3183-3194.
[http://dx.doi.org/10.3390/molecules18033183] [PMID: 23478516]
[41]
Kobayashi, S.; Shibukawa, K.; Miyaguchi, Y.; Masuyama, A. Grignard reactions in cyclopentyl methyl ether. Asian J. Org. Chem., 2016, 5(5), 636-645.
[http://dx.doi.org/10.1002/ajoc.201600059]
[42]
Kobayashi, S.; Kuroda, H.; Ohtsuka, Y.; Kashihara, T.; Masuyama, A.; Watanabe, K. Evaluation of cyclopentyl methyl ether (CPME) as a solvent for radical reactions. Tetrahedron, 2013, 69(10), 2251-2259.
[http://dx.doi.org/10.1016/j.tet.2013.01.030]
[43]
Chikugo, T.; Yauchi, Y.; Ide, M.; Iwasawa, T. Transition metal-free oxidation of ynamides for synthesis of α-keto-imides. Tetrahedron, 2014, 70(26), 3988-3993.
[http://dx.doi.org/10.1016/j.tet.2014.04.080]
[44]
Wang, L.M.; Kobayashi, K.; Arisawa, M.; Saito, S.; Naka, H. Pd/TiO2-Photocatalyzed self-condensation of primary amines to afford secondary amines at ambient temperature. Org. Lett., 2019, 21(2), 341-344.
[http://dx.doi.org/10.1021/acs.orglett.8b03271] [PMID: 30460855]
[45]
Pace, V.; Castoldi, L.; Monticelli, S.; Safranek, S.; Roller, A.; Langer, T.; Holzer, W. A robust, eco-friendly access to secondary thioamides through the addition of organolithium reagents to isothiocyanates in cyclopentyl methyl ether (CPME). Chemistry, 2015, 21(52), 18966-18970.
[http://dx.doi.org/10.1002/chem.201504247] [PMID: 26507565]
[46]
Karaluka, V.; Lanigan, R.M.; Murray, P.M.; Badland, M.; Sheppard, T.D.B.B. (OCH2CF3)3-mediated direct amidation of pharmaceutically relevant building blocks in cyclopentyl methyl ether. Org. Biomol. Chem., 2015, 13(44), 10888-10894.
[http://dx.doi.org/10.1039/C5OB01801C] [PMID: 26366853]
[47]
Azzena, U.; Carraro, M.; Modugno, G.; Pisano, L.; Urtis, L. Heterogeneous acidic catalysts for the tetrahydropyranylation of alcohols and phenols in green ethereal solvents. Beilstein J. Org. Chem., 2018, 14, 1655-1659.
[http://dx.doi.org/10.3762/bjoc.14.141] [PMID: 30013691]
[48]
Coeck, R.; De Vos, D.E. One-pot reductive amination of carboxylic acids: a sustainable method for primary amine synthesis. Green Chem., 2020, 22(15), 5105-5114.
[http://dx.doi.org/10.1039/D0GC01441A]
[49]
Gao, G.; Di, J.Q.; Zhang, H.Y.; Mo, L.P.; Zhang, Z.H. A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. J. Catal., 2020, 387, 39-46.
[http://dx.doi.org/10.1016/j.jcat.2020.04.013]
[50]
Zhang, M.; Chen, M.N.; Li, J.M.; Liu, N.; Zhang, Z.H. Visible-light-initiated one-pot, three-component synthesis of 2-amino-4H-pyran-3,5-dicarbonitrile derivatives. ACS Comb. Sci., 2019, 21(10), 685-691.
[http://dx.doi.org/10.1021/acscombsci.9b00124] [PMID: 31433619]
[51]
Wang, H.J.; Zhang, M.; Li, W.J.; Ni, Y.; Lin, J.; Zhang, Z.H. An efficient Ni/Pd catalyzed chemoselective synthesis of 1,3,2-benzodiazaborininones from boronic acids and anthranilamides. Adv. Synth. Catal., 2019, 361(21), 5018-5024.
[http://dx.doi.org/10.1002/adsc.201900827]
[52]
Han, Y.; Zhang, M.; Zhang, Y.Q.; Zhang, Z.H. Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan-Lam coupling reaction of aryl boronic acids and amines. Green Chem., 2018, 20(21), 4891-4900.
[http://dx.doi.org/10.1039/C8GC02611D]
[53]
Zhang, M.; Chen, M.N.; Zhang, Z.H. Visible light-initiated catalyst-free one-pot, multicomponent construction of 5-substituted indole chromeno[2,3-b]pyridines. Adv. Synth. Catal., 2019, 361(22), 5182-5190.
[http://dx.doi.org/10.1002/adsc.201900994]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy