Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Yb/Chitosan Catalyzed Synthesis of Highly Substituted Piperidine Derivatives for Potential Nuclease Activity and DNA Binding Study

Author(s): Khairujjaman Laskar, Mohd Farhan and Aamir Ahmad*

Volume 27, Issue 19, 2021

Published on: 10 December, 2020

Page: [2252 - 2263] Pages: 12

DOI: 10.2174/1381612826666201210114343

Price: $65

Abstract

Background: Herein, a new chitosan-supported ytterbium nano-catalyst has been prepared and used in a mild, efficient, and expeditious method for the synthesis of substituted piperidine derivatives via threecomponent condensation of substituted anilines, formaldehyde and different cyclic/acyclic active methylene compounds at room temperature.

Methods: The catalyst was characterized by FTIR, XRD, SEM, EDX, TEM, ICP-AES and the stability of the catalyst was evaluated by TG analysis. The synthesized compound 3,3,11,11-Tetramethyl-15-(phenyl)-15- azadispiro[5.1.5.3]hexadecane-1,5,9,13-tetrone (3a) was explored for pBR322 DNA cleavage activity and genotoxicity. Further, the interaction of 3a with CT-DNA was investigated through UV-vis, fluorescence and viscosity.

Results: The preparation of Yb/chitosan nano-catalyst was verified and the catalyst was found effective towards substituted piperidine formations with the catalyst reusability. Compound 3a was successfully tested for DNA cleavage activity. In addition, fluorescence results revealed that compound 3a interacted with DNA with a binding affinity of 4.84 x 104 M-1.

Conclusion: Our findings suggest that compounds bearing spiro-piperidine scaffold, synthesized using reusable nano-catalyst, could be effective biological agents.

Keywords: Yb/chitosan, Piperidine, DNA binding, spectral studies, nuclease, FTIR.

[1]
(a)Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117(8): 5784-863.
[http://dx.doi.org/10.1021/acs.chemrev.6b00621] [PMID: 28375000] ; (b)Laskar K, Alam P, Khan RH, Rauf A. Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): A combined multi-spectroscopic and molecular docking study. Eur J Med Chem 2016; 122: 72-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.012] [PMID: 27343854]
[2]
Candeias NR, Branco LC, Gois PM, Afonso CA, Trindade AF. More sustainable approaches for the synthesis of N-based heterocycles. Chem Rev 2009; 109(6): 2703-802.
[http://dx.doi.org/10.1021/cr800462w] [PMID: 19385653]
[3]
Wilkinson DG. The pharmacology of donepezil: a new treatment of Alzheimer’s disease. Expert Opin Pharmacother 1999; 1(1): 121-35.
[http://dx.doi.org/10.1517/14656566.1.1.121] [PMID: 11249555]
[4]
Schotte A, Janssen PF, Gommeren W, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl) 1996; 124(1-2): 57-73.
[http://dx.doi.org/10.1007/BF02245606] [PMID: 8935801]
[5]
Kirichok AA, Shton IO, Pishel IM, et al. Synthesis of Multifunctional Spirocyclic Azetidines and Their Application in Drug Discovery. Chemistry 2018; 24(21): 5444-9.
[http://dx.doi.org/10.1002/chem.201800193] [PMID: 29338097]
[6]
Viegas C Jr, da S Bolzani V, Furlan M, et al. Further bioactive piperidine alkaloids from the flowers and green fruits of Cassia spectabilis. J Nat Prod 2004; 67(5): 908-10.
[http://dx.doi.org/10.1021/np0303963] [PMID: 15165164]
[7]
Das S, da Silva CJ, Silva MM, et al. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. J Adv Res 2017; 9: 51-61.
[http://dx.doi.org/10.1016/j.jare.2017.10.010] [PMID: 30046486]
[8]
Dai Y, Pavan Kumar V, Zhu C, MacLachlan MJ, Smith KJ, Wolf MO. Mesoporous Silica-Supported Nanostructured PdO/CeO2 Catalysts for Low-Temperature Methane Oxidation. ACS Appl Mater Interfaces 2018; 10(1): 477-87.
[http://dx.doi.org/10.1021/acsami.7b13408] [PMID: 29261280]
[9]
Mikami K, Terada M, Matsuzawa H. “Asymmetric” catalysis by lanthanide complexes. Angew Chem Int Ed Engl 2002; 41(19): 3554-71.
[http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3554::AIDANIE3554>3.0.CO;2-P]
[10]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36: 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[11]
Puchol V, El Haskouri J, Latorre J, et al. Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles. Chem Commun (Camb) 2009; 26(19): 2694-6.
[http://dx.doi.org/10.1039/b821308a] [PMID: 19532924]
[12]
1Mone M, Lambropoulou DA, Bikiaris DN, Kyzas G. Chitosan Grafted with Biobased 5-Hydroxymethyl-Furfural as Adsorbent for Copper and Cadmium Ions Removal. Polymers (Basel) 2020; 12(5)
[13]
Dömling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions. Chem Rev 2012; 112(6): 3083-135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[14]
Cindrić M, Jambon S, Harej A, et al. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur J Med Chem 2017; 136: 468-79.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014] [PMID: 28525845]
[15]
Matsumoto RR, Li SM, Katz JL, Fantegrossi WE, Coop A. Effects of the selective sigma receptor ligand, 1-(2-phenethyl)piperidine oxalate (AC927), on the behavioral and toxic effects of cocaine. Drug Alcohol Depend 2011; 118(1): 40-7.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.02.017] [PMID: 21420799]
[16]
Allen CE, Chow CL, Caldwell JJ, Westwood IM, van Montfort RL, Collins I. Synthesis and evaluation of heteroaryl substituted diazaspirocycles as scaffolds to probe the ATP-binding site of protein kinases. Bioorg Med Chem 2013; 21(18): 5707-24.
[http://dx.doi.org/10.1016/j.bmc.2013.07.021] [PMID: 23920481]
[17]
Pool-Zobel BL, Guigas C, Klein R, Neudecker C, Renner HW, Schmezer P. Assessment of genotoxic effects by lindane. Food Chem Toxicol 1993; 31(4): 271-83.
[http://dx.doi.org/10.1016/0278-6915(93)90077-C] [PMID: 7682977]
[18]
Asif M, Ali A, Zafar A, et al. Microwave-assisted one pot synthesis, characterization, biological evaluation and molecular docking studies of steroidal thiazoles. J Photochem Photobiol B 2017; 166: 104-15.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.11.010] [PMID: 27888739]
[19]
Kline DL, Fishman JB. Improved procedure for the isolation of human plasminogen. J Biol Chem 1961; 236: 3232-4.
[PMID: 14456991]
[20]
Reicmann ME, Rice SA, Thomas CA, Doty P. A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 1954; 76: 3047-53.
[http://dx.doi.org/10.1021/ja01640a067]
[21]
Wolfe A, Shimer GH Jr, Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987; 26(20): 6392-6.
[http://dx.doi.org/10.1021/bi00394a013] [PMID: 3427013]
[22]
Lakowicz JR, Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 1973; 12(21): 4161-70.
[http://dx.doi.org/10.1021/bi00745a020] [PMID: 4795686]
[23]
Ashby J, Tinwell H, Lefevre PA, Browne MA. The single cell gel electrophoresis assay for induced DNA damage (comet assay): measurement of tail length and moment. Mutagenesis 1995; 10(2): 85-90.
[http://dx.doi.org/10.1093/mutage/10.2.85] [PMID: 7603334]
[24]
Kushwaha S, Sreedhar B, Padmaja P. Sorption of Phenyl Mercury, Methyl Mercury, and Inorganic Mercury onto Chitosan and Barbital Immobilized Chitosan: Spectroscopic, Potentiometric, Kinetic, Equilibrium, and Selective Desorption Studies. J Chem Eng Data 2010; 55: 4691-8.
[http://dx.doi.org/10.1021/je100317t]
[25]
Shen C, Xu J, Yu W, Zhang P. A highly active and easily recoverable chitosan@copper catalyst for the C–S coupling and its application in the synthesis of zolimidine. Green Chem 2014; 16: 3007-12.
[http://dx.doi.org/10.1039/C4GC00161C]
[26]
Sun Z, Shi C, Wang X, Fang Q, Huang J. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr Polym 2017; 155: 321-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.069] [PMID: 27702518]
[27]
Gámiz-González MA, Correia DM, Lanceros-Mendez S, Sencadas V, Gómez Ribelles JL, Vidaurre A. Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr Polym 2017; 167: 52-8.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.020] [PMID: 28433177]
[28]
Ahmad N, Siddiqui ZN. Cerium Supported Chitosan as an Efficient and Recyclable Heterogeneous Catalyst for Sustainable Synthesis of Spiropiperidine Derivatives. ACS Sustain Chem& Eng 2015; 3: 1701-7.
[http://dx.doi.org/10.1021/acssuschemeng.5b00223]
[29]
Mukhopadhyay C, Rana S, Butcher RJ. FeCl3 catalysed two consecutive aminomethylation at the α-position of the β-dicarbonyl compounds: an easy access to hexahydropyrimidines and its spiro analogues. Tetrahedron Lett 2011; 52: 4153-7.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.144]
[30]
Khatun R, Biswas S, Ghosh S, Islam SKM. Polymer-anchored [Fe(III)Azo] complex: An efficient reusable catalyst for oxidative bromination and multi-components reaction for the synthesis of spiropiperidine derivatives. J Organomet Chem 2018; 858: 37-46.
[http://dx.doi.org/10.1016/j.jorganchem.2018.01.001]
[31]
Laskar K, Bhattacharjee P, Gohain M, Deka D, Bora U. Application of bio-based green heterogeneous catalyst for the synthesis of arylidinemalononitriles. Sust Chem Pharm 2019; p. 14100181.
[http://dx.doi.org/10.1016/j.scp.2019.100181]
[32]
Farhan M, Khan HY, Oves M, et al. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species. Toxins (Basel) 2016; 8(2): 37.
[http://dx.doi.org/10.3390/toxins8020037] [PMID: 26861392]
[33]
Ahmad A, Farhan Asad S, Singh S, Hadi SM. DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation. Cancer Lett 2000; 154(1): 29-37.
[http://dx.doi.org/10.1016/S0304-3835(00)00351-7] [PMID: 10799736]
[34]
Dai Z, Lo PK. Photo-switchable patterning of gold nanoparticles along 3D DNA nanotubes. Nanoscale 2018; 10(12): 5431-5.
[http://dx.doi.org/10.1039/C7NR09650J] [PMID: 29516074]
[35]
Garofalo A, Goossens L, Baldeyrou B, et al. Design, synthesis, and DNA-binding of N-alkyl(anilino)quinazoline derivatives. J Med Chem 2010; 53(22): 8089-103.
[http://dx.doi.org/10.1021/jm1009605] [PMID: 21033670]
[36]
Rahban M, Divsalar A, Saboury AA, Golestani A. Nanotoxicity and Spectroscopy Studies of Silver Nanoparticle: Calf Thymus DNA and K562 as Targets. J Phys Chem C 2010; 114: 5798-803.
[http://dx.doi.org/10.1021/jp910656g]
[37]
Kurreck J. Nucleic acids chemistry and biology. Angew Chem Int Ed Engl 2003; 42(44): 5384-5.
[http://dx.doi.org/10.1002/anie.200320080] [PMID: 14618569]
[38]
An Y, Tong ML, Ji LN, Mao ZW. Double-strand DNA cleavage by copper complexes of 2,2′-dipyridyl with electropositive pendants. Dalton Trans 2006; (17): 2066-71.
[http://dx.doi.org/10.1039/B516132K] [PMID: 16625250]
[39]
Zeglis BM, Pierre VC, Barton JK. Metallo-intercalators and metallo-insertors. Chem Commun (Camb) 2007; (44): 4565-79.
[http://dx.doi.org/10.1039/b710949k] [PMID: 17989802]
[40]
Farhan M, Zafar A, Chibber S, Khan HY, Arif H, Hadi SM. Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: A structure activity study. Arch Biochem Biophys 2015; 580: 31-40.
[http://dx.doi.org/10.1016/j.abb.2015.06.019] [PMID: 26142371]
[41]
Shamsi FA, Husain S, Hadi SM. DNA breakage by uric acid and Cu(II): binding of uric acid to DNA and biological activity of the reaction. J Biochem Toxicol 1996; 11(2): 67-71.
[http://dx.doi.org/10.1002/(SICI)1522-7146(1996)11:2<67::AIDJBT3>3.0.CO;2-S] [PMID: 8884466]
[42]
Skerget M, Knez Z, Knez-Hrncic M. Solubility of solids in sub and supercritical fluids. J Chem Eng Data 2011; 56: 694-719.
[http://dx.doi.org/10.1021/je1011373]
[43]
Suh D, Chaires JB. Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 1995; 3(6): 723-8.
[http://dx.doi.org/10.1016/0968-0896(95)00053-J] [PMID: 7582950]
[44]
Sankara Rao N, Nagesh N, Lakshma Nayak V, et al. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: cytotoxicity evaluation and topoisomerase-IIα inhibition. MedChemComm 2018; 10(1): 72-9.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
[45]
Rajalakshmi S, Weyhermüller T, Freddy AJ, Vasanthi HR, Nair BU. Anomalous behavior of pentacoordinate copper complexes of dimethylphenanthroline and derivatives of terpyridine ligands: Studies on DNA binding, cleavage and apoptotic activity. Eur J Med Chem 2011; 46(2): 608-17.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.041] [PMID: 21193251]
[46]
Liu F, Wang K, Bai G, Zhang Y, Gao L. The pH-induced emission switching and interesting DNA-binding properties of a novel dinuclear ruthenium(II) complex. Inorg Chem 2004; 43(5): 1799-806.
[http://dx.doi.org/10.1021/ic035109x] [PMID: 14989674]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy