Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of the Diagnostic Signature of Sepsis Based on Bioinformatic Analysis of Gene Expression and Machine Learning

Author(s): Qian Zhao, Ning Xu, Hui Guo and Jianguo Li*

Volume 25, Issue 1, 2022

Published on: 04 December, 2020

Page: [21 - 28] Pages: 8

DOI: 10.2174/1386207323666201204130031

Price: $65

Abstract

Background: Sepsis is a life-threatening disease caused by the dysregulated host response to the infection and the major cause of death of patients in the intensive care unit (ICU).

Objective: Early diagnosis of sepsis could significantly reduce in-hospital mortality. Though generated from infection, the development of sepsis follows its own psychological process and disciplines, alters with gender, health status and other factors. Hence, the analysis of mass data by bioinformatics tools and machine learning is a promising method for exploring early diagnosis.

Methods: We collected miRNA and mRNA expression data of sepsis blood samples from Gene Expression Omnibus (GEO) and ArrayExpress databases, screened out differentially expressed genes (DEGs) by R software, predicted miRNA targets on TargetScanHuman and miRTarBase websites, conducted Gene Ontology (GO) term and KEGG pathway enrichment analysis based on overlapping DEGs. The STRING database and Cytoscape were used to build protein-protein interaction (PPI) network and predict hub genes. Then we constructed a Random Forest model by using the hub genes to assess sample type.

Results: Bioinformatic analysis of GEO dataset revealed 46 overlapping DEGs in sepsis. The PPI network analysis identified five hub genes, SOCS3, KBTBD6, FBXL5, FEM1C and WSB1. Random Forest model based on these five hub genes was used to assess GSE95233 and GSE95233 datasets, and the area under the curve (AUC) of ROC was 0.900 and 0.7988, respectively, which confirmed the efficacy of this model.

Conclusion: The integrated analysis of gene expression in sepsis and the effective Random Forest model built in this study may provide promising diagnostic methods for sepsis.

Keywords: Sepsis, bioinformatics analysis, random forest, diagnosis, GO, KEGG.

Graphical Abstract

[1]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic Shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[2]
Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; Fleischmann-Struzek, C.; Machado, F.R.; Reinhart, K.K.; Rowan, K.; Seymour, C.W.; Watson, R.S.; West, T.E.; Marinho, F.; Hay, S.I.; Lozano, R.; Lopez, A.D.; Angus, D.C.; Murray, C.J.L.; Naghavi, M. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219), 200-211.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[3]
Perman, S.M.; Goyal, M.; Gaieski, D.F. Initial emergency department diagnosis and management of adult patients with severe sepsis and septic shock. Scand. J. Trauma Resusc. Emerg. Med., 2012, 20, 41.
[http://dx.doi.org/10.1186/1757-7241-20-41] [PMID: 22737991]
[4]
Iwashyna, T.J.; Ely, E.W.; Smith, D.M.; Langa, K.M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA, 2010, 304(16), 1787-1794.
[http://dx.doi.org/10.1001/jama.2010.1553] [PMID: 20978258]
[5]
Huang, C.Y.; Daniels, R.; Lembo, A.; Hartog, C.; O’Brien, J.; Heymann, T.; Reinhart, K.; Nguyen, H.B. Sepsis Survivors Engagement Project (SSEP). Life after sepsis: an international survey of survivors to understand the post-sepsis syndrome. Int. J. Qual. Health Care, 2019, 31(3), 191-198.
[http://dx.doi.org/10.1093/intqhc/mzy137] [PMID: 29924325]
[6]
Kim, E.Y.; Ner-Gaon, H.; Varon, J.; Cullen, A.M.; Guo, J.; Choi, J.; Barragan-Bradford, D.; Higuera, A.; Pinilla-Vera, M.; Short, S.A.; Arciniegas-Rubio, A.; Tamura, T.; Leaf, D.E.; Baron, R.M.; Shay, T.; Brenner, M.B. Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells. J. Clin. Invest., 2020, 130(6), 3238-3252.
[http://dx.doi.org/10.1172/JCI128075] [PMID: 32154791]
[7]
Sun, W.; Li, H.; Gu, J. Up-regulation of microRNA-574 attenuates lipopolysaccharide- or cecal ligation and puncture-induced sepsis associated with acute lung injury. Cell Biochem. Funct., 2020, 38(7), 847-858.
[http://dx.doi.org/10.1002/cbf.3496] [PMID: 32090367]
[8]
Qiu, N.; Xu, X.; He, Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm. Med., 2020, 20(1), 49.
[http://dx.doi.org/10.1186/s12890-020-1084-3] [PMID: 32087725]
[9]
Zhang, J.; Luo, Y.; Wang, X.; Zhu, J.; Li, Q.; Feng, J.; He, D.; Zhong, Z.; Zheng, X.; Lu, J.; Zou, D.; Luo, J. Global transcriptional regulation of STAT3- and MYC-mediated sepsis-induced ARDS. Ther. Adv. Respir. Dis., 2019, 13.
[http://dx.doi.org/10.1177/1753466619879840] [PMID: 31566109]
[10]
Cao, C.; Zhang, Y.; Chai, Y.; Wang, L.; Yin, C.; Shou, S.; Jin, H. Attenuation of sepsis-induced cardiomyopathy by regulation of MicroRNA-23b Is mediated through targeting of MyD88-mediated NF-κB activation. Inflammation, 2019, 42(3), 973-986.
[http://dx.doi.org/10.1007/s10753-019-00958-7] [PMID: 30734878]
[11]
Belsky, J.B.; Rivers, E.P.; Filbin, M.R.; Lee, P.J.; Morris, D.C. Regulation of actin in sepsis. Expert Opin Biol Ther., 2018, 18(sup1), 193-197.
[12]
Kulasingam, V.; Diamandis, E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol., 2008, 5(10), 588-599.
[http://dx.doi.org/10.1038/ncponc1187] [PMID: 18695711]
[13]
Vesteinn, T.; Sheila, M. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014, 513(7517), 202-209.
[http://dx.doi.org/10.1038/nature13480] [PMID: 25079317]
[14]
Chen, H.; Li, Y.; Li, T.; Sun, H.; Tan, C.; Gao, M.; Xing, W.; Xiao, X. Identification of potential transcriptional biomarkers differently expressed in both S. aureus- and E. coli-Induced sepsis via integrated analysis. BioMed Res. Int., 2019, 2019
[http://dx.doi.org/10.1155/2019/2487921] [PMID: 31093495]
[15]
Jekarl, D.W.; Kim, K.S.; Lee, S.; Kim, M.; Kim, Y. Cytokine and molecular networks in sepsis cases: a network biology approach. Eur. Cytokine Netw., 2018, 29(3), 103-111.
[http://dx.doi.org/10.1684/ecn.2018.0414] [PMID: 30547887]
[16]
Weiterer, S.; Uhle, F.; Lichtenstern, C.; Siegler, B.H.; Bhuju, S.; Jarek, M.; Bartkuhn, M.; Weigand, M.A. Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS One, 2015, 10(3)
[http://dx.doi.org/10.1371/journal.pone.0121748] [PMID: 25793379]
[17]
Ge, Q.M.; Huang, C.M.; Zhu, X.Y.; Bian, F.; Pan, S.M. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One, 2017, 12(3)
[http://dx.doi.org/10.1371/journal.pone.0173292] [PMID: 28296904]
[18]
Vasilescu, C.; Rossi, S.; Shimizu, M.; Tudor, S.; Veronese, A.; Ferracin, M.; Nicoloso, M.S.; Barbarotto, E.; Popa, M.; Stanciulea, O.; Fernandez, M.H.; Tulbure, D.; Bueso-Ramos, C.E.; Negrini, M.; Calin, G.A. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One, 2009, 4(10)
[http://dx.doi.org/10.1371/journal.pone.0007405] [PMID: 19823581]
[19]
Venet, F.; Schilling, J.; Cazalis, M.A.; Demaret, J.; Poujol, F.; Girardot, T.; Rouget, C.; Pachot, A.; Lepape, A.; Friggeri, A.; Rimmelé, T.; Monneret, G.; Textoris, J. Modulation of LILRB2 protein and mRNA expressions in septic shock patients and after ex vivo lipopolysaccharide stimulation. Hum. Immunol., 2017, 78(5-6), 441-450.
[http://dx.doi.org/10.1016/j.humimm.2017.03.010] [PMID: 28341250]
[20]
Cazalis, M.A.; Lepape, A.; Venet, F.; Frager, F.; Mougin, B.; Vallin, H.; Paye, M.; Pachot, A.; Monneret, G. Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive Care Med. Exp., 2014, 2(1), 20.
[http://dx.doi.org/10.1186/s40635-014-0020-3] [PMID: 26215705]
[21]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[22]
Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife, 2015, 4.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[23]
Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; Chiew, M.Y.; Tai, C.S.; Wei, T.Y.; Tsai, T.R.; Huang, H.T.; Wang, C.Y.; Wu, H.Y.; Ho, S.Y.; Chen, P.R.; Chuang, C.H.; Hsieh, P.J.; Wu, Y.S.; Chen, W.L.; Li, M.J.; Wu, Y.C.; Huang, X.Y.; Ng, F.L.; Buddhakosai, W.; Huang, P.C.; Lan, K.C.; Huang, C.Y.; Weng, S.L.; Cheng, Y.N.; Liang, C.; Hsu, W.L.; Huang, H.D. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 2018, 46(D1), D296-D302.
[http://dx.doi.org/10.1093/nar/gkx1067] [PMID: 29126174]
[24]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[25]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[26]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[27]
Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics, 2012, 99(6), 323-329.
[http://dx.doi.org/10.1016/j.ygeno.2012.04.003] [PMID: 22546560]
[28]
Anaissi, A.; Kennedy, P.J.; Goyal, M.; Catchpoole, D.R. A balanced iterative random forest for gene selection from microarray data. BMC Bioinformatics, 2013, 14, 261.
[http://dx.doi.org/10.1186/1471-2105-14-261] [PMID: 23981907]
[29]
Breiman, L.; Forests, R. Machine Learning volume., 2001, 45, 5-32.
[30]
Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. IEEE International Conference on Software Engineering and Service Science (ICSESS), 2016.
[31]
Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing sepsis as a global health priority - A WHO Resolution. N. Engl. J. Med., 2017, 377(5), 414-417.
[http://dx.doi.org/10.1056/NEJMp1707170] [PMID: 28658587]
[32]
Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; Gurka, D.; Kumar, A.; Cheang, M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med., 2006, 34(6), 1589-1596.
[http://dx.doi.org/10.1097/01.CCM.0000217961.75225.E9] [PMID: 16625125]
[33]
Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med., 2017, 376(23), 2235-2244.
[http://dx.doi.org/10.1056/NEJMoa1703058] [PMID: 28528569]
[34]
Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; Jernigan, J.A.; Martin, G.S.; Septimus, E.; Warren, D.K.; Karcz, A.; Chan, C.; Menchaca, J.T.; Wang, R.; Gruber, S.; Klompas, M. CDC Prevention Epicenter Program. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA, 2017, 318(13), 1241-1249.
[http://dx.doi.org/10.1001/jama.2017.13836] [PMID: 28903154]
[35]
Kumar, S.; Tripathy, S.; Jyoti, A.; Singh, S.G. Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review. Biosens. Bioelectron., 2019, 124-125, 205-215.
[http://dx.doi.org/10.1016/j.bios.2018.10.034] [PMID: 30388563]
[36]
Yang, R.; Wang, J.; Gao, Y. Advances of microfluidic technologies applied in diagnosis and treatment of sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, 31(6), 789-792.
[PMID: 31315744]
[37]
Zhou, Y.; Zhang, Y.; Johnson, A.; Venable, A.; Griswold, J.; Pappas, D. Combined CD25, CD64, and CD69 biomarker panel for flow cytometry diagnosis of sepsis. Talanta, 2019, 191(13), 216-221.
[http://dx.doi.org/10.1016/j.talanta.2018.08.058] [PMID: 30262053]
[38]
Jekarl, D.W.; Kim, J.Y.; Ha, J.H.; Lee, S.; Yoo, J.; Kim, M.; Kim, Y. Diagnosis and prognosis of sepsis based on use of cytokines, chemokines, and growth factors. Dis. Markers, 2019, 2019
[http://dx.doi.org/10.1155/2019/1089107] [PMID: 31583025]
[39]
Molano Franco, D.; Arevalo-Rodriguez, I.; Roqué, I. Figuls, M.; Montero Oleas, N.G.; Nuvials, X.; Zamora, J. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst. Rev., 2019, 4(4)
[http://dx.doi.org/10.1002/14651858.CD011811.pub2] [PMID: 31038735]
[40]
Schnoor, M.; García Ponce, A.; Vadillo, E.; Pelayo, R.; Rossaint, J.; Zarbock, A. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell. Mol. Life Sci., 2017, 74(11), 1985-1997.
[http://dx.doi.org/10.1007/s00018-016-2449-x] [PMID: 28154894]
[41]
Belsky, JB; Rivers, EP; Filbin, MR; Lee, PJ Morris, DC Thymosin Beta 4 regulation of actin in sepsis. Expert Opin Biol Ther, 2018, 18(sup1), 193-197.
[42]
Nolt, B.; Tu, F.; Wang, X.; Ha, T.; Winter, R.; Williams, D.L.; Li, C. Lactate and immunosuppression in sepsis. Shock, 2018, 49(2), 120-125.
[http://dx.doi.org/10.1097/SHK.0000000000000958] [PMID: 28767543]
[43]
Lv, R.; Zhao, J.; Lei, M.; Xiao, D.; Yu, Y.; Xie, J. IL-33 Attenuates sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3. Cell. Physiol. Biochem., 2017, 42(5), 1961-1972.
[http://dx.doi.org/10.1159/000479836] [PMID: 28793286]
[44]
Genau, H.M.; Huber, J.; Baschieri, F.; Akutsu, M.; Dötsch, V.; Farhan, H.; Rogov, V.; Behrends, C. CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling. Mol. Cell, 2015, 57(6), 995-1010.
[http://dx.doi.org/10.1016/j.molcel.2014.12.040] [PMID: 25684205]
[45]
Liu, Y.T.; Liu, F.; Cao, L.; Xue, L.; Gu, W.T.; Zheng, Y.Z.; Tang, H.; Wang, Y.; Yao, H.; Zhang, Y.; Xie, W.Q.; Ren, B.H.; Xiao, Z.H.; Nie, Y.J.; Hu, R.; Wu, Z.B. The KBTBD6/7-DRD2 axis regulates pituitary adenoma sensitivity to dopamine agonist treatment. Acta Neuropathol., 2020, 140(3), 377-396.
[http://dx.doi.org/10.1007/s00401-020-02180-4] [PMID: 32572597]
[46]
Muto, Y.; Nishiyama, M.; Nita, A.; Moroishi, T.; Nakayama, K.I. Essential role of FBXL5-mediated cellular iron homeostasis in maintenance of hematopoietic stem cells. Nat. Commun., 2017, 8, 16114.
[http://dx.doi.org/10.1038/ncomms16114] [PMID: 28714470]
[47]
Yamauchi, T.; Nishiyama, M.; Moroishi, T.; Kawamura, A.; Nakayama, K.I. FBXL5 inactivation in mouse brain induces aberrant proliferation of neural stem progenitor cells. Mol. Cell. Biol., 2017, 37(8), e00470-e16.
[http://dx.doi.org/10.1128/MCB.00470-16] [PMID: 28069738]
[48]
Muto, Y.; Moroishi, T.; Ichihara, K.; Nishiyama, M.; Shimizu, H.; Eguchi, H.; Moriya, K.; Koike, K.; Mimori, K.; Mori, M.; Katayama, Y.; Nakayama, K.I. YMuto. Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis. J. Exp. Med., 2019, 216(4), 950-965.
[http://dx.doi.org/10.1084/jem.20180900] [PMID: 30877170]
[49]
Wu, W.D.; Wang, M.; Ding, H.H.; Qiu, Z.J. FBXL5 attenuates RhoGDI2-induced cisplatin resistance in gastric cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(12), 2551-2557.
[PMID: 27383304]
[50]
Dankert, J.F.; Pagan, J.K.; Starostina, N.G.; Kipreos, E.T.; Pagano, M. FEM1 proteins are ancient regulators of SLBP degradation. Cell Cycle, 2017, 16(6), 556-564.
[http://dx.doi.org/10.1080/15384101.2017.1284715] [PMID: 28118078]
[51]
Poujade, F.A.; Mannion, A.; Brittain, N.; Theodosi, A.; Beeby, E.; Leszczynska, K.B.; Hammond, E.M.; Greenman, J.; Cawthorne, C.; Pires, I.M. WSB-1 regulates the metastatic potential of hormone receptor negative breast cancer. Br. J. Cancer, 2018, 118(9), 1229-1237.
[http://dx.doi.org/10.1038/s41416-018-0056-3] [PMID: 29540773]
[52]
Kim, J.J.; Lee, S.B.; Yi, S.Y.; Han, S.A.; Kim, S.H.; Lee, J.M.; Tong, S.Y.; Yin, P.; Gao, B.; Zhang, J.; Lou, Z. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation. Cell Res., 2017, 27(2), 274-293.
[http://dx.doi.org/10.1038/cr.2016.148] [PMID: 27958289]
[53]
Haque, M.; Kendal, J.K.; MacIsaac, R.M.; Demetrick, D.J. WSB1: from homeostasis to hypoxia. J. Biomed. Sci., 2016, 23(1), 61.
[http://dx.doi.org/10.1186/s12929-016-0270-3] [PMID: 27542736]
[54]
Chen, M.C.; Hsu, W.L.; Chang, W.L.; Chou, T.C. Antiangiogenic activity of phthalides-enriched Angelica sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci. Rep., 2017, 7(1), 5376.
[http://dx.doi.org/10.1038/s41598-017-05512-9] [PMID: 28710377]
[55]
Lee, C.Y.; Lai, T.Y.; Tsai, M.K.; Chang, Y.C.; Ho, Y.H.; Yu, I.S.; Yeh, T.W.; Chou, C.C.; Lin, Y.S.; Lawrence, T.; Hsu, L.C. The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat. Commun., 2017, 8, 15502.
[http://dx.doi.org/10.1038/ncomms15502] [PMID: 28593998]
[56]
Ren, G.; Zhang, X.; Xiao, Y.; Zhang, W.; Wang, Y.; Ma, W.; Wang, X.; Song, P.; Lai, L.; Chen, H.; Zhan, Y.; Zhang, J.; Yu, M.; Ge, C.; Li, C.; Yin, R.; Yang, X. ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination. EMBO J., 2019, 38(6)
[http://dx.doi.org/10.15252/embj.2018100376] [PMID: 30787184]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy