Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Approaches for Building Tricyclic Cage-like Motifs Found in Indoxamycins

Author(s): Saqlain Haider, Ikhlas A. Khan, Hanfeng Ding and Amar G. Chittiboyina*

Volume 25, Issue 4, 2021

Published on: 10 December, 2020

Page: [437 - 448] Pages: 12

DOI: 10.2174/1385272824999201210193141

Price: $65

Abstract

Indoxamycins A-F, a novel class of polyketides, were isolated from the saline culture of marine-derived actinomyces by Sato et al. in 2009. Intriguing stereochemical complexity involving tricyclic [5.5.6] cage-like structures with six consecutive chiral centers challenged many organic chemists. Chemical ingenuity, implementation of pioneered reactions along with fine chemical transformations allowed not only the rapid construction of the central core but also allowed minor structural revision and paved the information to delineate the absolute stereostructures of these complex polyketide marine natural products. To achieve the central core structure in indoxamycins A-F, reactions like the Ireland-Claisen rearrangement, an enantioselective 1,6-enyne reductive cyclization, and one-pot cascade reactions of 1,2- addition/oxa-Michael/methylenation were employed. Using the chiral pool approach, the readily available R-carvone was employed as a cost-effective starting material to achieve the concise total syntheses of (-)-indoxamycins A and B, in which Pauson-Khand, Cu-catalyzed Michael addition and tandem retro-oxa-Michael addition/1,2-addition/oxa-Michael addition reactions were employed. The antipodes, (+)-indoxamycins can be easily accessed by simply switching to S-carvone as the starting material. Synthetically prepared indoxamycins A-F are devoid of antiproliferative properties, which disagree with the work reported by Sato and co-workers for (-)- indoxamycins A and F. Nevertheless, ready access to such complex natural products allows probing the untapped potential biological activities of these polyketides including cytotoxicity. A concise overview of interesting, key chemical transformations including named reactions in establishing the architecture of indoxamycins was compiled to inspire organic chemists and help reinvigorate novel strategies for the asymmetric synthesis as well as the development of novel derivatives of indoxamycins with unique physicochemical and biological properties.

Keywords: Polyketides, indoxamycins, Pauson-Khand, heck cyclization, Horner-Wadsworth-Emmons reaction, carbene insertion.

Next »
Graphical Abstract

[1]
He, C.; Zhu, C.; Wang, B.; Ding, H. Stereoselective total synthesis and structural elucidation of (-)-indoxamycins A-F. Chemistry, 2014, 20(46), 15053-15060.
[http://dx.doi.org/10.1002/chem.201403986] [PMID: 25262815]
[2]
Fenical, W.; Jensen, P.R. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol., 2006, 2(12), 666-673.
[http://dx.doi.org/10.1038/nchembio841] [PMID: 17108984]
[3]
Sato, S.; Iwata, F.; Mukai, T.; Yamada, S.; Takeo, J.; Abe, A.; Kawahara, H.; Indoxamycins, A-F. Indoxamycins A-F. Cytotoxic tricycklic polypropionates from a marine-derived actinomycete. J. Org. Chem., 2009, 74(15), 5502-5509.
[http://dx.doi.org/10.1021/jo900667j] [PMID: 19572603]
[4]
Stach, J.E.; Maldonado, L.A.; Masson, D.G.; Ward, A.C.; Goodfellow, M.; Bull, A.T. Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl. Environ. Microbiol., 2003, 69(10), 6189-6200.
[http://dx.doi.org/10.1128/AEM.69.10.6189-6200.2003] [PMID: 14532080]
[5]
Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.; Kurokawa, T.; Nakagawa, T.; Shimada, N.; Kobayashi, K. Pironetin, a novel plant growth regulator produced by Streptomyces sp. NK10958. I. Taxonomy, production, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1994, 47(6), 697-702.
[http://dx.doi.org/10.7164/antibiotics.47.697] [PMID: 8040075]
[6]
Ding, H.; He, C.; Zhu, C. Synthetic strategies toward the Indoxamycin family. Synlett, 2014, 25(11), 1487-1493.
[http://dx.doi.org/10.1055/s-0033-1341082]
[7]
Chi, H.; Hanfeng, D. Synthetic progress of Indoxamycin family. Youji Huaxue, 2015, 35(4), 760-769.
[http://dx.doi.org/10.6023/cjoc201501002]
[8]
Kobayashi, S.; Tsuchiya, K.; Nishide, M.; Nishikiori, T.; Nakagawa, T.; Shimada, N. Pironetin, a novel plant growth regulator produced by Streptomyces sp. NK10958. III. Biosynthesis. J. Antibiot. (Tokyo), 1995, 48(8), 893-895.
[http://dx.doi.org/10.7164/antibiotics.48.893] [PMID: 7592038]
[9]
Rawlings, B.J. Type I polyketide biosynthesis in bacteria (Part A--erythromycin biosynthesis). Nat. Prod. Rep., 2001, 18(2), 190-227.
[http://dx.doi.org/10.1039/b009329g] [PMID: 11336289]
[10]
Staunton, J.; Wilkinson, B. Biosynthesis of erythromycin and rapamycin. Chem. Rev., 1997, 97(7), 2611-2630.
[http://dx.doi.org/10.1021/cr9600316] [PMID: 11851474]
[11]
Biskupiak, J.E.; Ireland, C.M. Cytotoxic metabolites from the mollusc Peronia peronii. Tetrahedron Lett., 1985, 26(36), 4307-4310.
[http://dx.doi.org/10.1016/S0040-4039(00)98720-3]
[12]
Spinella, A.; Alvarez, L.A.; Cimino, G. Alkylphenols from the cephalaspidean mollusc Haminoea callidegenita. Tetrahedron Lett., 1998, 39(14), 2005-2008.
[http://dx.doi.org/10.1016/S0040-4039(98)00117-8]
[13]
Ciavatta, M.L.; Trivellone, E.; Villani, G.; Cimino, G. Membrenones: new polypropionates from the skin of the mediterranean mollusc Pleurobranchus membranaceus. Tetrahedron Lett., 1993, 34(42), 6791-6794.
[http://dx.doi.org/10.1016/S0040-4039(00)61703-3]
[14]
Gavagnin, M.; Mollo, E.; Cimino, G.; Ortea, J. A new γ-dihydropyrone-propionate from the caribbean sacoglossan Tridachia crispata. Tetrahedron Lett., 1996, 37(24), 4259-4262.
[http://dx.doi.org/10.1016/0040-4039(96)00811-8]
[15]
Jeker, O.F.; Carreira, E.M. Total synthesis and stereochemical reassignment of (±)-indoxamycin B. Angew. Chem. Int. Ed. Engl., 2012, 51(14), 3474-3477.
[http://dx.doi.org/10.1002/anie.201109175] [PMID: 22345071]
[16]
Frederick, M.O.; Hsung, R.P.; Lambeth, R.H.; Mulder, J.A.; Tracey, M.R. Highly stereoselective Saucy-Marbet rearrangement using chiral ynamides. Synthesis of highly substituted chiral homoallenyl alcohols. Org. Lett., 2003, 5(15), 2663-2666.
[http://dx.doi.org/10.1021/ol030061c] [PMID: 12868884]
[17]
Kasatkin, A.; Nakagawa, T.; Okamoto, S.; Sato, F. New, efficient method for the synthesis of allyltitanium compounds from allyl halides or allyl alcohol derivatives via oxidative addition. A highly efficient and practical synthesis of homoallyl alcohols. J. Am. Chem. Soc., 1995, 117(13), 3881-3882.
[http://dx.doi.org/10.1021/ja00118a030]
[18]
Yatsumonji, Y.; Nishimura, T.; Tsubouchi, A.; Noguchi, K.; Takeda, T. Highly diastereoselective addition of allyltitanocenes to ketones. Chemistry, 2009, 15(11), 2680-2686.
[http://dx.doi.org/10.1002/chem.200802340] [PMID: 19180603]
[19]
Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. Cyclization reactions via oxo-. pi.-allylpalladium (II) intermediates. J. Am. Chem. Soc., 1979, 101(2), 494-496.
[http://dx.doi.org/10.1021/ja00496a044]
[20]
Kende, A.S.; Roth, B.; Sanfilippo, P.J. Facile, palladium (II)-mediated synthesis of bridged and spirocyclic bicycloalkenones. J. Am. Chem. Soc., 1982, 104(6), 1784-1785.
[http://dx.doi.org/10.1021/ja00370a076]
[21]
Kende, A.S.; Roth, B.; Sanfilippo, P.J.; Blacklock, T.J. Mechanism and regioisomeric control in palladium (II)-mediated cycloalkenylations. A novel total synthesis of (.+-.)-quadrone. J. Am. Chem. Soc., 1982, 104(21), 5808-5810.
[http://dx.doi.org/10.1021/ja00385a053]
[22]
Toyota, M.; Wada, T.; Fukumoto, K.; Ihara, M. Total synthesis of (±)-methyl atis-16-en-19-oate via homoallyl-homoallyl radical rearrangement. J. Am. Chem. Soc., 1998, 120(20), 4916-4925.
[http://dx.doi.org/10.1021/ja9739042]
[23]
Toyota, M.; Ihara, M. Development of palladium-catalyzed cycloalkenylation and its application to natural product synthesis. Synlett, 2002, 2002(08), 1211-1222.
[http://dx.doi.org/10.1055/s-2002-32946]
[24]
Evans, D.A.; Golob, A.M. [3,3]Sigmatropic rearrangements of 1,5-diene alkoxides. Powerful accelerating effects of the alkoxide substituent. J. Am. Chem. Soc., 1975, 97(16), 4765-4766.
[http://dx.doi.org/10.1021/ja00849a054]
[25]
Sharpless, K.B.; Michaelson, R.C. High stereo- and regioselectivities in the transition metal catalyzed epoxidations of olefinic alcohols by tert-butyl hydroperoxide. J. Am. Chem. Soc., 1973, 95(18), 6136-6137.
[http://dx.doi.org/10.1021/ja00799a061]
[26]
Kishi, Y.; Aratani, M.; Tanino, H.; Fukuyama, T.; Goto, T.; Inoue, S.; Sugiura, S.; Kakoi, H. New epoxidation with m-chloroperbenzoic acid at elevated temperatures. J. Chem. Soc. Chem. Commun., 1972, 1972(2), 64-65.
[http://dx.doi.org/10.1039/c39720000064]
[27]
Dess, D.B.; Martin, J.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48(22), 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070]
[28]
Sherry, B.D.; Toste, F.D. Gold(I)-catalyzed propargyl Claisen rearrangement. J. Am. Chem. Soc., 2004, 126(49), 15978-15979.
[http://dx.doi.org/10.1021/ja044602k] [PMID: 15584728]
[29]
Zhang, Z.; Liu, C.; Kinder, R.E.; Han, X.; Qian, H.; Widenhoefer, R.A. Highly active Au(I) catalyst for the intramolecular exo-hydrofunctio-nalization of allenes with carbon, nitrogen, and oxygen nucleophiles. J. Am. Chem. Soc., 2006, 128(28), 9066-9073.
[http://dx.doi.org/10.1021/ja062045r] [PMID: 16834380]
[30]
Wadsworth, W.S. Synthetic applications of phosphoryl-stabilized anions. Org. React., 2004, 25, 73-253.
[http://dx.doi.org/10.1002/0471264180.or025.02]
[31]
Wadsworth, W.S.; Emmons, W.D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc., 1961, 83(7), 1733-1738.
[http://dx.doi.org/10.1021/ja01468a042]
[32]
Burgess, E.M.; Penton, H.R.; Taylor, E.A. Synthetic applications of N-carboalkoxysulfamate esters. J. Am. Chem. Soc., 1970, 92(17), 5224-5226.
[http://dx.doi.org/10.1021/ja00720a041]
[33]
Burgess, E.M.; Penton, H.R.; Taylor, E.A. Thermal reactions of alkyl N-carbomethoxysulfamate esters. J. Org. Chem., 1973, 38(1), 26-31.
[http://dx.doi.org/10.1021/jo00941a006]
[34]
Atkins, G.M.; Burgess, E.M. The reactions of an N-sulfonylamine inner salt. J. Am. Chem. Soc., 1968, 90(17), 4744-4745.
[http://dx.doi.org/10.1021/ja01019a052]
[35]
Mukaiyama, T.; Isayama, S.; Inoki, S.; Kato, K.; Yamada, T.; Takai, T. Oxidation-reduction hydration of olefins with molecular oxygen and 2-propanol catalyzed by bis (acetylacetonato) cobalt (II). Chem. Lett., 1989, 18(3), 449-452.
[http://dx.doi.org/10.1246/cl.1989.449]
[36]
Inoki, S.; Kato, K.; Takai, T.; Isayama, S.; Yamada, T.; Mukaiyama, T. Bis (trifluoroacetylacetonato) cobalt (II) catalyzed oxidation-reduction hydration of olefins selective formation of alcohols from olefins. Chem. Lett., 1989, 18(3), 515-518.
[http://dx.doi.org/10.1246/cl.1989.515]
[37]
Isayama, S.; Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis (acetylacetonato) cobalt (II). Chem. Lett., 1989, 18(6), 1071-1074.
[http://dx.doi.org/10.1246/cl.1989.1071]
[38]
Kato, K.; Yamada, T.; Takai, T.; Inoki, S.; Isayama, S. Catalytic oxidation–reduction hydration of olefin with molecular oxygen in the presence of bis (1, 3-diketonato) cobalt (II) complexes. Bull. Chem. Soc. Jpn., 1990, 63(1), 179-186.
[http://dx.doi.org/10.1246/bcsj.63.179]
[39]
Boquel, P.; Chapleur, Y. A new strategy for the synthesis of mevinic acid analogues. Tetrahedron Lett., 1990, 31(13), 1869-1872.
[http://dx.doi.org/10.1016/S0040-4039(00)98807-5]
[40]
Schindler, C.S.; Stephenson, C.R.; Carreira, E.M. Enantioselective synthesis of the core of banyaside, suomilide, and spumigin HKVV. Angew. Chem. Int. Ed. Engl., 2008, 47(46), 8852-8855.
[http://dx.doi.org/10.1002/anie.200803655] [PMID: 18855958]
[41]
He, C.; Zhu, C.; Dai, Z.; Tseng, C.C.; Ding, H. Divergent total synthesis of indoxamycins A, C, and F. Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13256-13260.
[http://dx.doi.org/10.1002/anie.201307426] [PMID: 24174294]
[42]
Ireland, R.E.; Mueller, R.H.; Willard, A.K. The ester enolate Claisen rearrangement. Stereochemical control through stereoselective enolate formation. J. Am. Chem. Soc., 1976, 98(10), 2868-2877.
[http://dx.doi.org/10.1021/ja00426a033]
[43]
Ireland, R.E.; Mueller, R.H. Claisen rearrangement of allyl esters. J. Am. Chem. Soc., 1972, 94(16), 5897-5898.
[http://dx.doi.org/10.1021/ja00771a062]
[44]
Salmond, W.G.; Barta, M.A.; Havens, J.L. Allylic oxidation with 3,5-dimethylpyrazole. Chromium trioxide complex steroidal. DELTA.5-7-ketones. J. Org. Chem., 1978, 43(10), 2057-2059.
[http://dx.doi.org/10.1021/jo00404a049]
[45]
Hopf, H.; Kämpen, J.; Bubenitschek, P. Jones, P.G. En route to 7,7,8,8-tetraethynyl-p-quinodimethane (TEQ). Eur. J. Org. Chem., 2002, 2002(10), 1708-1721.
[http://dx.doi.org/10.1002/1099-0690(200205)2002:10<1708:AID-EJOC1708>3.0.CO;2-A]
[46]
Chai, K.B.; Sampson, P. Macrolactonization-transannular aldol condensation approach to the taxane AB ring system. J. Org. Chem., 1993, 58(24), 6807-6813.
[http://dx.doi.org/10.1021/jo00076a049]
[47]
Trost, B.M.; Rise, F. Reductive cyclization of 1, 6-and 1, 7-enynes. J. Am. Chem. Soc., 1987, 109(10), 3161-3163.
[http://dx.doi.org/10.1021/ja00244a059]
[48]
Yamada, H.; Aoyagi, S.; Kibayashi, C. Palladium (II)-catalyzed tandem cyclic carbopalladation-vinylation of enyne compounds. Tetrahedron Lett., 1997, 38(17), 3027-3030.
[http://dx.doi.org/10.1016/S0040-4039(97)00526-1]
[49]
Oh, C.H.; Rhim, C.Y.; Kim, M.; Park, D.I.; Gupta, A.K. Total synthesis of (±)-ceratopicanol: application of Pd-catalyzed enediyne cycloreduction. Synlett, 2005, 2005(17), 2694-2696.
[http://dx.doi.org/10.1055/s-2005-917117]
[50]
Oh, C.H.; Jung, H.H. Reductive elimination of alkylpalladium formate intermediates formed in enyne cyclizations. Tetrahedron Lett., 1999, 40(8), 1535-1538.
[http://dx.doi.org/10.1016/S0040-4039(98)02704-X]
[51]
Oh, C.; Jung, H.; Kim, J.; Cho, S. Highly regio-and stereoselective cycloreductions of 1,6- and 1,7-enynes activated with a carbonyl functionality. Angew. Chem.- Germ. Ed., 2000, 112(4), 786-770.
[PMID: 10760858]
[52]
Oh, C.H.; Jung, H.H.; Kim, J.S.; Cho, S.W. Highly regio- and stereoselective cycloreductions of 1,6- and 1,7-enynes activated with a carbonyl functionality. Angew. Chem. Int. Ed. Engl., 2000, 39(4), 752-755.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000218)39:4<752:AID-ANIE752>3.0.CO;2-I] [PMID: 10760858]
[53]
Stork, G.; Mook, R. Vinyl radical cyclization. 2. Dicyclization via selective formation of unsaturated vinyl radicals by intramolecular addition to triple bonds. Applications to the synthesis of butenolides and furans. J. Am. Chem. Soc., 1983, 105(11), 3720-3722.
[http://dx.doi.org/10.1021/ja00349a067]
[54]
Stork, G.; Mook, R. Vinyl radical cyclizations mediated by the addition of stannyl radicals to triple bonds. J. Am. Chem. Soc., 1987, 109(9), 2829-2831.
[http://dx.doi.org/10.1021/ja00243a049]
[55]
Tello-Aburto, R.; Harned, A.M. Palladium-catalyzed reactions of cyclohexadienones: regioselective cyclizations triggered by alkyne acetoxylation. Org. Lett., 2009, 11(17), 3998-4000.
[http://dx.doi.org/10.1021/ol901642w] [PMID: 19708708]
[56]
Hexum, J.K.; Tello-Aburto, R.; Struntz, N.B.; Harned, A.M.; Harki, D.A. Bicyclic cyclohexenones as inhibitors of NF-κB signaling. ACS Med. Chem. Lett., 2012, 3(6), 459-464.
[http://dx.doi.org/10.1021/ml300034a] [PMID: 22866208]
[57]
Alder, K.; Pascher, F.; Schmitz, A. Über die Anlagerung von Maleinsäure-anhydrid und Azodicarbonsäure-ester an einfach ungesättigte Koh an einfach ungesättigte Kohlenwasserstoffe. Zur Kenntnis von Substitutionsvorgängen in der Allyl-Stellung. Ber. Dtsch. Chem. Ges., 1943, 76(1-2), 27-53.
[http://dx.doi.org/10.1002/cber.19430760105]
[58]
Nising, C.F.; Bräse, S. The oxa-Michael reaction: from recent developments to applications in natural product synthesis. Chem. Soc. Rev., 2008, 37(6), 1218-1228.
[http://dx.doi.org/10.1039/b718357g] [PMID: 18497934]
[59]
Nising, C.F.; Bräse, S. Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev., 2012, 41(3), 988-999.
[http://dx.doi.org/10.1039/C1CS15167C] [PMID: 21796323]
[60]
Hsu, D-S.; Liao, C-C. Total syntheses of sesterpenic acids: refuted (+/-)-bilosespenes A and B. Org. Lett., 2003, 5(24), 4741-4743.
[http://dx.doi.org/10.1021/ol035944i] [PMID: 14627429]
[61]
Loydl, F. Ueber die künstliche aepfelsäure aus fumarsäure. Justus Liebigs Ann. Chem., 1878, 192(1-2), 80-89.
[http://dx.doi.org/10.1002/jlac.18781920105]
[62]
Chackal-Catoen, S.; Miao, Y.; Wilson, W.D.; Wenzler, T.; Brun, R.; Boykin, D.W. Dicationic DNA-targeted antiprotozoal agents: naphthalene replacement of benzimidazole. Bioorg. Med. Chem., 2006, 14(22), 7434-7445.
[http://dx.doi.org/10.1016/j.bmc.2006.07.024] [PMID: 16889966]
[63]
Engstrom, K.; Mendoza, M.; Navarro-Villalobos, M.; Gin, D. Zuschriften-total synthesis of (+)-pyrenolide D. Angew. Chem.-. Germ. Ed., 2001, 113(6), 1162-1163.
[64]
Engstrom, K.M.; Mendoza, M.R.; Navarro-Villalobos, M.; Gin, D.Y. Total synthesis of (+)-pyrenolide D. Angew. Chem. Int. Ed. Engl., 2001, 40(6), 1128-1130.
[http://dx.doi.org/10.1002/1521-3773(20010316)40:6<1128:AID-ANIE11280>3.0.CO;2-J] [PMID: 11268098]
[65]
Taber, D.F.; Teng, D. Total synthesis of the ethyl ester of the major urinary metabolite of prostaglandin E2. J. Org. Chem., 2002, 67(5), 1607-1612.
[http://dx.doi.org/10.1021/jo011017i] [PMID: 11871893]
[66]
Ilardi, E.A.; Isaacman, M.J.; Qin, Y-c.; Shelly, S.A.; Zakarian, A. Consecutive sigmatropic rearrangements in the enantioselective total synthesis of (−)-joubertinamine and (−)-mesembrine. Tetrahedron, 2009, 65(16), 3261-3269.
[http://dx.doi.org/10.1016/j.tet.2008.10.048]
[67]
Lu, C.D.; Zakarian, A. Total synthesis of (+/-)--trichodermamide B and of a putative biosynthetic precursor to aspergillazine a using an oxaza-cope rearrangement. Angew. Chem. Int. Ed. Engl., 2008, 47(36), 6829-6831.
[http://dx.doi.org/10.1002/anie.200801652] [PMID: 18651690]
[68]
Riley, H.L.; Morley, J.F.; Friend, N.A.C. 255. Selenium dioxide, a new oxidising agent. Part I. Its reaction with aldehydes and ketones. J. Chem. Soc., 1932, 1932, 1875-1883.
[http://dx.doi.org/10.1039/JR9320001875]
[69]
Waitkins, G.; Clark, C. Selenium dioxide: preparation, properties, and use as oxidizing agent. Chem. Rev., 1945, 36(3), 235-289.
[http://dx.doi.org/10.1021/cr60115a001]
[70]
Fürstner, A.; Gastner, T. Total synthesis of cristatic acid. Org. Lett., 2000, 2(16), 2467-2470.
[http://dx.doi.org/10.1021/ol0061236] [PMID: 10956523]
[71]
Wilde, N.C.; Isomura, M.; Mendoza, A.; Baran, P.S. Two-phase synthesis of (-)-taxuyunnanine D. J. Am. Chem. Soc., 2014, 136(13), 4909-4912.
[http://dx.doi.org/10.1021/ja501782r] [PMID: 24625050]
[72]
Nakamura, A.; Nakada, M. Allylic oxidations in natural product synthesis. Synthesis, 2013, 45(11), 1421-1451.
[http://dx.doi.org/10.1055/s-0033-1338426]
[73]
Hu, N.; Dong, C.; Zhang, C.; Liang, G. Total Synthesis of (-)-Indoxamycins A and B. Angew. Chem. Int. Ed. Engl., 2019, 58(20), 6659-6662.
[http://dx.doi.org/10.1002/anie.201902043] [PMID: 30835916]
[74]
Khand, I.U.; Knox, G.R.; Pauson, P.L.; Watts, W.E.; Foreman, M.I. Organocobalt complexes. Part II. Reaction of acetylenehexacarbonyldicobalt complexes, (R1C2R2)Co2(CO)6, with norbornene and its derivatives. J. Chem. Soc., Perkin Trans. 1, 1973, 1973, 977-981.
[http://dx.doi.org/10.1039/p19730000977]
[75]
Pauson, P.L. The khand reaction: a convenient and general route to a wide range of cyclopentenone derivatives. Tetrahedron, 1985, 41(24), 5855-5860.
[http://dx.doi.org/10.1016/S0040-4020(01)91424-3]
[76]
Schore, N.E. The Pauson–Khand cycloaddition reaction for synthesis of cyclopentenones. Org. React., 2004, 40, 1-90.
[http://dx.doi.org/10.1002/0471264180.or040.01]
[77]
Geis, O.; Schmalz, H.G. Neue Entwicklungen der Pauson-Khand-Reaktion. Angew. Chem., 1998, 110(7), 955-958.
[http://dx.doi.org/10.1002/(SICI)1521-3757(19980403)110:7<955:AID-ANGE955>3.0.CO;2-T]
[78]
Brummond, K.M.; Kent, J.L. Recent advances in the Pauson–Khand reaction and related [2+2+1] cycloadditions. Tetrahedron, 2000, 56(21), 3263-3283.
[http://dx.doi.org/10.1016/S0040-4020(00)00148-4]
[79]
Blanco-Urgoiti, J.; Añorbe, L.; Pérez-Serrano, L.; Domínguez, G.; Pérez-Castells, J. The Pauson-Khand reaction, a powerful synthetic tool for the synthesis of complex molecules. Chem. Soc. Rev., 2004, 33(1), 32-42.
[http://dx.doi.org/10.1039/B300976A] [PMID: 14737507]
[80]
Jamison, T.F.; Shambayati, S.; Crowe, W.E.; Schreiber, S.L. Tandem use of cobalt-mediated reactions to synthesize (+)-epoxydictymene, a diterpene containing a transfused 5−5 ring system. J. Am. Chem. Soc., 1997, 119(19), 4353-4363.
[http://dx.doi.org/10.1021/ja970022u]
[81]
Huang, Z.; Huang, J.; Qu, Y.; Zhang, W.; Gong, J.; Yang, Z. Total syntheses of crinipellins enabled by cobalt-mediated and palladium-catalyzed intramolecular Pauson-Khand reactions. Angew. Chem. Int. Ed. Engl., 2018, 57(28), 8744-8748.
[http://dx.doi.org/10.1002/anie.201805143] [PMID: 29797755]
[82]
Boutagy, J.; Thomas, R. Olefin synthesis with organic phosphonate carbanions. Chem. Rev., 1974, 74(1), 87-99.
[http://dx.doi.org/10.1021/cr60287a005]
[83]
Flynn, A.B.; Ogilvie, W.W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev., 2007, 107(11), 4698-4745.
[http://dx.doi.org/10.1021/cr050051k] [PMID: 17973435]
[84]
Maryanoff, B.E.; Reitz, A.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[85]
Mukaiyama, T.; Banno, K.; Narasaka, K. New cross-aldol reactions. Reactions of silyl enol ethers with carbonyl compounds activated by titanium tetrachloride. J. Am. Chem. Soc., 1974, 96(24), 7503-7509.
[http://dx.doi.org/10.1021/ja00831a019]
[86]
Mukaiyama, T. The directed aldol reaction. Org. React., 2005, 2005, 1.
[http://dx.doi.org/10.1002/0471264180.or028.03]]
[87]
Beutner, G.L.; Denmark, S.E. Lewis base catalysis of the Mukaiyama directed aldol reaction: 40 years of inspiration and advances. Angew. Chem. Int. Ed. Engl., 2013, 52(35), 9086-9096.
[http://dx.doi.org/10.1002/anie.201302084] [PMID: 23843275]
[88]
Kan, S.B.; Ng, K.K.H.; Paterson, I. The impact of the Mukaiyama aldol reaction in total synthesis. Angew. Chem. Int. Ed. Engl., 2013, 52(35), 9097-9108.
[http://dx.doi.org/10.1002/anie.201303914] [PMID: 23893491]
[89]
Matsuo, J.i.; Murakami, M. 40 jahre mukaiyama-aldolreaktion: eine erfolgsgeschichte. Angew. Chem., 2013, 125(35), 9280-9289.
[http://dx.doi.org/10.1002/ange.201303192]
[90]
Kobayashi, S.; Ogawa, C. New entries to water-compatible Lewis acids. Chemistry, 2006, 12(23), 5954-5960.
[http://dx.doi.org/10.1002/chem.200600385] [PMID: 16773666]
[91]
Kitanosono, T.; Kobayashi, S. Mukaiyama aldol reactions in aqueous media. Adv. Synth. Catal., 2013, 355(16), 3095-3118.
[http://dx.doi.org/10.1002/adsc.201300798] [PMID: 24971045]
[92]
Bedell, T.A.; Hone, G.A.; Valette, D.; Yu, J.Q.; Davies, H.M.; Sorensen, E.J. Rapid construction of a benzo-fused indoxamycin core enabled by site-selective C-H functionalizations. Angew. Chem. Int. Ed. Engl., 2016, 55(29), 8270-8274.
[http://dx.doi.org/10.1002/anie.201602024] [PMID: 27206223]
[93]
Link, J.T. The intramolecular Heck reaction. Org. React., 2004, 60, 157-561.
[http://dx.doi.org/10.1002/0471264180.or060.02]]
[94]
Corey, E.; Hertler, W. The synthesis of dihydroconessine. A method for functionalizing steroids at C18. J. Am. Chem. Soc., 1958, 80(11), 2903-2904.
[http://dx.doi.org/10.1021/ja01544a078]
[95]
Barton, D.; Beaton, J.; Geller, L.; Pechet, M. A new photochemical reaction. J. Am. Chem. Soc., 1960, 82(10), 2640-2641.
[http://dx.doi.org/10.1021/ja01495a061]
[96]
Woodward, R.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbrüggen, H. The total synthesis of cephalosporin C1. J. Am. Chem. Soc., 1966, 88(4), 852-853.
[http://dx.doi.org/10.1021/ja00956a051]
[97]
Taber, D.F.; Schuchardt, J.L. Intramolecular carbon-hydrogen insertion: synthesis of (.+-.)-pentalenolactone E methyl ester. J. Am. Chem. Soc., 1985, 107(18), 5289-5290.
[http://dx.doi.org/10.1021/ja00304a052]
[98]
Gutekunst, W.R.; Baran, P.S. C-H functionalization logic in total synthesis. Chem. Soc. Rev., 2011, 40(4), 1976-1991.
[http://dx.doi.org/10.1039/c0cs00182a] [PMID: 21298176]
[99]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2012, 51(36), 8960-9009.
[http://dx.doi.org/10.1002/anie.201201666] [PMID: 22887739]
[100]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. Funktionalisierung von C-H-bindungen: neue synthesemethoden für naturstoffe und pharmazeutika. Angew. Chem., 2012, 124(36), 9092-9142.
[http://dx.doi.org/10.1002/ange.201201666]
[101]
O’Malley, S.J.; Tan, K.L.; Watzke, A.; Bergman, R.G.; Ellman, J.A. Total synthesis of (+)-lithospermic acid by asymmetric intramolecular alkylation via catalytic C-H bond activation. J. Am. Chem. Soc., 2005, 127(39), 13496-13497.
[http://dx.doi.org/10.1021/ja052680h] [PMID: 16190703]
[102]
Fleming, J.J.; Du Bois, J. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc., 2006, 128(12), 3926-3927.
[http://dx.doi.org/10.1021/ja0608545] [PMID: 16551097]
[103]
Fleming, J.J.; McReynolds, M.D.; Du Bois, J. (+)-saxitoxin: a first and second generation stereoselective synthesis. J. Am. Chem. Soc., 2007, 129(32), 9964-9975.
[http://dx.doi.org/10.1021/ja071501o] [PMID: 17658800]
[104]
Martinez-Solorio, D.; Jennings, M.P. Convergent formal syntheses of (+/-)-brussonol and (+/-)-abrotanone via an intramolecular Marson-type cyclization. Org. Lett., 2009, 11(1), 189-192.
[http://dx.doi.org/10.1021/ol802375g] [PMID: 19111059]
[105]
Waters, S.P.; Tian, Y.; Li, Y-M.; Danishefsky, S.J. Total synthesis of (-)-scabronine G, an inducer of neurotrophic factor production. J. Am. Chem. Soc., 2005, 127(39), 13514-13515.
[http://dx.doi.org/10.1021/ja055220x] [PMID: 16190712]
[106]
Nicolaou, K.C.; Ding, H.; Richard, J-A.; Chen, D.Y-K. Total synthesis of echinopines A and B. J. Am. Chem. Soc., 2010, 132(11), 3815-3818.
[http://dx.doi.org/10.1021/ja9093988] [PMID: 20184316]
[107]
Davies, H.M.; Morton, D. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev., 2011, 40(4), 1857-1869.
[http://dx.doi.org/10.1039/c0cs00217h] [PMID: 21359404]
[108]
Chen, X.; Engle, K.M.; Wang, D-H.; Yu, J-Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. Engl., 2009, 48(28), 5094-5115.
[http://dx.doi.org/10.1002/anie.200806273] [PMID: 19557755]
[109]
Engle, K.M.; Wang, D.H.; Yu, J.Q. Constructing multiply substituted arenes using sequential palladium(II)-catalyzed C-H olefination. Angew. Chem. Int. Ed. Engl., 2010, 49(35), 6169-6173.
[http://dx.doi.org/10.1002/anie.201002077] [PMID: 20632344]
[110]
Weldy, N.M.; Schafer, A.G.; Owens, C.P.; Herting, C.J.; Varela-Alvarez, A.; Chen, S.; Niemeyer, Z.; Musaev, D.G.; Sigman, M.S.; Davies, H.M.L.; Blakey, S.B. Iridium(III)-bis(imidazolinyl)phenyl catalysts for enantioselective C-H functionalization with ethyl diazoacetate. Chem. Sci. (Camb.), 2016, 7(5), 3142-3146.
[http://dx.doi.org/10.1039/C6SC00190D] [PMID: 29997805]
[111]
Davies, H.M.; Hansen, T.; Churchill, M.R. Catalytic asymmetric C−H activation of alkanes and tetrahydrofuran. J. Am. Chem. Soc., 2000, 122(13), 3063-3070.
[http://dx.doi.org/10.1021/ja994136c]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy