Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

叉头盒A3(FOXA3)通过靶向转移相关的结肠癌1(MACC1)信号通路在大肠癌细胞中抑制癌症的干性并部分增强化学敏感性。

卷 21, 期 3, 2021

发表于: 07 December, 2020

页: [254 - 267] 页: 14

弟呕挨: 10.2174/1568009620666201207150632

价格: $65

摘要

背景:晚期结直肠癌(CRC)治疗的主要挑战是化学耐药性的持续发生。已确定的病因之一是存在癌干样细胞(CSC),因此,肿瘤表现出对外部治疗挑战的抵抗力。 目的:前叉箱A3(FOXA3)是有效的转录因子,可在许多生理系统中增强干果的获得和维持。但是,尚未在CRC中探讨其对癌症干性的影响,特别是对癌症的治疗,构成了当前研究的基础。 方法:采用RT-qPCR检测FOXA3在耐奥沙利铂的CRC组织和细胞中的表达。使用WST-1,凋亡ELISA,集落形成和异种移植模型评估了FOXA3操作对奥沙利铂敏感性的影响。使用肿瘤球分析和CD44染色确定FOXA3改变对CSC的影响。使用ChIP,Co-IP和荧光素酶报告基因分析研究了FOXA3对MACC1的转录调控。 结果:与对奥沙利铂敏感的患者的肿瘤样品相比,在非奥沙利铂无反应的患者的肿瘤样品中FOXA3表达显着降低。 FOXA3表达的这种下调预示了在我们117名患者的队列中化疗后总体或无病生存期较差。 FOXA3下调显着增强了细胞存活和干样性质,从而使CRC细胞对奥沙利铂诱导的细胞死亡无反应。从机理上讲,FOXA3的抗肿瘤作用主要是通过对奥沙利铂耐药的CRC细胞中结肠癌1(MACC1)相关转移的转录抑制进行介导的。 结论:我们的发现建立了FOXA3作为CRC中有效的肿瘤抑制因子,它可能通过抑制CRC细胞内MACC1的转录而破坏茎的维持并调节对奥沙利铂的敏感性。

关键词: 大肠癌(CRC),癌干细胞(CSC),叉头盒A3(FOXA3),转移相关的结肠癌1(MACC1),奥沙利铂,细胞凋亡。

« Previous
图形摘要

[1]
Izumi, D.; Toden, S.; Ureta, E.; Ishimoto, T.; Baba, H.; Goel, A. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis., 2019, 10(4), 267.
[http://dx.doi.org/10.1038/s41419-019-1493-5] [PMID: 30890693]
[2]
Ma, L.; Dong, L.; Chang, P. CD44v6 engages in colorectal cancer progression. Cell Death Dis., 2019, 10(1), 30.
[http://dx.doi.org/10.1038/s41419-018-1265-7] [PMID: 30631039]
[3]
Sutera, P.; Solomina, J.; Wegner, R.E.; Abel, S.; Monga, D.; Finley, G.; McCormick, J.; Kirichenko, A.V. Post-operative morbidity and mortality following total neoadjuvant therapy versus conventional neoadjuvant chemoradiotherapy in locally advanced rectal cancer. J. Gastrointest. Cancer, 2020.
[http://dx.doi.org/10.1007/s12029-020-00401-3] [PMID: 32936391]
[4]
Zhang, Y.; Wang, Y.; Liu, X.; Chen, B.; Zhuang, J.; Li, S.; Yang, Y.; Su, Y.; Guan, G. Worse prognosis in young patients with locally advanced rectal cancer following neoadjuvant chemoradiotherapy: A comparative study. Medicine (Baltimore), 2020, 99(35), e21304.
[http://dx.doi.org/10.1097/MD.0000000000021304] [PMID: 32871861]
[5]
Kong, J.C.; Su, W.K.; Ng, C.W.; Guerra, G.R.; Chakraborty, J.; Lutton, N.; Morris, B.; Gourlas, P. Colorectal cancer in younger adults from a Bi-National Colorectal Cancer Audit registry. ANZ J. Surg., 2020.
[http://dx.doi.org/10.1111/ans.16250] [PMID: 32856368]
[6]
Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J. Mol. Sci., 2020, 21(15), E5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[7]
Brown, K.G.M.; Koh, C.E. Surgical management of recurrent colon cancer. J. Gastrointest. Oncol., 2020, 11(3), 513-525.
[http://dx.doi.org/10.21037/jgo-2019-ccm-09] [PMID: 32655930]
[8]
Tan, G.; Wong, J. Surgical management and hyperthermic intraperitoneal chemotherapy for locally advanced colorectal cancer. J. Gastrointest. Oncol., 2020, 11(3), 508-512.
[http://dx.doi.org/10.21037/jgo.2019.12.10] [PMID: 32655929]
[9]
Bruera, G.; D’Andrilli, A.; Simmaco, M.; Guadagni, S.; Rendina, E.A.; Ricevuto, E. Relevance of pharmacogenomics and multidisciplinary management in a young-elderly patient with KRAS mutant colorectal cancer treated with first-line aflibercept-containing chemotherapy. Front. Oncol., 2020, 10, 1155.
[http://dx.doi.org/10.3389/fonc.2020.01155] [PMID: 32850329]
[10]
Auvray, M; Tougeron, D; Auclin, E; Moulin, V; Artru, P; Hautefeuille, V Efficacy and safety of aflibercept in combination with chemotherapy beyond second-line therapy in metastatic colorectal carcinoma patients: An AGEO multicenter study. Clin Colorectal Cancer, 2020, 19(1), 39-47.
[11]
Ottaiano, A.; Scala, S.; Normanno, N.; Napolitano, M.; Capozzi, M.; Rachiglio, A.M.; Roma, C.; Trotta, A.M.; D’Alterio, C.; Portella, L.; Romano, C.; Cassata, A.; Casaretti, R.; Silvestro, L.; Nappi, A.; Tafuto, S.; Avallone, A.; De Stefano, A.; Tamburini, M.; Picone, C.; Petrillo, A.; Izzo, F.; Palaia, R.; Albino, V.; Amore, A.; Belli, A.; Pace, U.; Di Marzo, M.; Chiodini, P.; Botti, G.; De Feo, G.; Delrio, P.; Nasti, G. Cetuximab, irinotecan and fluorouracile in fiRst-line treatment of immunologically-selected advanced colorectal cancer patients: the CIFRA study protocol. BMC Cancer, 2019, 19(1), 899.
[http://dx.doi.org/10.1186/s12885-019-6109-z] [PMID: 31500586]
[12]
Morse, M.A.; Hochster, H.; Benson, A. Perspectives on Treatment of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitor Therapy. Oncologist, 2020, 25(1), 33-45.
[http://dx.doi.org/10.1634/theoncologist.2019-0176] [PMID: 31383813]
[13]
Yao, Y.; Li, N. MIR600HG suppresses metastasis and enhances oxaliplatin chemosensitivity by targeting ALDH1A3 in colorectal cancer. Biosci. Rep., 2020, 40(4), BSR20200390.
[http://dx.doi.org/10.1042/BSR20200390] [PMID: 32270866]
[14]
Gasiulė, S.; Dreize, N.; Kaupinis, A.; Ražanskas, R.; Čiupas, L.; Stankevičius, V.; Kapustina, Ž.; Laurinavičius, A.; Valius, M.; Vilkaitis, G. Molecular insights into miRNA-driven resistance to 5-fluorouracil and oxaliplatin chemotherapy: miR-23b modulates the epithelial–mesenchymal transition of colorectal cancer cells. J. Clin. Med., 2019, 8(12), E2115.
[http://dx.doi.org/10.3390/jcm8122115] [PMID: 31810268]
[15]
Li, N.; Babaei-Jadidi, R.; Lorenzi, F.; Spencer-Dene, B.; Clarke, P.; Domingo, E.; Tulchinsky, E.; Vries, R.G.J.; Kerr, D.; Pan, Y.; He, Y.; Bates, D.O.; Tomlinson, I.; Clevers, H.; Nateri, A.S. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis, 2019, 8(3), 13.
[http://dx.doi.org/10.1038/s41389-019-0125-3] [PMID: 30783098]
[16]
Dandawate, P.; Subramaniam, D.; Panovich, P.; Standing, D.; Krishnamachary, B.; Kaushik, G.; Thomas, S.M.; Dhar, A.; Weir, S.J.; Jensen, R.A.; Anant, S. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Sci. Rep., 2020, 10(1), 1290.
[http://dx.doi.org/10.1038/s41598-020-57940-9] [PMID: 31992775]
[17]
Altevogt, P.; Ben-Ze’ev, A.; Gavert, N.; Schumacher, U.; Schäfer, H.; Sebens, S. Recent insights into the role of L1CAM in cancer initiation and progression. Int. J. Cancer, 2020.
[http://dx.doi.org/10.1002/ijc.33177] [PMID: 32588424]
[18]
Morral, C; Stanisavljevic, J; Hernando-Momblona, X; Mereu, E; Alvarez-Varela, A; Cortina, C Zonation of ribosomal DNA transcription defines a stem cell hierarchy in colorectal cancer. Cell Stem Cell, 2020, 26(6), 845-861.
[19]
Heslop, J.A.; Duncan, S.A. FoxA factors: the chromatin key and doorstop essential for liver development and function. Genes Dev., 2020, 34(15-16), 1003-1004.
[http://dx.doi.org/10.1101/gad.340570.120] [PMID: 32747476]
[20]
Schill, D.; Nord, J.; Cirillo, L.A. FoxO1 and FoxA1/2 form a complex on DNA and cooperate to open chromatin at insulin-regulated genes. Biochem. Cell Biol., 2019, 97(2), 118-129.
[http://dx.doi.org/10.1139/bcb-2018-0104] [PMID: 30142277]
[21]
Pedersen, K.B.; Chodavarapu, H.; Lazartigues, E. Forkhead box transcription factors of the FOXA class are required for basal transcription of angiotensin-converting enzyme 2. J. Endocr. Soc., 2017, 1(4), 370-384.
[http://dx.doi.org/10.1210/js.2016-1071] [PMID: 29082356]
[22]
Takashima, Y.; Horisawa, K.; Udono, M.; Ohkawa, Y.; Suzuki, A. Prolonged inhibition of hepatocellular carcinoma cell proliferation by combinatorial expression of defined transcription factors. Cancer Sci., 2018, 109(11), 3543-3553.
[http://dx.doi.org/10.1111/cas.13798] [PMID: 30220099]
[23]
Huang, C.; Liu, J.; Xiong, B.; Yonemura, Y.; Yang, X. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene, 2019, 685, 202-210.
[http://dx.doi.org/10.1016/j.gene.2018.11.022] [PMID: 30415009]
[24]
Chen, B.; Yu, J.; Lu, L.; Dong, F.; Zhou, F.; Tao, X.; Sun, E. Upregulated forkhead-box A3 elevates the expression of forkhead-box A1 and forkhead-box A2 to promote metastasis in esophageal cancer. Oncol. Lett., 2019, 17(5), 4351-4360.
[http://dx.doi.org/10.3892/ol.2019.10078] [PMID: 30944629]
[25]
Yahoo, N.; Pournasr, B.; Rostamzadeh, J.; Hakhamaneshi, M.S.; Ebadifar, A.; Fathi, F.; Baharvand, H. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells. Biochem. Biophys. Res. Commun., 2016, 474(1), 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.102] [PMID: 27107701]
[26]
Xu, L.; Panel, V.; Ma, X.; Du, C.; Hugendubler, L.; Gavrilova, O.; Liu, A.; McLaughlin, T.; Kaestner, K.H.; Mueller, E. The winged helix transcription factor Foxa3 regulates adipocyte differentiation and depot-selective fat tissue expansion. Mol. Cell. Biol., 2013, 33(17), 3392-3399.
[http://dx.doi.org/10.1128/MCB.00244-13] [PMID: 23798556]
[27]
Gao, B.; Xie, W.; Wu, X.; Wang, L.; Guo, J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188365.
[http://dx.doi.org/10.1016/j.bbcan.2020.188365] [PMID: 32325165]
[28]
Mukherjee, A.; Hollern, D.P.; Williams, O.G.; Rayburn, T.S.; Byrd, W.A.; Yates, C.; Jones, J.D. A review of FOXI3 regulation of development and possible roles in cancer progression and metastasis. Front. Cell Dev. Biol., 2018, 6, 69.
[http://dx.doi.org/10.3389/fcell.2018.00069] [PMID: 30018953]
[29]
Li, Y.; Gong, P.; Hou, J.X.; Huang, W.; Ma, X.P.; Wang, Y.L.; Li, J.; Cui, X.B.; Li, N. miR-34a Regulates Multidrug Resistance via Positively Modulating OAZ2 Signaling in Colon Cancer Cells. J. Immunol. Res., 2018, 2018, 7498514.
[http://dx.doi.org/10.1155/2018/7498514] [PMID: 30175154]
[30]
Xu, Y.Y.; Yu, H.R.; Sun, J.Y.; Zhao, Z.; Li, S.; Zhang, X.F.; Liao, Z.X.; Cui, M.K.; Li, J.; Li, C.; Zhang, Q. Upregulation of PITX2 Promotes Letrozole Resistance via Transcriptional Activation of IFITM1 Signaling in Breast Cancer Cells. Cancer Res. Treat., 2019, 51(2), 576-592.
[http://dx.doi.org/10.4143/crt.2018.100] [PMID: 30025446]
[31]
Parekh, U; Wu, Y; Zhao, D; Worlikar, A; Shah, N; Zhang, K Mapping cellular reprogramming via pooled overexpression screens with paired fitness and single-cell RNA-sequencing readout. Cell Syst, 2018, 7(5), 548-555.
[32]
Isella, C.; Mellano, A.; Galimi, F.; Petti, C.; Capussotti, L.; De Simone, M.; Bertotti, A.; Medico, E.; Muratore, A. MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Ann. Surg., 2013, 257(6), 1089-1095.
[http://dx.doi.org/10.1097/SLA.0b013e31828f96bc] [PMID: 23665971]
[33]
Tülüce, Y.; Ahmed, B.A.; Koyuncu, İ.; Durgun, M. The cytotoxic, apoptotic and oxidative effects of carbonic anhydrase IX inhibitor on colorectal cancer cells. J. Bioenerg. Biomembr., 2018, 50(2), 107-116.
[http://dx.doi.org/10.1007/s10863-018-9749-9] [PMID: 29520697]
[34]
Victer, T.N.; Dos Santos, C.S.; Báo, S.N.; Sampaio, T.L. Deceased tissue donor serology and molecular testing for HIV, hepatitis B and hepatitis C viruses: a lack of cadaveric validated tests. Cell Tissue Bank., 2016, 17(4), 543-553.
[http://dx.doi.org/10.1007/s10561-016-9564-7] [PMID: 27329292]
[35]
Esposito, D.; Crescenzi, E.; Sagar, V.; Loreni, F.; Russo, A.; Russo, G. Human rpL3 plays a crucial role in cell response to nucleolar stress induced by 5-FU and L-OHP. Oncotarget, 2014, 5(22), 11737-11751.
[http://dx.doi.org/10.18632/oncotarget.2591] [PMID: 25473889]
[36]
Sharma, A.; Mishra, T.; Thacker, G.; Mishra, M.; Narender, T.; Trivedi, A.K. Chebulinic acid inhibits MDA-MB-231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy. Cell Biol. Int., 2020.
[http://dx.doi.org/10.1002/cbin.11463] [PMID: 32902904]
[37]
Sui, H.; Duan, P.; Guo, P.; Hao, L.; Liu, X.; Zhang, J.; Zhu, H.; Zhao, M.; Wang, H.; Li, Q.; Wang, S. Zhi Zhen Fang formula reverses Hedgehog pathway mediated multidrug resistance in colorectal cancer. Oncol. Rep., 2017, 38(4), 2087-2095.
[http://dx.doi.org/10.3892/or.2017.5917] [PMID: 28849164]
[38]
Chen, H.Y.; Lang, Y.D.; Lin, H.N.; Liu, Y.R.; Liao, C.C.; Nana, A.W.; Yen, Y.; Chen, R.H. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Sci. Rep., 2019, 9(1), 9687.
[http://dx.doi.org/10.1038/s41598-019-41053-z] [PMID: 31273221]
[39]
Lai, H.T.; Tseng, W.K.; Huang, S.W.; Chao, T.C.; Su, Y. MicroRNA-203 diminishes the stemness of human colon cancer cells by suppressing GATA6 expression. J. Cell. Physiol., 2020, 235(3), 2866-2880.
[http://dx.doi.org/10.1002/jcp.29192] [PMID: 31544978]
[40]
Dong, Y.S.; Hou, W.G.; Li, Y.; Liu, D.B.; Hao, G.Z.; Zhang, H.F.; Li, J.C.; Zhao, J.; Zhang, S.; Liang, G.B.; Li, W. Unexpected requirement for a binding partner of the syntaxin family in phagocytosis by murine testicular Sertoli cells. Cell Death Differ., 2016, 23(5), 787-800.
[http://dx.doi.org/10.1038/cdd.2015.139] [PMID: 26494466]
[41]
Zhang, C.; Lai, J.H.; Hu, B.; Zhang, S.; Zhao, J.; Li, W. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. Biochim. Biophys. Acta, 2014, 1839(11), 1170-1182.
[http://dx.doi.org/10.1016/j.bbagrm.2014.08.006] [PMID: 25153068]
[42]
Asgari-Karchekani, S.; Karimian, M.; Mazoochi, T.; Taheri, M.A.; Khamehchian, T. CDX2 Protein Expression in Colorectal Cancer and ItsCorrelation with Clinical and Pathological Characteristics, Prognosis, and Survival Rate of Patients. J. Gastrointest. Cancer, 2020, 51(3), 844-849.
[http://dx.doi.org/10.1007/s12029-019-00314-w] [PMID: 31630373]
[43]
Zhang, S.; Li, W.; Zhu, C.; Wang, X.; Li, Z.; Zhang, J.; Zhao, J.; Hu, J.; Li, T.; Zhang, Y. Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. J. Biol. Chem., 2012, 287(48), 40471-40483.
[http://dx.doi.org/10.1074/jbc.M112.383802] [PMID: 23086931]
[44]
Jin, X.; Zhang, S.; Ding, T.; Zhao, P.; Zhang, C.; Zhang, Y.; Li, W. Testicular Lmcd1 regulates phagocytosis by Sertoli cells through modulation of NFAT1/Txlna signaling pathway. Aging Cell, 2020, 19(10), e13217.
[http://dx.doi.org/10.1111/acel.13217] [PMID: 32840323]
[45]
Radhakrishnan, H.; Walther, W.; Zincke, F.; Kobelt, D.; Imbastari, F.; Erdem, M.; Kortüm, B.; Dahlmann, M.; Stein, U. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev., 2018, 37(4), 805-820.
[http://dx.doi.org/10.1007/s10555-018-9771-8] [PMID: 30607625]
[46]
Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.M.; Gingras, M.C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.; Quinn, M.C.; Nourse, C.; Murtaugh, L.C.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourbakhsh, E.; Wani, S.; Fink, L.; Holmes, O.; Chin, V.; Anderson, M.J.; Kazakoff, S.; Leonard, C.; Newell, F.; Waddell, N.; Wood, S.; Xu, Q.; Wilson, P.J.; Cloonan, N.; Kassahn, K.S.; Taylor, D.; Quek, K.; Robertson, A.; Pantano, L.; Mincarelli, L.; Sanchez, L.N.; Evers, L.; Wu, J.; Pinese, M.; Cowley, M.J.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chantrill, L.A.; Mawson, A.; Humphris, J.; Chou, A.; Pajic, M.; Scarlett, C.J.; Pinho, A.V.; Giry-Laterriere, M.; Rooman, I.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Merrett, N.D.; Toon, C.W.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Moran-Jones, K.; Jamieson, N.B.; Graham, J.S.; Duthie, F.; Oien, K.; Hair, J.; Grützmann, R.; Maitra, A.; Iacobuzio-Donahue, C.A.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Corbo, V.; Bassi, C.; Rusev, B.; Capelli, P.; Salvia, R.; Tortora, G.; Mukhopadhyay, D.; Petersen, G.M.; Munzy, D.M.; Fisher, W.E.; Karim, S.A.; Eshleman, J.R.; Hruban, R.H.; Pilarsky, C.; Morton, J.P.; Sansom, O.J.; Scarpa, A.; Musgrove, E.A.; Bailey, U.M.; Hofmann, O.; Sutherland, R.L.; Wheeler, D.A.; Gill, A.J.; Gibbs, R.A.; Pearson, J.V.; Waddell, N.; Biankin, A.V.; Grimmond, S.M. Australian pancreatic cancer genome initiative. genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531(7592), 47-52.
[http://dx.doi.org/10.1038/nature16965] [PMID: 26909576]
[47]
Ma, L.; Duan, C.C.; Yang, Z.Q.; Ding, J.L.; Liu, S.; Yue, Z.P.; Guo, B. Novel insights into Dhh signaling in antler chondrocyte proliferation and differentiation: Involvement of Foxa. J. Cell. Physiol., 2020, 235(9), 6023-6031.
[http://dx.doi.org/10.1002/jcp.29528] [PMID: 31960430]
[48]
Maeda, Y.; Tsuchiya, T.; Hao, H.; Tompkins, D.H.; Xu, Y.; Mucenski, M.L.; Du, L.; Keiser, A.R.; Fukazawa, T.; Naomoto, Y.; Nagayasu, T.; Whitsett, J.A. Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J. Clin. Invest., 2012, 122(12), 4388-4400.
[http://dx.doi.org/10.1172/JCI64048] [PMID: 23143308]
[49]
Han, S.; Dziedzic, N.; Gadue, P.; Keller, G.M.; Gouon-Evans, V. An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells, 2011, 29(2), 217-228.
[http://dx.doi.org/10.1002/stem.576] [PMID: 21732480]
[50]
Dai, K.; Chen, R.; Ding, Y.; Niu, Z.; Fan, J.; Xu, C. Induction of functional hepatocyte-like cells by overexpression of FOXA3 and HNF4α in rat bone marrow mesenchymal stem cells. Cells Tissues Organs, 2014, 200(2), 132-140.
[http://dx.doi.org/10.1159/000380762] [PMID: 25896100]
[51]
Huang, P.; Zhang, L.; Gao, Y.; He, Z.; Yao, D.; Wu, Z.; Cen, J.; Chen, X.; Liu, C.; Hu, Y.; Lai, D.; Hu, Z.; Chen, L.; Zhang, Y.; Cheng, X.; Ma, X.; Pan, G.; Wang, X.; Hui, L. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell, 2014, 14(3), 370-384.
[http://dx.doi.org/10.1016/j.stem.2014.01.003] [PMID: 24582927]
[52]
Lim, K.T.; Kim, J.; Hwang, S.I.; Zhang, L.; Han, H.; Bae, D.; Kim, K.P.; Hu, Y.P.; Schöler, H.R.; Lee, I.; Hui, L.; Han, D.W. Direct conversion of mouse fibroblasts into cholangiocyte progenitor cells. Stem Cell Reports, 2018, 10(5), 1522-1536.
[http://dx.doi.org/10.1016/j.stemcr.2018.03.002] [PMID: 29606616]
[53]
Li, H.; Chen, Y.X.; Wen, J.G.; Zhou, H.H. Metastasis-associated in colon cancer 1: A promising biomarker for the metastasis and prognosis of colorectal cancer. Oncol. Lett., 2017, 14(4), 3899-3908.
[http://dx.doi.org/10.3892/ol.2017.6670] [PMID: 28943898]
[54]
Kim, H.J.; Moon, S.J.; Kim, S.H.; Heo, K.; Kim, J.H. DBC1 regulates Wnt/β-catenin-mediated expression of MACC1, a key regulator of cancer progression, in colon cancer. Cell Death Dis., 2018, 9(8), 831.
[http://dx.doi.org/10.1038/s41419-018-0899-9] [PMID: 30082743]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy