Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Triazol-phenyl Antipyretic Derivatives Inhibit mPGES-1 mRNA Levels in LPS-Induced RAW 264.7 Macrophage Cells

Author(s): Lenisa Dandara dos Santos, Thamires Quadros Froes, Miriam Cristina Contin de Melo, Gloria Emília Petto de Souza, Denis de Melo Soares and Marcelo Santos Castilho*

Volume 20, Issue 3, 2021

Published on: 08 December, 2020

Page: [271 - 281] Pages: 11

DOI: 10.2174/1871523019999201208202831

Price: $65

Abstract

Background: Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the terminal step of prostaglandin E2 (PGE2) production, which plays an important role in the regulation of febrile response. In our previous work, ligand-based pharmacophore models, built with mPGES-1 inhibitors, were employed to identify a novel series of compounds that reduce the febrile response in rats.

Objectives: The study aimed to evaluate the mechanism of action of the most active compound (1).

Methods: For in vivo assays, rats were pretreated with the antipyretic compounds 1-8, 30 min before LPS injection. For in vitro assays, RAW 264.7 macrophage cells were incubated with the antipyretic compounds 1-8 for 1 hour before LPS stimulus. After 16 h, quantitative real-time PCR was carried out. Additionally, the PGE2 concentration in the hypothalamus was quantified by ELISA and the inhibitory effect of N-cyclopentyl-N'-[3-(3-cyclopropyl-1H-1,2,4-triazol- 5-yl)phenyl]ethanediamide (1) over human COX-2 enzymatic activity was determined with a COX Colorimetric Inhibitor Screening Assay Kit.

Results: Compound 1 and CAY10526 showed comparable efficacy to reduce the febrile response when injected i.v. (compound 1: 63.10%, CAY10526: 70.20%). Moreover, compound 1 significantly reduced the mPGES-1 mRNA levels, in RAW264.7 cells, under inflammatory conditions. A chemically-similar compound (8-) also significantly reduced the mRNA levels of the gene target. On the other hand, compounds 6 and 7, which are also somewhat similar to compound 1, did not significantly impact mPGES-1 mRNA levels.

Conclusions: PGE2 concentration reduction in the hypothalamus, due to compound 1 central injection, is related to decreased mPGES-1 mRNA levels but not to COX-2 inhibition (IC50> 50 μM). Therefore, compound 1 is a promising lead for innovative antipyretic drug development.

Keywords: mPGES-1, expression inhibitor, antipyretic, fever, PGE2, COX-2 inhibition.

Graphical Abstract

[1]
Aronoff, D.M.; Neilson, E.G. Antipyretics: Mechanisms of action and clinical use in fever suppression. Am. J. Med., 2001, 111(4), 304-315.
[http://dx.doi.org/10.1016/S0002-9343(01)00834-8] [PMID: 11566461]
[2]
Malvar, Ddo.C.; Soares, D.M.; Fabrício, A.S.; Kanashiro, A.; Machado, R.R.; Figueiredo, M.J.; Rae, G.A.; de Souza, G.E. The antipyretic effect of dipyrone is unrelated to inhibition of PGE(2) synthesis in the hypothalamus. Br. J. Pharmacol., 2011, 162(6), 1401-1409.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01150.x] [PMID: 21133897]
[3]
Moore, N.; Pollack, C.; Butkerait, P. Adverse drug reactions and drug-drug interactions with over-the-counter NSAIDs. Ther. Clin. Risk Manag., 2015, 11, 1061-1075.
[PMID: 26203254]
[4]
Kötter, T.; da Costa, B.R.; Fässler, M.; Blozik, E.; Linde, K.; Jüni, P.; Reichenbach, S.; Scherer, M. Metamizole-associated adverse events: A systematic review and meta-analysis. PLoS One, 2015, 10(4), e0122918.
[http://dx.doi.org/10.1371/journal.pone.0122918] [PMID: 25875821]
[5]
Fernando, S.; Wijewickrama, A.; Gomes, L.; Punchihewa, C.T.; Madusanka, S.D.; Dissanayake, H.; Jeewandara, C.; Peiris, H.; Ogg, G.S.; Malavige, G.N. Patterns and causes of liver involvement in acute dengue infection. BMC Infect. Dis., 2016, 16, 319.
[http://dx.doi.org/10.1186/s12879-016-1656-2] [PMID: 27391896]
[6]
Psarra, A.; Nikolaou, A.; Kokotou, M.G.; Limnios, D.; Kokotos, G. Microsomal prostaglandin E2 synthase-1 inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(9), 1047-1059.
[http://dx.doi.org/10.1080/13543776.2017.1344218] [PMID: 28627961]
[7]
Koeberle, A.; Laufer, S.A.; Werz, O. Design and development of microsomal prostaglandin E2 synthase-1 Inhibitors: Challenges and future directions. J. Med. Chem., 2016, 59(13), 5970-5986.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01750] [PMID: 26791385]
[8]
Bülbül, B.; Küçükgüzel, İ. Microsomal prostaglandin E2 synthase-1 as a new macromolecular drug target in the prevention of İnflammation and cancer. Anticancer. Agents Med. Chem., 2019, 19(10), 1205-1222.
[http://dx.doi.org/10.2174/1871520619666190227174137] [PMID: 30827263]
[9]
Ek, M.; Engblom, D.; Saha, S.; Blomqvist, A.; Jakobsson, P.J.; Ericsson-Dahlstrand, A. Inflammatory response: pathway across the blood-brain barrier. Nature, 2001, 410(6827), 430-431.
[http://dx.doi.org/10.1038/35068632] [PMID: 11260702]
[10]
Yamagata, K.; Matsumura, K.; Inoue, W.; Shiraki, T.; Suzuki, K.; Yasuda, S.; Sugiura, H.; Cao, C.; Watanabe, Y.; Kobayashi, S. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J. Neurosci., 2001, 21(8), 2669-2677.
[http://dx.doi.org/10.1523/JNEUROSCI.21-08-02669.2001] [PMID: 11306620]
[11]
Li, S.; Wang, Y.; Matsumura, K.; Ballou, L.R.; Morham, S.G.; Blatteis, C.M. The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(-/-), but not in cyclooxygenase-1(-/-) mice. Brain Res., 1999, 825(1-2), 86-94.
[http://dx.doi.org/10.1016/S0006-8993(99)01225-1] [PMID: 10216176]
[12]
Engblom, D.; Saha, S.; Engström, L.; Westman, M.; Audoly, L.P.; Jakobsson, P.J.; Blomqvist, A. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat. Neurosci., 2003, 6(11), 1137-1138.
[http://dx.doi.org/10.1038/nn1137] [PMID: 14566340]
[13]
Wilhelms, D.B.; Kirilov, M.; Mirrasekhian, E.; Eskilsson, A.; Kugelberg, U.Ö.; Klar, C.; Ridder, D.A.; Herschman, H.R.; Schwaninger, M.; Blomqvist, A.; Engblom, D. Deletion of prostaglandin E2 synthesizing enzymes in brain endothelial cells attenuates inflammatory fever. J. Neurosci., 2014, 34(35), 11684-11690.
[http://dx.doi.org/10.1523/JNEUROSCI.1838-14.2014] [PMID: 25164664]
[14]
De Simone, R.; Andrés, R.M.; Aquino, M.; Bruno, I.; Guerrero, M.D.; Terencio, M.C.; Paya, M.; Riccio, R. Toward the discovery of new agents able to inhibit the expression of microsomal prostaglandin E synthase-1 enzyme as promising tools in drug development. Chem. Biol. Drug Des., 2010, 76(1), 17-24.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00984.x] [PMID: 20492447]
[15]
Partridge, K.M.; Antonysamy, S.; Bhattachar, S.N.; Chandrasekhar, S.; Fisher, M.J.; Fretland, A.; Gooding, K.; Harvey, A.; Hughes, N.E.; Kuklish, S.L.; Luz, J.G.; Manninen, P.R.; McGee, J.E.; Mudra, D.R.; Navarro, A.; Norman, B.H.; Quimby, S.J.; Schiffler, M.A.; Sloan, A.V.; Warshawsky, A.M.; Weller, J.M.; York, J.S.; Yu, X.P. Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1. Bioorg. Med. Chem. Lett., 2017, 27(6), 1478-1483.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.011] [PMID: 28190634]
[16]
Banerjee, A.; Pawar, M.Y.; Patil, S.; Yadav, P.S.; Kadam, P.A.; Kattige, V.G.; Deshpande, D.S.; Pednekar, P.V.; Pisat, M.K.; Gharat, L.A. Development of 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as microsomal prostaglandin E(2) synthase-1 inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(20), 4838-4844.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.056] [PMID: 25260492]
[17]
Xu, D.; Rowland, S.E.; Clark, P.; Giroux, A.; Côté, B.; Guiral, S.; Salem, M.; Ducharme, Y.; Friesen, R.W.; Méthot, N.; Mancini, J.; Audoly, L.; Riendeau, D. MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. J. Pharmacol. Exp. Ther., 2008, 326(3), 754-763.
[http://dx.doi.org/10.1124/jpet.108.138776] [PMID: 18524979]
[18]
Froes, T.Q.; Melo, M.C.C.; Souza, G.E.P.; Castilho, M.S.; Soares, D.M. Virtual screening and biological evaluation of novel antipyretic compounds. Chem. Biol. Drug Des., 2017, 90(5), 739-752.
[http://dx.doi.org/10.1111/cbdd.12995] [PMID: 28390086]
[19]
Roth, J.; De Souza, G.E. Fever induction pathways: Evidence from responses to systemic or local cytokine formation. Braz. J. Med. Biol. Res., 2001, 34(3), 301-314.
[http://dx.doi.org/10.1590/S0100-879X2001000300003] [PMID: 11262580]
[20]
Fabricio, A.S.; Rae, G.A.; Zampronio, A.R.; D’Orléans-Juste, P.; Souza, G.E. Central endothelin ET(B) receptors mediate IL-1-dependent fever induced by preformed pyrogenic factor and corticotropin-releasing factor in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 290(1), R164-R171.
[http://dx.doi.org/10.1152/ajpregu.00337.2005] [PMID: 16123229]
[21]
Roth, J.; Rummel, C.; Barth, S.W.; Gerstberger, R.; Hübschle, T. Molecular aspects of fever and hyperthermia. Neurol. Clin., 2006, 24(3), 421-439.
[http://dx.doi.org/10.1016/j.ncl.2006.03.004] [PMID: 16877116]
[22]
Quan, N.; Whiteside, M.; Herkenham, M. Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. Brain Res., 1998, 802(1-2), 189-197.
[http://dx.doi.org/10.1016/S0006-8993(98)00402-8] [PMID: 9748570]
[23]
Salazar, F.; Vazquez, M.L.; Masferrer, J.L.; Mbalaviele, G.; Llinas, M.T.; Saez, F.; Arhancet, G.; Salazar, F.J. Renal effects induced by prolonged mPGES1 inhibition. Am. J. Physiol. Renal Physiol., 2014, 306(1), F68-F74.
[http://dx.doi.org/10.1152/ajprenal.00492.2013] [PMID: 24197070]
[24]
Shin, J.S.; Choi, H.E.; Kim, S.D.; Lee, Y.S.; Cho, Y.W.; Lee, K.T. Anti-inflammatory effects of 7-hydroxyl-1-methylindole-3-acetonitrile, a synthetic arvelexin derivative, on the macrophages through destabilizing mPGES-1 mRNA and suppressing NF-κB activation. Chem. Biol. Interact., 2014, 224, 68-77.
[http://dx.doi.org/10.1016/j.cbi.2014.10.004] [PMID: 25451575]
[25]
Díaz-Muñoz, M.D.; Osma-García, I.C.; Cacheiro-Llaguno, C.; Fresno, M.; Iñiguez, M.A. Coordinated up-regulation of cyclooxygenase-2 and microsomal prostaglandin E synthase 1 transcription by nuclear factor kappa B and early growth response-1 in macrophages. Cell. Signal., 2010, 22(10), 1427-1436.
[http://dx.doi.org/10.1016/j.cellsig.2010.05.011] [PMID: 20546888]
[26]
Díaz-Muñoz, M.D.; Osma-García, I.C.; Fresno, M.; Iñiguez, M.A. Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages. Biochem. J., 2012, 443(2), 451-461.
[http://dx.doi.org/10.1042/BJ20111052] [PMID: 22268508]
[27]
Bahia, M.S.; Katare, Y.K.; Silakari, O.; Vyas, B.; Silakari, P. Inhibitors of microsomal prostaglandin E2 synthase-1 enzyme as emerging anti-inflammatory candidates. Med. Res. Rev., 2014, 34(4), 825-855.
[http://dx.doi.org/10.1002/med.21306] [PMID: 25019142]
[28]
Soromou, L.W.; Zhang, Z.; Li, R.; Chen, N.; Guo, W.; Huo, M.; Guan, S.; Lu, J.; Deng, X. Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. Molecules, 2012, 17(3), 3574-3585.
[http://dx.doi.org/10.3390/molecules17033574] [PMID: 22441335]
[29]
Noma, T.; Takahashi-Yanaga, F.; Arioka, M.; Mori, Y.; Sasaguri, T. Inhibition of GSK-3 reduces prostaglandin E2 production by decreasing the expression levels of COX-2 and mPGES-1 in monocyte/macrophage lineage cells. Biochem. Pharmacol., 2016, 116(116), 120-129.
[http://dx.doi.org/10.1016/j.bcp.2016.07.014] [PMID: 27453433]
[30]
Xiao, L.; Ornatowska, M.; Zhao, G.; Cao, H.; Yu, R.; Deng, J.; Li, Y.; Zhao, Q.; Sadikot, R.T.; Christman, J.W. Lipopolysaccharide-induced expression of microsomal prostaglandin E synthase-1 mediates late-phase PGE2 production in bone marrow derived macrophages. PLoS One, 2012, 7(11), e50244.
[http://dx.doi.org/10.1371/journal.pone.0050244] [PMID: 23226252]
[31]
Bezugla, Y.; Kolada, A.; Kamionka, S.; Bernard, B.; Scheibe, R.; Dieter, P. COX-1 and COX-2 contribute differentially to the LPS-induced release of PGE2 and TxA2 in liver macrophages. Prostaglandins Other Lipid Mediat., 2006, 79(1-2), 93-100.
[http://dx.doi.org/10.1016/j.prostaglandins.2005.11.001] [PMID: 16516813]
[32]
Murakami, M.; Naraba, H.; Tanioka, T.; Semmyo, N.; Nakatani, Y.; Kojima, F.; Ikeda, T.; Fueki, M.; Ueno, A.; Oh, S.; Kudo, I. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem., 2000, 275(42), 32783-32792.
[http://dx.doi.org/10.1074/jbc.M003505200] [PMID: 10869354]
[33]
Båge, T.; Lindberg, J.; Lundeberg, J.; Modéer, T.; Yucel-Lindberg, T. Signal pathways JNK and NF-kappaB, identified by global gene expression profiling, are involved in regulation of TNFalpha-induced mPGES-1 and COX-2 expression in gingival fibroblasts. BMC Genomics, 2010, 11(241), 241.
[http://dx.doi.org/10.1186/1471-2164-11-241] [PMID: 20398340]
[34]
Li, Y.; Yin, S.; Nie, D.; Xie, S.; Ma, L.; Wang, X.; Wu, Y.; Xiao, J. MK886 inhibits the proliferation of HL-60 leukemia cells by suppressing the expression of mPGES-1 and reducing prostaglandin E2 synthesis. Int. J. Hematol., 2011, 94(5), 472-478.
[http://dx.doi.org/10.1007/s12185-011-0954-0] [PMID: 22038016]
[35]
Wobst, I.; Schiffmann, S.; Birod, K.; Maier, T.J.; Schmidt, R.; Angioni, C.; Geisslinger, G.; Grösch, S. Dimethylcelecoxib inhibits prostaglandin E2 production. Biochem. Pharmacol., 2008, 76(1), 62-69.
[http://dx.doi.org/10.1016/j.bcp.2008.04.008] [PMID: 18508034]
[36]
Deckmann, K.; Rörsch, F.; Geisslinger, G.; Grösch, S. Dimethylcelecoxib induces an inhibitory complex consisting of HDAC1/NF-κB(p65)RelA leading to transcriptional downregulation of mPGES-1 and EGR1. Cell. Signal., 2012, 24(2), 460-467.
[http://dx.doi.org/10.1016/j.cellsig.2011.09.025] [PMID: 21983014]
[37]
Sun, T.W.; Wu, Z.H.; Weng, X.S. Celecoxib can suppress expression of genes associated with PGE2 pathway in chondrocytes under inflammatory conditions. Int. J. Clin. Exp. Med., 2015, 8(7), 10902-10910.
[PMID: 26379884]
[38]
Liu, C.; Chen, S.; Wang, X.; Chen, Y.; Tang, N. 15d-PGJ2 decreases PGE2 synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem. Pharmacol., 2014, 91(3), 337-347.
[http://dx.doi.org/10.1016/j.bcp.2014.07.032] [PMID: 25108236]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy