Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Total Irregularity Strengths of an Arbitrary Disjoint Union of (3,6)- Fullerenes

Author(s): Ayesha Shabbir, Muhammad Faisal Nadeem*, Ali Ovais, Faraha Ashraf and Sumiya Nasir

Volume 25, Issue 3, 2022

Published on: 09 December, 2020

Page: [500 - 509] Pages: 10

DOI: 10.2174/1386207323666201209094514

Price: $65

Abstract

Aims and Objective: A fullerene graph is a mathematical model of a fullerene molecule. A fullerene molecule, or simply a fullerene, is a polyhedral molecule made entirely of carbon atoms other than graphite and diamond. Chemical graph theory is a combination of chemistry and graph theory, where theoretical graph concepts are used to study the physical properties of mathematically modeled chemical compounds. Graph labeling is a vital area of graph theory that has application not only within mathematics but also in computer science, coding theory, medicine, communication networking, chemistry, among other fields. For example, in chemistry, vertex labeling is being used in the constitution of valence isomers and transition labeling to study chemical reaction networks

Method: In terms of graphs, vertices represent atoms while edges stand for bonds between the atoms. By tvs (tes) we mean the least positive integer for which a graph has a vertex (edge) irregular total labeling such that no two vertices (edges) have the same weights. A (3,6)-fullerene graph is a non-classical fullerene whose faces are triangles and hexagons

Results: Here, we study the total vertex (edge) irregularity strength of an arbitrary disjoint union of (3,6)-fullerene graphs and provide their exact values.

Conclusion: The lower bound for tvs (tes) depends on the number of vertices. Minimum and maximum degree of a graph exist in literature, while to get different weights, one can use sufficiently large numbers, but it is of no interest. Here, by proving that the lower bound is the upper bound, we close the case for (3,6)-fullerene graphs.

Keywords: (3, 6)-fullerene, disjoint union of graphs, irregularity strength, total vertex irregularity strength, total edge irregularity strength, irregular assignments

Graphical Abstract

[1]
Kroto, H.W.; Heath, J.R.; Obrien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature, 1985, 318, 162-163.
[http://dx.doi.org/10.1038/318162a0]
[2]
Yang, R.; Zhang, H. Hexagonal resonance of (3,6)-fullerenes. J. Math. Chem., 2012, 50, 2785-2793.
[http://dx.doi.org/10.1007/s10910-011-9910-8]
[3]
Fowler, P.W.; John, P.E.; Sachs, H. (3,6)-cages, hexagonal toroidal cages, and their spectra. DIMACS Ser. Discret. Math. Theoret. Comput. Sci., 2000, 51, 139-174.
[http://dx.doi.org/10.1090/dimacs/051/11]
[4]
Ceulemans, A.; Chibotaru, L.F.; Bovin, S.A.; Fowler, P.W. The electronic structure of polyhex carbon tori. J. Chem. Phys., 2000, 112(9), 4271-4278.
[http://dx.doi.org/10.1063/1.480972]
[5]
Goodey, P.R. A class of Hamiltonian polytopes. J. Graph Theory, 1977, 1, 181-185.
[http://dx.doi.org/10.1002/jgt.3190010213]
[6]
Grünbaum, B.; Motzkin, T.S. The number of hexagons and the simplicity of geodesics on certain polyhedra. Can. J. Math, 1963, 15, 744-751.
[http://dx.doi.org/10.4153/CJM-1963-071-3]
[7]
Li, Q.; Liu, S.; Zhang, H. 2-extendability and k-resonance of non-bipartite Klein-bottle polyhexes. Discrete Appl. Math., 2011, 159, 800-811.
[http://dx.doi.org/10.1016/j.dam.2010.12.015]
[8]
Sun, C.; Zhang, H. On bicriticality of (3,6)-fullerene graphs. J. Math. Chem., 2018, 56, 2785-2793.
[http://dx.doi.org/10.1007/s10910-018-0917-2]
[9]
Balaban, A.T., Ed.; Chemical applications of graph theory; Academic Press: London, 1967.
[10]
Balaban, A.T. Applications of graph theory in Chemistry. J. Chem. Inf. Comput. Sci., 1985, 25, 334-343.
[http://dx.doi.org/10.1021/ci00047a033]
[11]
Hevia, H. A Representation of Chemical Reactions by Labeled Graphs.PhD Thesis, Western Michigan University: Kalamazoo, Michigan, 1991.June,
[12]
Bac˘a, M.; Jendrol, S.; Miller, M.; Ryan, J. On irregular total labellings. Discrete Math., 2007, 307, 1378-1388.
[http://dx.doi.org/10.1016/j.disc.2005.11.075]
[13]
Przybylo, J. Linear bound on the irregularity strength and the total vertex irregularity strength of graphs. SIAM J. Discrete Math., 2009, 23, 511-516.
[http://dx.doi.org/10.1137/070707385]
[14]
Anholcer, M.; Kalkowski, M.; Przybylo, J. A new upper bound for the total vertex irregularity strength of graphs. Discrete Math., 2009, 309, 6316-6317.
[http://dx.doi.org/10.1016/j.disc.2009.05.023]
[15]
Majerski, P.; Przybylo, J. Total vertex irregularity strength of dense graphs. J. Graph Theory, 2014, 76(1), 34-41.
[http://dx.doi.org/10.1002/jgt.21748]
[16]
Ahmad, A.; Awan, K.M.; Javaid, I. Slamin. Total vertex irregularity strength of wheel related graphs. Australasian. J. Combin., 2011, 51, 147-156.
[17]
Al-Mushayt, O.; Arshad, A.; Siddiqui, M.K. Total vertex irregularity strength of convex polytope graphs. Acta Math. Univ. Comenianae, 2013, 82(1), 29-37.
[18]
Nurdin; Baskoro, E.T.; Salman, A.N.M.; Goas, N.N. On the total vertex irregularity strength of trees. Discrete Math., 2010, 310, 3043-3048.
[http://dx.doi.org/10.1016/j.disc.2010.06.041]
[19]
Ivancc˘o; Jendrolc˘, S. Total edge irregularity strength of trees. Discuss. Math. Graph Theory, 2006, 26, 449-456.
[20]
Ahmad, A.; Bac˘a, M.; Bashir, Y.; Siddiqui, M.K. Total edge irregularity strength of strong product of two paths. Ars Comb., 2012, 106, 449-459.
[21]
Ahmad, A.; Bac˘a, M.; Siddiqui, M.K. On edge irregular total labeling of categorical product of two cycles. Theory Comput. Syst., 2014, 54(1), 1-12.
[http://dx.doi.org/10.1007/s00224-013-9470-3]
[22]
Anholcer, M.; Palmer, C. Irregular labellings of circulant graphs. Discrete Math., 2012, 312, 3461-3466.
[http://dx.doi.org/10.1016/j.disc.2012.06.017]
[23]
Jendrolc, S. Misc ̆kuf, J.; Sotc ̆k, R. Total edge irregularity strength of complete graphs and complete bipartite graphs. Discrete Math., 2010, 310, 400-407.
[http://dx.doi.org/10.1016/j.disc.2012.06.017]
[24]
Haque, M.K.M. Irregular total labelings of generalized petersen graphs. Theory Comput. Syst., 2012, 50, 537-544.
[http://dx.doi.org/10.1007/s00224-011-9350-7]
[25]
Al-Mushayt, Ahmad, A. Siddiqui, M.K. On the total edge irregularity strength of hexagonal grid graphs. Australas. J. Combin., 2012, 53, 263-271.
[26]
Ramdani, R.; Salman, A.N.M.; Assiyatum, H.; Semanc˘ová-Fen˘ovc˘íková, A.; Bac˘a, M. On the total irregularity strength of disjoint union of arbitrary graphs. Math. Rep., 2016, 18, 469-482.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy