Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Green Synthesis of Silver Nanoparticles Using Sustainable Resources and their Use as Antibacterial Agents: A Review

Author(s): Kumari Jyoti, Punyasloka Pattnaik and Tej Singh*

Volume 14, Issue 1, 2021

Published on: 07 December, 2020

Page: [40 - 52] Pages: 13

DOI: 10.2174/2666145413666201207204617

Price: $65

Abstract

Background: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis, etc., where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties.

Methods: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plant parts, various working conditions, such as AgNO3 concentration, ratio of AgNO3/extract, incubation time, centrifugal conditions, size and shapes.

Results: This study suggested that eco-friendly and non-toxic biomolecules present in the extracts (e.g., leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts.

Conclusion: Fabrication of silver nanoparticles using plant extracts has an advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential applications with the desired shape and size.

Keywords: Plants, green synthesis, nanotechnology, sustainable materials, silver nanoparticles, antibacterial.

Graphical Abstract

[1]
Feynman RP. There’s plenty of room at the bottom Miniaturization Reinhold New York. 1961.
[2]
Taniguchi N. On the basic concept of nano-technology. Proceeding of the International Conference on Production Engineering. Tokyo. 1974; pp. 18-23.
[3]
Skrabalak SE, Xia Y. Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 2009; 3(1): 10-5.
[http://dx.doi.org/10.1021/nn800875p] [PMID: 19206242]
[4]
Jyoti K, Singh A. Evaluation of antibacterial activity from phytosynthesized silver nanoparticles against medical devices infected with Staphylococcus spp. J Taibah Univ Med Sci 2016; 12(1): 47-54.
[http://dx.doi.org/10.1016/j.jtumed.2016.08.006] [PMID: 31435212]
[5]
Jyoti K, Singh A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol 2016; 14(2): 311-7.
[http://dx.doi.org/10.1016/j.jgeb.2016.09.005] [PMID: 30647629]
[6]
Gupta D, Singh D, Kothiyal NC, Saini AK, Singh VP, Pathania D. Synthesis of chitosan-g-poly(acrylamide)/ZnS nanocomposite for controlled drug delivery and antimicrobial activity. Int J Biol Macromol 2015; 74: 547-57.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.008] [PMID: 25592841]
[7]
Habiba K, Makarov VI, Weiner BR, Morell G. Fabrication of nanomaterials by pulsed laser synthesis 2014.
[8]
Amulyavichus A, Daugvila A, Davidonis R, Sipavichus C. Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fizika Metallov I. Metallovedenie 1998; 85: 111-7.
[9]
Mallick K, Witcomb MJ, Scurell MS. Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 2004; 39(14): 4459-63.
[http://dx.doi.org/10.1023/B:JMSC.0000034138.80116.50]
[10]
Tiwari DK, Behari J, Sen P. Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 2008; 95: 647-55.
[11]
Kumari J, Mamta B, Ajeet S. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiation Res Appl Sci 2016; 9: 217-27.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[12]
Makarov VV, Love AJ, Sinitsyna OV, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 2014; 6(1): 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[13]
Kumari J, Ajeet S, Gusztáv F, Tej S. Cytotoxic and radiosensitizing potential of silver nanoparticles against HepG-2 cells prepared by biosynthetic route using Picrasma quassioides leaf extract. J Drug Deliv Sci Technol 2020; •••55101479
[http://dx.doi.org/10.1016/j.jddst.2019.101479]
[14]
Tej S, Kumari J, Amar P, Ranchan C, Naresh K. Application of silver nanoparticles synthesized from Raphanus sativus for catalytic degradation of organic dyes.
[15]
Grier N. Silver and its compoundsDisinfection, sterilization and preservation. Philadelphia: Lee and Febiger 1968; pp. 1375-98.
[16]
Saravanan M, Vemu AK, Barik SK. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces 2011; 88(1): 325-31.
[http://dx.doi.org/10.1016/j.colsurfb.2011.07.009] [PMID: 21798729]
[17]
Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 2003; 69(7): 4278-81.
[http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003] [PMID: 12839814]
[18]
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000; 52(4): 662-8.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[19]
Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond) 2007; 3(1): 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[20]
Kvitek L, Panacek A, Soukupova J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 2008; 112(15): 5825-34.
[http://dx.doi.org/10.1021/jp711616v]
[21]
Duran N, Marcarto PD, DeSouza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 2007; 3(2): 203-8.
[http://dx.doi.org/10.1166/jbn.2007.022]
[22]
Kumari J, Ajeet S, Tej S. A comparative study on the antibacterial activity of silver nanoparticles synthesized from the leaf and endophytic fungal extract of Raphanus Sativus Nanotechnology: Novel Perspectives and Prospects. USA: McGraw-Hill 2015; pp. 513-8.
[23]
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010; 156(1-2): 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[24]
Tej S, Shekhawat DS, Kumari J. Spectroscopic and microscopic characterization of silver nanoparticles synthesized using Justicia adhatoda flower. AIP Conf Proc 1953; (1): 030155
[25]
Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 2012; 98: 112-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[26]
Ramya M, Subapriya MS. Green synthesis of silver nanoparticles. Int J Pharma Med Bio Sci 2012; 1(1): 54-61.
[27]
Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 2017; 15(1): 31-9.
[http://dx.doi.org/10.1016/j.jgeb.2017.04.005] [PMID: 30647639]
[28]
Satyanarayana SV. Prasad, Ram. Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectronic Biomed Mater 2012; 4: 53-9.
[29]
Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulate leaf extract. Appl Nanosci 2015; 5(1): 73-81.
[http://dx.doi.org/10.1007/s13204-014-0293-6]
[30]
Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 2014; 415: 39-47.
[http://dx.doi.org/10.1016/j.jcis.2013.10.018] [PMID: 24267328]
[31]
Kumar PPNV, Pammi SVN, Pratap K, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crops Prod 2014; 52: 562-6.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[32]
Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2015; 134: 326-32.
[http://dx.doi.org/10.1016/j.saa.2014.05.078] [PMID: 25022505]
[33]
Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 2015; 134: 310-5.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
[34]
Ulug B, Haluk Turkdemir M, Cicek A, Mete A. Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135: 153-61.
[http://dx.doi.org/10.1016/j.saa.2014.06.142] [PMID: 25062061]
[35]
Ashour AA, Raafat D, El-Gowelli HM, El-Kamel AH. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties. Int J Nanomedicine 2015; 10: 7207-21.
[PMID: 26664112]
[36]
Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 2003; 19(6): 1627-31.
[http://dx.doi.org/10.1021/bp034070w] [PMID: 14656132]
[37]
Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 2004; 275(2): 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[38]
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22(2): 577-83.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[39]
Jae YS, Beom SK. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 2008; 25(4): 808-11.
[http://dx.doi.org/10.1007/s11814-008-0133-z]
[40]
Dubey M, Bhadauria S, Kushwah B. Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig J Nanomater Biostruct 2009; 4(3): 537-43.
[41]
Harekrishna B, Dipak KB, Gobinda PS, Priyanka S, Santanu P, Ajay M. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 2009; 348(1-3): 212-6.
[http://dx.doi.org/10.1016/j.colsurfa.2009.07.021]
[42]
Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 2009; 73(2): 332-8.
[http://dx.doi.org/10.1016/j.colsurfb.2009.06.005] [PMID: 19576733]
[43]
Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A. Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 2009; 5(1): 93-8.
[http://dx.doi.org/10.1166/jbn.2009.038] [PMID: 20055111]
[44]
Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 2010; 76(1): 50-6.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[45]
Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointerfaces 2010; 79(2): 488-93.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.018] [PMID: 20627485]
[46]
Jha AK, Prasad K. Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotech Phy Chem 2010; 1(2): 110-7.
[47]
Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopesticides 2010; 3(1): 394-9.
[48]
Murugan K, Senthilkumar B, Senbagam D, Al-Sohaibani S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int J Nanomedicine 2014; 9: 2431-8.
[PMID: 24876776]
[49]
Mukunthan KS, Elumalai EK, Patel TN, Murty VR. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 2011; 1(4): 270-4.
[http://dx.doi.org/10.1016/S2221-1691(11)60041-5] [PMID: 23569773]
[50]
Rajakumar G, Abdul Rahuman A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 2011; 118(3): 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[51]
Vineet K, Subhash CY, Sudesh KV. Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 2010; 85: 1301-9.
[http://dx.doi.org/10.1002/jctb.2427]
[52]
Gnanadesigan M, Anand M, Ravikumar S, et al. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 2011; 4(10): 799-803.
[http://dx.doi.org/10.1016/S1995-7645(11)60197-1] [PMID: 22014736]
[53]
Pathipati UR, Pala RR. Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its eco toxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 2011; 389(1-3): 188-94.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.028]
[54]
Yilmaz M, Turkdemir H, Akif KM, et al. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys 2011; 130(3): 1195-202.
[http://dx.doi.org/10.1016/j.matchemphys.2011.08.068]
[55]
Mallikarjuna K, John SN, Narasimha CLG, Manoj DB, Deva PR. Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arab J Chem 2012; 7(6): 1099-103.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.001]
[56]
Sathish K, Manoharan MS, Illanchezian S. Antibacterial, antifungal and tumor cell suppression potential of Morinda citrifolia fruit extracts. Int J Integr Biol 2008; 3: 44-9.
[57]
Edison TJI, Sethuraman MG. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 2012; 47(9): 1351-7.
[http://dx.doi.org/10.1016/j.procbio.2012.04.025]
[58]
Gopinath SM, Saha NS, John VJ, Khanum NS, Ganesh S, Patil GMA. Biological synthesis, characterization and application of silver nanoparticles. Int J Pharm App 2013; 4(1): 19-28.
[59]
Fathima SR, Vadivel A, Samuthira N, Sankaran M. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 2012; 6(1): 1-10.
[PMID: 22182635]
[60]
Kirubaharan CJ, Kalpana D, Lee YS, et al. Biomediated silver nanoparticles for the highly selective copper (ii) ion sensor applications. Ind Eng Chem Res 2012; 51(21): 7441-6.
[http://dx.doi.org/10.1021/ie3003232]
[61]
Kaviya S, Santhanalakshmi J, Viswanathan B. Biosynthesis of silver nanoflakes by Crossandra infundibuliformis leaf extract. Mater Lett 2012; 67(1): 64-6.
[http://dx.doi.org/10.1016/j.matlet.2011.09.023]
[62]
Zahir AA, Rahuman AA. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 2012; 187(3-4): 511-20.
[http://dx.doi.org/10.1016/j.vetpar.2012.02.001] [PMID: 22429701]
[63]
Patil RS, Kokate MR, Kolekar SS. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2012; 91: 234-8.
[http://dx.doi.org/10.1016/j.saa.2012.02.009] [PMID: 22381796]
[64]
Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B Biointerfaces 2012; 94: 226-30.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.040] [PMID: 22348986]
[65]
Raman S, Kandula MP, Jacob JA, et al. Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 2012; 47(2): 273-9.
[http://dx.doi.org/10.1016/j.procbio.2011.11.003]
[66]
Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 2010; 3(2): 138-43.
[http://dx.doi.org/10.1166/asl.2010.1099]
[67]
Umesh BJ, Vishwas AB. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind Crops Prod 2013; 46: 132-7.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[68]
Selvaraj MR, Rohit GA, Abdul RC, Kamaraj AB, Surendra TV. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod 2013; 43: 631-5.
[http://dx.doi.org/10.1016/j.indcrop.2012.08.013]
[69]
Nagarajan K, Soundarapandian K, Ramar R, Ramasamy T. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater Res Bull 2014; 49: 494-502.
[http://dx.doi.org/10.1016/j.materresbull.2013.09.016]
[70]
Mostafa MHK, Eman HI, El-Baghdady KZ, Doaa M. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 2014; 7(6): 1131-9.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.007]
[71]
Yasin S, Liu L, Yao J. Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. J Fiber Bioeng Info 2013; 6(1): 77-84.
[http://dx.doi.org/10.3993/jfbi03201307]
[72]
Rajathi K, Sridhar S. Green Synthesis of silver nanoparticles from the medicinal plant Wrightia tinctoria and its antimicrobial potential. Int J Chemtech Res 2013; 5(4): 1701-13.
[73]
Ning Y, Wei HL. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind Crops Prod 2013; 48: 81-8.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.001]
[74]
Zhang Y, Cheng X, Zhang Y, Xue X, Fu Y. Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2013; 423: 63-8.
[http://dx.doi.org/10.1016/j.colsurfa.2013.01.059]
[75]
Muthu K, Rangasamy R. Green synthesis of silver nanoparticles using Ixora coccinea leaves extract. Mater Lett 2013; 97: 141-3.
[http://dx.doi.org/10.1016/j.matlet.2013.01.087]
[76]
Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AA, Kadhum AA, Mohamad AB. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed 2013; 3(1): 58-63.
[http://dx.doi.org/10.1016/S2221-1691(13)60024-6] [PMID: 23570018]
[77]
Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crops Prod 2014; 52: 714-20.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.037]
[78]
Ajitha B, Reddy YAK, Reddy PS. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 121: 164-72.
[http://dx.doi.org/10.1016/j.saa.2013.10.077] [PMID: 24239759]
[79]
Hemashekhar B, Raja SM, Prathap S, et al. Endophyte fungal isolate mediated biogenic synthesis and evaluation of biomedical applications of silver nanoparticles. Mater Tech Adv Perform Mater 2020; pp. 1-2.
[80]
Mohamed SAA, Mohamed SS, Aziza AEN, Mosaad AAW. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 2014; 18(4): 356-63.
[http://dx.doi.org/10.1016/j.jscs.2013.09.011]
[81]
Suresh AK, Doktycz MJ, Wang W, et al. Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater 2011; 7(12): 4253-8.
[http://dx.doi.org/10.1016/j.actbio.2011.07.007] [PMID: 21798382]
[82]
Najimu Nisha S, Aysha OS, Syed Nasar Rahaman J, et al. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 124: 194-8.
[http://dx.doi.org/10.1016/j.saa.2013.12.019] [PMID: 24486863]
[83]
Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 2014; 121: 88-93.
[http://dx.doi.org/10.1016/j.saa.2013.10.073] [PMID: 24231743]
[84]
Vidhu VK, Philip D. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim Acta A Mol Biomol Spectrosc 2014; 117: 102-8.
[http://dx.doi.org/10.1016/j.saa.2013.08.015] [PMID: 23988525]
[85]
Muniyappan NA, Nagarajan NS. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 2014; 49(6): 1054-61.
[http://dx.doi.org/10.1016/j.procbio.2014.03.015]
[86]
Emeka EE, Ojiefoh OC, Aleruchi C, et al. Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron 2014; 57: 1-5.
[http://dx.doi.org/10.1016/j.micron.2013.09.003] [PMID: 24268599]
[87]
Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2015; 134: 34-9.
[http://dx.doi.org/10.1016/j.saa.2014.05.076] [PMID: 24997264]
[88]
Palaniyandi V, Jayabrata D, Raman P, Baskaralingam V, Kannaiyan P. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind Crops Prod 2015; 66: 103-9.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.042]
[89]
Muthukrishnan S, Bhakya T, Senthil K, Rao MV. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii-an endemic species S. Ind Crops Prod 2015; 63: 119-24.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.022]
[90]
Fatimah I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J Adv Res 2016; 7(6): 961-9.
[http://dx.doi.org/10.1016/j.jare.2016.10.002] [PMID: 27857843]
[91]
Veerasamy R, Sethu V, Sivadasan S, Syed A, Ali S, Rajak H. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 2016; 180: 264-7.
[http://dx.doi.org/10.1016/j.matlet.2016.05.172]
[92]
Shakeel A, Saifullah MA, Babu LS, Saiqa I. Synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Rad Res App Sci 2016; 9(1): 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[93]
Zainal AA, Rosiyah Y, Shamala DS, Puteh R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv Mater Sci Eng 2016; 2016: 1-6.
[94]
Velayutham K, Ramanibai R, Umadevi M. Green synthesis of silver nanoparticles using Manihot esculenta leaves against Aedes aegypti and Culex quinquefasciatus. J Basic Appl Zool 2016; 74: 37-40.
[http://dx.doi.org/10.1016/j.jobaz.2016.06.002]
[95]
Benakashani F, Allafchian AR, Jalali SAH. Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int J Mod Sci 2016; 2(4): 251-8.
[http://dx.doi.org/10.1016/j.kijoms.2016.08.004]
[96]
Yugal KM, Sujogya KP, Akshaya KB, Tapan KM. Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front Microbiol 2017; 8: 626.
[97]
Tej S, Kumari J, Amar P, Ajeet S, Chauhan SC. Spectroscopic, microscopic characterization of Cannabis sativa leaf extract mediated silver nanoparticles and their synergistic effect with antibiotics against human pathogen. Alexandria Eng J 2018; 57(4): 3043-51.
[http://dx.doi.org/10.1016/j.aej.2018.04.002]
[98]
Hamsa IA, Hind AA, Hayam SA. 2019.
[99]
Samreen F, Mahendra S, Mazahar F, Mohd AP. Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int J Nanodimens 2019; 10(2): 163-8.
[100]
Hemlata PRM, Meena PR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020; 5(10): 5520-8.
[http://dx.doi.org/10.1021/acsomega.0c00155] [PMID: 32201844]
[101]
Kambale EK, Nkanga CI, Mutonkole BI, et al. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 2020; 6(8)e04493
[http://dx.doi.org/10.1016/j.heliyon.2020.e04493] [PMID: 32793824]
[102]
Kumari J, Devender A, Gusztáv F, László L, Gábor D, Tej S. Antibacterial and anti-inflammatory activities of Cassia fistula fungal broth-capped silver nanoparticles. Mater Technol 2020.
[http://dx.doi.org/10.1080/10667857.2020.1802841]
[103]
Molpa D, Panwar AS, Sakalni P. In vitro antibacterial activity of Ribes grossularia against various pathogenic microbes. Int J Basic Appl Sci Res 2015; 3(1): 142-8.
[104]
Marambio JC, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010; 12(5): 1531-51.
[http://dx.doi.org/10.1007/s11051-010-9900-y]
[105]
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009; 34(2): 103-10.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.01.017] [PMID: 19339161]
[106]
Devendra J, Hemant KD, Sumita K, Kothari SL. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Dig J Nanomater Biostruct 2009; 4(4): 723-7.
[107]
Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 2010; 5(2): 483-9.
[108]
Yogeswari R, Sikha B, Akshya KO, Nayak PL. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J Microbiol Antimicrob 2012; 4(6): 103-9.
[http://dx.doi.org/10.5897/JMA11.060]
[109]
Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K. Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B Biointerfaces 2013; 103: 658-61.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.022] [PMID: 23266074]
[110]
Swarnali M, Deepak K, Gadadhar B, Sudip KG, Jayasree KL. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol 2014; 5(1): 1-7.
[111]
Pulicherla Y, Reddla H, Nataru S. 2015.
[112]
Yi HH, Kuen SL, Wan JK, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One 2015; 10(12): 1-17.
[113]
Krychowiak M, Grinholc M, Banasiuk R, et al. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One 2014; 9(12)e115727
[http://dx.doi.org/10.1371/journal.pone.0115727] [PMID: 25551660]
[114]
Saikia D, Gogoi PK, Phukan P, Bhuyan N, Borchetia S, Saikia J. Green synthesis of silver nanoparticles using Asiatic Pennywort and Bryophyllum leaves extract and their antimicrobial activity. Advanced Materials Letters 2015; 6(3): 260-4.
[http://dx.doi.org/10.5185/amlett.2015.5655]
[115]
Renyan Y, Yang H, Wang T, Wang C. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Phys Lett A 2016; 380(45): 3773-7.
[http://dx.doi.org/10.1016/j.physleta.2016.09.029]
[116]
Kalaiyarasu T, Karthi N, Sharmila GV, Manju V. In Vitro assessment of antioxidant and antibacterial activity of green synthesized silver nanoparticles from Digitaria radicosa leaves. 2016.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy