Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Review on Biological Properties and Synthetic Methodologies of Diarylpentadienones

Author(s): Maryam Aisyah Abdullah, Siti Munirah Mohd Faudzi* and Nadiah Mad Nasir

Volume 21, Issue 9, 2021

Published on: 03 December, 2020

Page: [1058 - 1070] Pages: 13

DOI: 10.2174/1389557520999201203213957

Price: $65

Abstract

Medicinal chemists have continuously shown interest in new curcuminoid derivatives, diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia- Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules, which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.

Keywords: Diarylpentadienone, synthesis, catalysts, bioactivity, pharmacological activity, SAR.

Graphical Abstract

[1]
Mohd Faudzi, S.M.; Leong, S.W.; Abas, F.; Mohd Aluwi, M.F.F.; Rullah, K.; Lam, K.W.; Ahmad, S.; Tham, C.L.; Shaari, K.; Lajis, N.H. Synthesis, biological evaluation and QSAR studies of diarylpentanoid analogues as potential nitric oxide inhibitors. MedChemComm, 2015, 6(6), 1069-1080.
[http://dx.doi.org/10.1039/C4MD00541D]
[2]
Ugwu, D.I.; Ezema, B.E.; Okoro, U.C.; Eze, F.U.; Ekoh, O.C.; Egbujor, M.C.; Ugwuja, D.I. Syntheses and pharmacological applications of chalcones: A review. Int. J. Chem. Sci., 2015, 13(1), 459-500.
[3]
Wang, Z.S.; Chen, L.Z.; Zhou, H.P.; Liu, X.H.; Chen, F.H. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2017, 27(8), 1803-1807.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.056] [PMID: 28284806]
[4]
Quincoces Suarez, J.A.; Rando, D.G.; Santos, R.P.; Gonçalves, C.P.; Ferreira, E.; de Carvalho, J.E.; Kohn, L.; Maria, D.A.; Faião-Flores, F.; Michalik, D.; Marcucci, M.C.; Vogel, C. New antitumoral agents I: In vitro anticancer activity and in vivo acute toxicity of synthetic 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one and derivatives. Bioorg. Med. Chem., 2010, 18(17), 6275-6281.
[http://dx.doi.org/10.1016/j.bmc.2010.07.026] [PMID: 20696583]
[5]
Weldon, D.J.; Saulsbury, M.D.; Goh, J.; Rowland, L.; Campbell, P.; Robinson, L.; Miller, C.; Christian, J.; Amis, L.; Taylor, N.; Dill, C.; Davis, W., Jr; Evans, S.L.; Brantley, E. One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells. Bioorg. Med. Chem. Lett., 2014, 24(15), 3381-3384.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.089] [PMID: 24957352]
[6]
Batovska, D.; Parushev, S.; Stamboliyska, B.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur. J. Med. Chem., 2009, 44(5), 2211-2218.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.010] [PMID: 18584918]
[7]
Silva, W.A.; Andrade, C.K.; Napolitano, H.B.; Vencato, I.; Lariucci, C.; Castro, M.; Camargo, A.J. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi. J. Braz. Chem. Soc., 2013, 24(1), 133-144.
[http://dx.doi.org/10.1590/S0103-50532013000100018]
[8]
Desideri, N.; Fioravanti, R.; Proietti Monaco, L.; Biava, M.; Yáñez, M.; Ortuso, F.; Alcaro, S. 1,5-Diphenylpenta-2,4-dien-1-ones as potent and selective monoamine oxidase-B inhibitors. Eur. J. Med. Chem., 2013, 59(1), 91-100.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.006] [PMID: 23207410]
[9]
Mohd Aluwi, M.F.F.; Rullah, K.; Haque, M.A.; Yamin, B.M.; Ahmad, W.; Amjad, M.W.; Leong, S.W.; Fahmizar, N.A.; Jalil, J.; Abas, F.; Ismail, N.H. Suppression of PGE-2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives. Med. Chem. Res., 2017, 26(12), 3323-3335.
[http://dx.doi.org/10.1007/s00044-017-2025-4]
[10]
Din, Z.U.; Lazarin-Bidóia, D.; Kaplum, V.; Garcia, F.P.; Nakamura, C.V.; Rodrigues-Filho, E. The structure design of biotransformed unsymmetrical nitro-contained 1, 5-diaryl-3-oxo-1, 4-pentadienyls for the anti-parasitic activities. Arab. J. Chem., 2019, 12(8), 4006-4016.
[http://dx.doi.org/10.1016/j.arabjc.2016.03.005]
[11]
Braga, S.F.; Alves, É.V.; Ferreira, R.S.; Fradico, J.R.; Lage, P.S.; Duarte, M.C.; Ribeiro, T.G.; Júnior, P.A.; Romanha, A.J.; Tonini, M.L.; Steindel, M.; Coelho, E.F.; de Oliveira, R.B. Synthesis and evaluation of the antiparasitic activity of bis-(arylmethylidene) cycloalkanones. Eur. J. Med. Chem., 2014, 71(1), 282-289.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.011] [PMID: 24321832]
[12]
Jantan, I.; Bukhari, S.N.; Lajis, N.H.; Abas, F.; Wai, L.K.; Jasamai, M. Effects of diarylpentanoid analogues of curcumin on chemiluminescence and chemotactic activities of phagocytes. J. Pharm. Pharmacol., 2012, 64(3), 404-412.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01423.x] [PMID: 22309272]
[13]
Pati, H.N.; Das, U.; Quail, J.W.; Kawase, M.; Sakagami, H.; Dimmock, J.R. Cytotoxic 3,5-bis(benzylidene)piperidin-4-ones and N-acyl analogs displaying selective toxicity for malignant cells. Eur. J. Med. Chem., 2008, 43(1), 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.010] [PMID: 17499885]
[14]
Li, Y.; Zhang, L.P.; Dai, F.; Yan, W.J.; Wang, H.B.; Tu, Z.S.; Zhou, B. Hexamethoxylated monocarbonyl analogues of curcumin cause G2/M cell cycle arrest in NCI-H460 cells via Michael acceptor-dependent redox intervention. J. Agric. Food Chem., 2015, 63(35), 7731-7742.
[http://dx.doi.org/10.1021/acs.jafc.5b02011] [PMID: 26255837]
[15]
Wang, J.Q.; Wang, X.; Wang, Y.; Tang, W.J.; Shi, J.B.; Liu, X.H. Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur. J. Med. Chem., 2018, 156(1), 493-509.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.013] [PMID: 30025345]
[16]
Patanapongpibul, M.; Zhang, C.; Chen, G.; Guo, S.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Optimization of diarylpentadienones as chemotherapeutics for prostate cancer. Bioorg. Med. Chem., 2018, 26(16), 4751-4760.
[http://dx.doi.org/10.1016/j.bmc.2018.08.018] [PMID: 30121214]
[17]
Conti, C.; Mastromarino, P.; Goldoni, P.; Portalone, G.; Desideri, N. Synthesis and anti-rhinovirus properties of fluoro-substituted flavonoids. Antivir. Chem. Chemother., 2005, 16(4), 267-276.
[http://dx.doi.org/10.1177/095632020501600406] [PMID: 16130524]
[18]
Das, S.; Mitra, I.; Batuta, S.; Niharul Alam, M.; Roy, K.; Begum, N.A. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues. Bioorg. Med. Chem. Lett., 2014, 24(21), 5050-5054.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.028] [PMID: 25278230]
[19]
Rocha, S.; Sousa, A.; Ribeiro, D.; Correia, C.M.; Silva, V.L.M.; Santos, C.M.M.; Silva, A.M.S.; Araújo, A.N.; Fernandes, E.; Freitas, M. Correction: A study towards drug discovery for the management of type 2 diabetes mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food Funct., 2019, 10(9), 6203-6203.
[http://dx.doi.org/10.1039/C9FO90045D] [PMID: 31454004]
[20]
Din, Z.U.; Rodrigues-Filho, E.; de Cassia Pereira, V.; Gualtieri, S.C.J.; Deflon, V.M.; da Silva Maia, P.I.; Kuznetsov, A.E. Phytotoxicity, structural and computational analysis of 2-methyl-1, 5-diarylpentadienones. J. Mol. Struct., 2017, 1142(1), 239-247.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.028]
[21]
Shetty, D.; Kim, Y.J.; Shim, H.; Snyder, J.P. Eliminating the heart from the curcumin molecule: Monocarbonyl curcumin mimics (MACs). Molecules, 2014, 20(1), 249-292.
[http://dx.doi.org/10.3390/molecules20010249] [PMID: 25547726]
[22]
Manohar, S.; Khan, S.I.; Kandi, S.K.; Raj, K.; Sun, G.; Yang, X.; Calderon Molina, A.D.; Ni, N.; Wang, B.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxic potential of new monocarbonyl analogues of curcumin. Bioorg. Med. Chem. Lett., 2013, 23(1), 112-116.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.004] [PMID: 23218718]
[23]
Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S. Wahajuddin; Sijwali, P.S.; Kumar, V.; Mohammad, I.S. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J. Med. Chem., 2013, 56(1), 31-45.
[http://dx.doi.org/10.1021/jm300588j] [PMID: 23270565]
[24]
Nielsen, A.T.; Houlihan, W.J. The Aldol condensation. Organic reactions; Wiley & Sons: New York, 2004.
[25]
Kaur, A.; Singh, B.; Vyas, B.; Silakari, O. Synthesis and biological activity of 4-aryl-3-benzoyl-5-phenylspiro[pyrrolidine-2.3′-indolin]-2′-one derivatives as novel potent inhibitors of advanced glycation end product. Eur. J. Med. Chem., 2014, 79(1), 282-289.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.022] [PMID: 24747065]
[26]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[27]
Bhagvat, A.; Khadke, A.; Patil, A.; Jadhav, B. Chalcone – a tool of synthesis of various drug. Eur. J. Biomed. Pharm. Sci., 2017, 4(5), 128-135.
[28]
Ahmad, W.; Kumolosasi, E.; Jantan, I.; Bukhari, S.N.; Jasamai, M. Effects of novel diarylpentanoid analogues of curcumin on secretory phospholipase A2, cyclooxygenases, lipo-oxygenase, and microsomal prostaglandin E synthase-1. Chem. Biol. Drug Des., 2014, 83(6), 670-681.
[http://dx.doi.org/10.1111/cbdd.12280] [PMID: 24406103]
[29]
Rajasekar, M.; Muthu, K.; Bhagavannarayana, G.; Meenakshisundaram, S.P. Synthesis, structure, growth and characterization of an organic crystal: 1, 5-diphenylpenta-2, 4-dien-1-one. J. Appl. Cryst., 2012, 45(5), 914-920.
[http://dx.doi.org/10.1107/S0021889812030403]
[30]
Leong, S.W.; Mohd Faudzi, S.M.; Abas, F.; Mohd Aluwi, M.F.F.; Rullah, K.; Lam, K.W.; Abdul Bahari, M.N.; Ahmad, S.; Tham, C.L.; Shaari, K.; Lajis, N.H. Nitric oxide inhibitory activity and antioxidant evaluations of 2-benzoyl-6-benzylidenecyclohexanone analogs, a novel series of curcuminoid and diarylpentanoid derivatives. Bioorg. Med. Chem. Lett., 2015, 25(16), 3330-3337.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.056] [PMID: 26071636]
[31]
Khaligh, N.G.; Mihankhah, T. Aldol condensations of a variety of different aldehydes and ketones under ultrasonic irradiation using poly (N-vinylimidazole) as a new heterogeneous base catalyst under solvent-free conditions in a liquid-solid system. Chin. J. Catal., 2013, 34(12), 2167-2173.
[http://dx.doi.org/10.1016/S1872-2067(12)60658-5]
[32]
Xin, Y.; Zang, Z.H.; Chen, F.L. Ultrasound-promoted synthesis of 1, 5-diarylpenta-2, 4-dien-1-ones catalyzed by activated barium hydroxide. Synth. Commun., 2009, 39(22), 4062-4068.
[http://dx.doi.org/10.1080/00397910902883686]
[33]
Fukuzawa, S.I.; Fujinami, T.; Sakai, S. Carbon–carbon bond formation between α-halogenoketones and aldehydes promoted by cerium (III) iodide or cerium (III) chloride–sodium iodide. J. Chem. Soc. Chem. Commun., 1985, 1985(12), 777-778.
[http://dx.doi.org/10.1039/C39850000777]
[34]
Rafiee, E.; Rahimi, F. Synthesis of biologically active chalcone analogues via Claisen-Schmidt condensation in solvent-free conditions: Supported mixed addenda heteropoly acid as a heterogeneous catalyst. J. Chil. Chem. Soc., 2013, 58(3), 1926-1929.
[http://dx.doi.org/10.4067/S0717-97072013000300029]
[35]
Cahyana, A.H.; Fitria, D.; Ardiansah, B.; Rahayu, D.U. IOP Conference Series Materials Science and Engineering,, 2017, 188012026
[36]
Yan, C.G.; Sun, J. KF-Al2O3 induced the condensation of 2-nitrofluorene and para-substituted acetophenones with aromatic aldehydes. Synth. Commun., 2000, 30(20), 3809-3814.
[http://dx.doi.org/10.1080/00397910008087010]
[37]
Abaszadeh, M.; Seifi, M. KF/Al2O3: As a solid phase and recyclable basic catalyst for synthesis mono and bis pyrimidine derivatives. Iran J. Chem. Chem. Eng., 2017, 36(1), 35-43.
[38]
Tiecco, M.; Germani, R.; Cardellini, F. Carbon–carbon bond formation in acid deep eutectic solvent: Chalcones synthesis via Claisen–Schmidt reaction. RSC Adv, 2016, 6(49), 43740-43747.
[http://dx.doi.org/10.1039/C6RA04721A]
[39]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia–Kocienski olefination. Tetrahedron, 2010, 66(48), 9445-9449.
[http://dx.doi.org/10.1016/j.tet.2010.09.089]
[40]
Suman, P.; Nageswara Rao, R.; China Raju, B. Microwave-assisted convenient synthesis of α, β-unsaturated esters and ketones via aldol-adduct elimination. Helv. Chim. Acta, 2013, 96(8), 1548-1559.
[http://dx.doi.org/10.1002/hlca.201200526]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy