Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis

Author(s): Ramji Kalidoss*, Velappa Jayaraman Surya and Yuvaraj Sivalingam*

Volume 18, Issue 5, 2022

Published on: 25 November, 2020

Page: [563 - 576] Pages: 14

DOI: 10.2174/1573411017999201125203955

Price: $65

Abstract

Background: The interest in breath analysis for non-invasive disease diagnosis of the scientific community has been increased over the past decade. This is due to the exhalation of prominent volatile organic compounds (VOCs) corresponding to the metabolic activities in the body and their concentration variation. To identify these biomarkers, various analytical techniques have been used in the past and the threshold concentration is established between a healthy and diseased state. Subsequently, various nanomaterials-based gas sensors are being explored for their demand in quantifying these biomarkers in real-time, low cost and portable breathalyzers along with the essential sensor performances.

Methods: We focus on the classification of graphene derivatives and their composites’ gas sensing efficiency for the development of breathalyzers. The review begins with the feasibility of the application of nanomaterial gas sensors for healthcare applications. Then, we report the gas sensing performance of various graphene derivatives/semiconductor metal oxides (SMO) binary nanocomposites and their optimizing strategies in selective detection of biomarkers specific for diseases. Finally, we provide insights on the challenges, opportunities and future research directions for the development of breathalyzers using other graphene derivatives/SMO binary nanocomposites.

Results: On the basis of these analyses, graphene and its derivatives/metal oxides based binary nanocomposites have been a choice for gas sensing material owing to their high electrical conductivity and extraordinary thickness-dependent physicochemical properties. Moreover, the presence of oxygen vacancies in SMO not only alters the conductivity but also accelerates the carrier transport rate and has an influence on the adsorption behavior of target analyte on the sensing materials. Hence, researchers are in search of ultrathin graphene and metal oxide counterpart for high sensing performance.

Conclusion: The impressive properties of graphene derivatives and SMO binary nanocomposites compared to their bulk counterparts have been uncovered for sensitive and selective detection of biomarkers in portable breathalyzers.

Keywords: Graphene nanocomposites, semiconductor metal oxide nanocomposite, gas sensor, breathalyzer, non-invasive disease diagnosis, breathprint.

Graphical Abstract

[1]
Gaude, E.; Nakhleh, M.K.; Patassini, S.; Boschmans, J.; Allsworth, M.; Boyle, B.; van der Schee, M.P. Targeted breath analysis: Exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J. Breath Res., 2019, 13(3)032001
[http://dx.doi.org/10.1088/1752-7163/ab1789] [PMID: 30965287]
[2]
Das, S.; Pal, S.; Mitra, M. Significance of exhaled breath test in clinical diagnosis: A special focus on the detection of diabetes mellitus. J. Med. Biol. Eng., 2016, 36(5), 605-624.
[http://dx.doi.org/10.1007/s40846-016-0164-6] [PMID: 27853412]
[3]
Broza, Y.Y.; Zuri, L.; Haick, H. Combined volatolomics for monitoring of human body chemistry. Sci. Rep., 2014, 4, 4611.
[http://dx.doi.org/10.1038/srep04611] [PMID: 24714440]
[4]
Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev., 2012, 112(11), 5949-5966.
[http://dx.doi.org/10.1021/cr300174a] [PMID: 22991938]
[5]
Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev., 2014, 43(5), 1423-1449.
[http://dx.doi.org/10.1039/C3CS60329F] [PMID: 24305596]
[6]
Wang, Z.; Wang, C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath Res., 2013, 7(3)037109
[http://dx.doi.org/10.1088/1752-7155/7/3/037109] [PMID: 23959840]
[7]
Minh, Tdo. C.; Blake, D.R.; Galassetti, P.R. The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res. Clin. Pract., 2012, 97(2), 195-205.
[http://dx.doi.org/10.1016/j.diabres.2012.02.006] [PMID: 22410396]
[8]
Popov, T.A. Human exhaled breath analysis. Ann. Allergy Asthma Immunol., 2011, 106(6), 451-456.
[http://dx.doi.org/10.1016/j.anai.2011.02.016] [PMID: 21624743]
[9]
O’Hara, M.E.; Clutton-Brock, T.H.; Green, S.; Mayhew, C.A. Endogenous volatile organic compounds in breath and blood of healthy volunteers: Examining breath analysis as a surrogate for blood measurements. J. Breath Res., 2009, 3(2)027005
[http://dx.doi.org/10.1088/1752-7155/3/2/027005] [PMID: 21383460]
[10]
Fiserova-Bergerova, V.; Diaz, M.L. Determination and prediction of tissue-gas partition coefficients. Int. Arch. Occup. Environ. Health, 1986, 58(1), 75-87.
[http://dx.doi.org/10.1007/BF00378543] [PMID: 3721592]
[11]
Anderson, J.C.; Babb, A.L.; Hlastala, M.P. Modeling soluble gas exchange in the airways and alveoli. Ann. Biomed. Eng., 2003, 31(11), 1402-1422.
[http://dx.doi.org/10.1114/1.1630600] [PMID: 14758930]
[12]
Kalidoss, R.; Umapathy, S. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype. J. Breath Res., 2019, 13(3)036008
[http://dx.doi.org/10.1088/1752-7163/ab09ae] [PMID: 30794992]
[13]
Galassetti, P.R.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D.M.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D.R. Breath ethanol and acetone as indicators of serum glucose levels: An initial report. Diabetes Technol. Ther., 2005, 7(1), 115-123.
[http://dx.doi.org/10.1089/dia.2005.7.115] [PMID: 15738709]
[14]
Sun, M.; Chen, Z.; Gong, Z.; Zhao, X.; Jiang, C.; Yuan, Y.; Wang, Z.; Li, Y.; Wang, C. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer. Anal. Bioanal. Chem., 2015, 407(6), 1641-1650.
[http://dx.doi.org/10.1007/s00216-014-8401-8] [PMID: 25572689]
[15]
Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas., 2006, 27(4), 321-337.
[http://dx.doi.org/10.1088/0967-3334/27/4/001] [PMID: 16537976]
[16]
Ueta, I.; Saito, Y.; Hosoe, M.; Okamoto, M.; Ohkita, H.; Shirai, S.; Tamura, H.; Jinno, K. Breath acetone analysis with miniaturized sample preparation device: In-needle preconcentration and subsequent determination by gas chromatography-mass spectroscopy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(24), 2551-2556.
[http://dx.doi.org/10.1016/j.jchromb.2009.06.039] [PMID: 19595647]
[17]
Cazzola, M.; Segreti, A.; Capuano, R. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Res. Practice, 2015, 1, 7.
[http://dx.doi.org/10.1186/s40749-015-0010-1]
[18]
Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer, 2010, 103(4), 542-551.
[http://dx.doi.org/10.1038/sj.bjc.6605810] [PMID: 20648015]
[19]
Marom, O.; Nakhoul, F.; Tisch, U.; Shiban, A.; Abassi, Z.; Haick, H. Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine (Lond.), 2012, 7(5), 639-650.
[http://dx.doi.org/10.2217/nnm.11.135] [PMID: 22401266]
[20]
Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res., 2014, 47(1), 66-76.
[http://dx.doi.org/10.1021/ar400070m] [PMID: 23926883]
[21]
Wang, L.; Teleki, A.; Pratsinis, S.E.; Gouma, P.I. Ferroelectric WO3 Nanoparticles for Acetone Selective Detection. Chem. Mater., 2008, 20, 4794-4796.
[http://dx.doi.org/10.1021/cm800761e]
[22]
Kalidoss, R.; Umapathy, S. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator. Biomed. Microdevices, 2019, 22(1), 2.
[http://dx.doi.org/10.1007/s10544-019-0448-z] [PMID: 31797133]
[23]
Tisch, U.; Haick, H. Nanomaterials for cross-reactive sensor arrays. MRS Bull., 2010, 35, 797-803.
[http://dx.doi.org/10.1557/mrs2010.509]
[24]
Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem., 2010, 82(9), 3581-3587.
[http://dx.doi.org/10.1021/ac902695n] [PMID: 20380475]
[25]
Wang, L.; Kalyanasundaram, K.; Stanacevic, M.; Gouma, P.I. Nanosensor device for breath acetone detection. Sens. Lett., 2010, 8, 1-4.
[http://dx.doi.org/10.1166/sl.2010.1334]
[26]
Gouma, P.I.; Kalyanasundaram, K.; Yun, X.; Stanaćević, M.; Wang, L. Nanosensor, and breath analyzer for ammonia detection in exhaled human breath. IEEE Sens. J., 2010, 10, 49-53.
[http://dx.doi.org/10.1109/JSEN.2009.2036050]
[27]
Gouma, P.I.; Sood, S.; Stanaćević, M.; Simon, S. Selective chemosensing and diagnostic breath analyzer. Procedia Eng., 2014, 87, 9-15.
[http://dx.doi.org/10.1016/j.proeng.2014.11.254]
[28]
Gouma, P.; Prasad, A.; Stanaćević, S. A selective nanosensor device for exhaled breath analysis. J. Breath Res., 2011, 5(3)037110
[http://dx.doi.org/10.1088/1752-7155/5/3/037110] [PMID: 21896971]
[29]
Gouma, P. Interview: Revolutionizing personalized medicine with nanosensor technology. Per. Med., 2011, 8(1), 15-16.
[http://dx.doi.org/10.2217/pme.10.80] [PMID: 29768778]
[30]
Gouma, P.I.; Stanaćević, M. Selective nanosensor array microsystem for exhaled breath analysis. Procedia Eng., 2011, 25, 1557-1560.
[http://dx.doi.org/10.1016/j.proeng.2011.12.385]
[31]
Gouma, P.I.; Mikaeili, F.; Lee, J.; Karimi, Y.; Stancevic, M. Sensing device for breath biomarker detection. IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 2019, pp. 1-3.
[32]
Karimi, Y.; Lin, Y.; Jodhani, G.; Stanaćević, M.; Gouma, P.I. Single exhale biomarker breathalyzer. Sensors (Basel), 2019, 19(2), 270.
[http://dx.doi.org/10.3390/s19020270] [PMID: 30641922]
[33]
Gouma, P.I.; Wang, L.; Simon, S.R.; Stanacevic, M. Novel isoprene sensor for a flu virus breath monitor. Sensors (Basel), 2017, 17(1), 199.
[http://dx.doi.org/10.3390/s17010199] [PMID: 28117692]
[34]
Huang, J.; Li, Y.; Sood, S.; Gouma, P.I. Breath Biomarker Detection by Chemical Sensors; Semiconductor-Based Sensors, 2017, pp. 355-393.
[35]
Rydosz, A.; Marszalek, K.; Putynkowski, G. A novel approach for device dedicated to non-invasive diabetes control. J. Diabet. Treat., 2020, 2021, 1-10.
[36]
Gharra, A.; Broza, Y.Y.; Yu, G.; Mao, W.; Shen, D.; Deng, L.; Wu, L.; Wang, Q.; Sun, X.; Huang, J.; Xuan, Z.; Huang, B. Wu, S; Milyutin, Y; Kloper‐Weidenfeld, V; Haick, H. Exhaled breath diagnostics of lung and gastric cancers in China using nanosensors. Cancer Commun., 2020, 40(6), 273-278.
[http://dx.doi.org/10.1002/cac2.12030]
[37]
Amal, H.; Haick, H. Point of care breath analysis systems; Advanced Nanomaterials for Inexpensive Gas Microsensors, 2020, pp. 315-334.
[38]
Mochalski, P.; Shuster, G.; Leja, M.; Unterkofler, K.; Jaeschke, C.; Skapars, R.; Gasenko, E.; Polaka, I.; Vasiljevs, E.; Shani, G.; Mitrovics, J.; Mayhew, C.A.; Haick, H. Non-contact breath sampling for sensor-based breath analysis. J. Breath Res., 2019, 13(3)036001
[http://dx.doi.org/10.1088/1752-7163/ab0b8d] [PMID: 30818286]
[39]
Nasiri, N.; Clarke, C. Nanostructured gas sensors for medical and health applications: Low to high dimensional materials. Biosensors (Basel), 2019, 9(1), 43.
[http://dx.doi.org/10.3390/bios9010043] [PMID: 30884916]
[40]
Capuano, R.; Catini, A.; Paolesse, R.; Di Natale, C. Sensors for lung cancer diagnosis. J. Clin. Med., 2019, 8(2), 235.
[http://dx.doi.org/10.3390/jcm8020235] [PMID: 30754727]
[41]
Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci., 2014, 66, 112-255.
[http://dx.doi.org/10.1016/j.pmatsci.2014.06.003]
[42]
Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys., 2017, 267, 242-261.
[http://dx.doi.org/10.1016/j.sna.2017.10.021]
[43]
Tripathi, K.M.; Kim, T.; Losic, D.; Tung, T.T. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon, 2016, 110, 97-129.
[http://dx.doi.org/10.1016/j.carbon.2016.08.040]
[44]
Tung, T.T.; Nine, M.J.; Krebsz, M.; Pasinszki, T.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Recent advances in sensing applications of graphene assemblies and their composites. Adv. Funct. Mater., 2017, 271702891
[http://dx.doi.org/10.1002/adfm.201702891]
[45]
Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for VOCs gas sensing. Nanomaterials (Basel), 2020, 10(8), 1485.
[http://dx.doi.org/10.3390/nano10081485] [PMID: 32751173]
[46]
Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene-based gas sensors. Sens. Actuators B Chem., 2015, 218, 160-183.
[http://dx.doi.org/10.1016/j.snb.2015.04.062]
[47]
Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett., 2016, 8(2), 95-119.
[http://dx.doi.org/10.1007/s40820-015-0073-1] [PMID: 30460270]
[48]
Singhal, A.V.; Charaya, H.; Lahiri, I. Noble metal decorated graphene-based gas sensors and their fabrication: A review. Crit. Rev. Solid State Mater. Sci., 2017, 2017, 499-526.
[http://dx.doi.org/10.1080/10408436.2016.1244656]
[49]
Toda, K.; Furue, R.; Hayami, S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta, 2015, 878, 43-53.
[http://dx.doi.org/10.1016/j.aca.2015.02.002] [PMID: 26002325]
[50]
Meng, F.L.; Guo, Z.; Huang, X.J. Graphene-based hybrids for chemiresistive gas sensors. Trends Analyt. Chem., 2015, 68, 37-47.
[http://dx.doi.org/10.1016/j.trac.2015.02.008]
[51]
Kalidoss, R.; Umapathy, S.; Sivalingam, Y. An investigation of GO-SnO2-TiO2 ternary nanocomposite for the detection of acetone in diabetes mellitus patient’s breath. Appl. Surf. Sci., 2018, 449, 677-684.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.090]
[52]
Kalidoss, R.; Umapathy, S.; Anandan, R.; Ganesh, V.; Sivalingam, Y. Comparative study on the preparation and gas sensing properties of reduced graphene oxide/SnO2 Binary nanocomposite for detection of acetone in exhaled breath. Anal. Chem., 2019, 91(8), 5116-5124.
[http://dx.doi.org/10.1021/acs.analchem.8b05670] [PMID: 30869871]
[53]
Yuan, W.; Shi, G. Graphene-based gas sensors. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 10078-10091.
[http://dx.doi.org/10.1039/c3ta11774j]
[54]
Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature, 2012, 490(7419), 192-200.
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189]
[55]
Kumar, B.; Min, K.; Bashirzadeh, M.; Farimani, A.B.; Bae, M.H.; Estrada, D.; Kim, Y.D.; Yasaei, P.; Park, Y.D.; Pop, E.; Aluru, N.R.; Salehi-Khojin, A. The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett., 2013, 13(5), 1962-1968.
[http://dx.doi.org/10.1021/nl304734g] [PMID: 23586702]
[56]
Kang, I.S.; So, H.M.; Bang, G.S.; Kwak, J.H.; Lee, J.O.; Won Ahn, C. Recovery improvement of graphene-based gas sensors functionalized with nanoscale heterojunctions. Appl. Phys. Lett., 2012, 101(12)123504
[http://dx.doi.org/10.1063/1.4753974]
[57]
Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007, 6(9), 652-655.
[http://dx.doi.org/10.1038/nmat1967] [PMID: 17660825]
[58]
Park, S.J.; Kwon, O.S.; Lee, S.H.; Song, H.S.; Park, T.H.; Jang, J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett., 2012, 12(10), 5082-5090.
[http://dx.doi.org/10.1021/nl301714x] [PMID: 22962838]
[59]
Liu, Y.; Chang, J.; Lin, L. A flexible graphene FET gas sensor using polymer as gate dielectrics, IEEE 27th international conference on micro electro mechanical systems (MEMS), . 2014.
[60]
Liu, Y.; Lin, S.; Lin, L. A versatile gas sensor with selectivity using a single graphene transistor 18th International Conference on Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015..
[http://dx.doi.org/10.1109/TRANSDUCERS.2015.7181084]
[61]
Liu, Y.; Yu, J.; Cui, Y.; Hayasaka, T.; Liu, H.; Li, X.; Lin, L. An AC sensing scheme for minimal baseline drift and fast recovery on graphene FET gas sensor 19th International Conference on Solid- State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017..
[http://dx.doi.org/10.1109/TRANSDUCERS.2017.7994030]
[62]
Kim, H.W.; Na, H.G.; Kwon, Y.J.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Wu, P.; Kim, S.S. Microwave-assisted synthesis of graphene-SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interfaces, 2017, 9(37), 31667-31682.
[http://dx.doi.org/10.1021/acsami.7b02533] [PMID: 28846844]
[63]
Choudhari, A.; Bhanvase, B.A.; Saharan, V.K.; Salame, P.H.; Hunge, Y. Sonochemical preparation and characterization of rGO/SnO2 nanocomposite: Electrochemical and gas sensing performance. Ceram. Int., 2020, 46, 11290-11296.
[http://dx.doi.org/10.1016/j.ceramint.2020.01.156]
[64]
Zhang, L.; Shi, J.; Huang, Y.; Xu, H.; Xu, K.; Chu, P.K.; Ma, F. Octahedral SnO2/Graphene composites with enhanced gas-sensing performance at room temperature. ACS Appl. Mater. Interfaces, 2019, 11(13), 12958-12967.
[http://dx.doi.org/10.1021/acsami.8b22533] [PMID: 30848880]
[65]
Zhang, Z.; Zou, X.; Xu, L.; Liao, L.; Liu, W.; Ho, J.; Xiao, X.; Jiang, C.; Li, J. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale, 2015, 7(22), 10078-10084.
[http://dx.doi.org/10.1039/C5NR01924A] [PMID: 25978618]
[66]
Quang, V.V.; Dung, N.V.; Trong, N.S.; Hoa, N.D.; Duy, N.V.; Hieu, N.V. Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett., 2014, 105013107
[http://dx.doi.org/10.1063/1.4887486]
[67]
Zhang, Z.; Zou, R.; Song, G.; Yu, L.; Chen, Z.; Hu, J. Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem., 2011, 21, 17360-17365.
[http://dx.doi.org/10.1039/c1jm12987b]
[68]
Song, Z.; Yan, J.; Lian, J.; Pu, W.; Jiang, L.; Xu, H.; Li, H. Graphene oxide-loaded SnO2 quantum wires with Sub-4-Nanometer diameters for low-temperature H2S gas sensing, ACS Applied. Nanomaterials (Basel), 2020, 3, 6385-6393.
[69]
Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuators B Chem., 2019, 281, 96-106.
[http://dx.doi.org/10.1016/j.snb.2018.10.032]
[70]
Ghosh, R.; Nayak, A.K.; Santra, S.; Pradhan, D.; Guha, P.K. Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films. RSC Advances, 2015, 5, 50165-50173.
[http://dx.doi.org/10.1039/C5RA06696D]
[71]
Jin, L.; Chen, W.; Zhang, H.; Xiao, G.; Yu, C.; Zhou, Q. Characterization of reduced graphene oxide (rGO)-loaded SnO2 nanocomposite and applications in C2H2 gas detection. Appl. Sci. (Basel), 2016, 7, 19.
[http://dx.doi.org/10.3390/app7010019]
[72]
Wang, Z.; Han, T.; Fei, T.; Liu, S.; Zhang, T. Investigation of microstructure effect on NO2 sensors based on SnO2 nanoparticles/reduced graphene oxide hybrids. ACS Appl. Mater. Interfaces, 2018, 10(48), 41773-41783.
[http://dx.doi.org/10.1021/acsami.8b15284] [PMID: 30419750]
[73]
Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors. Sens. Actuators B Chem., 2017, 248, 980-986.
[http://dx.doi.org/10.1016/j.snb.2017.02.147]
[74]
Shojaee, M.; Nasresfahani, S.; Sheikhi, M.H. Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature. Sens. Actuators B Chem., 2018, 254, 457-467.
[http://dx.doi.org/10.1016/j.snb.2017.07.083]
[75]
Song, Z.; Wei, Z.; Wang, B.; Luo, Z.; Xu, S.; Zhang, W. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater., 2016, 28, 1205-1212.
[http://dx.doi.org/10.1021/acs.chemmater.5b04850]
[76]
Zhao, C.; Gong, H.; Lan, W.; Ramachandran, R.; Xu, H.; Liu, S. Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors. Sens. Actuators B Chem., 2018, 258, 492-500.
[http://dx.doi.org/10.1016/j.snb.2017.11.167]
[77]
Choi, S.J.; Jang, B.H.; Lee, S.J.; Min, B.K.; Rothschild, A.; Kim, I.D. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interfaces, 2014, 6(4), 2588-2597.
[http://dx.doi.org/10.1021/am405088q] [PMID: 24456186]
[78]
Hu, J. Formaldehyde sensing performance of reduced graphene oxide-wrapped hollow SnO2 nanospheres composites. Sens. Actuators B Chem., 2020, 2020127584
[http://dx.doi.org/10.1016/j.snb.2019.127584]
[79]
Huang, Q.; Zeng, D.; Li, H.; Xie, C. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale, 2012, 4(18), 5651-5658.
[http://dx.doi.org/10.1039/c2nr31131c] [PMID: 22868941]
[80]
Uddin, A.S.M.I.; Chung, G.S. Synthesis of highly dispersed ZnO nanoparticles on graphene surface and their acetylene sensing properties. Sens. Actuators B Chem., 2014, 205, 338-344.
[http://dx.doi.org/10.1016/j.snb.2014.09.005]
[81]
Song, N.; Fan, H.; Tian, H. PVP assisted in situ synthesis of functionalized graphene/ZnO (FGZnO) nanohybrids with enhanced gas-sensing property. J. Mater. Sci., 2015, 50, 2229-2238.
[http://dx.doi.org/10.1007/s10853-014-8785-z]
[82]
Choi, S.J.; Choi, C.; Kim, S.J.; Cho, H.J.; Jeon, S.; Kim, I.D. Facile synthesis of hierarchical porous WO3 nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules. RSC Advances, 2015, 5, 7584-7588.
[http://dx.doi.org/10.1039/C4RA13791D]
[83]
Wang, P.; Wang, D.; Zhang, M.; Zhu, Y.; Xu, Y.; Ma, X. ZnO nanosheets/graphene oxide nanocomposites for highly effective acetone vapor detection. Sens. Actuators B Chem., 2016, 230, 477-484.
[http://dx.doi.org/10.1016/j.snb.2016.02.056]
[84]
Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem., 2014, 202, 272-278.
[http://dx.doi.org/10.1016/j.snb.2014.05.086]
[85]
Ha, N.H.; Thinh, D.D.; Huong, N.T.; Phuong, N.H.; Thach, P.D.; Hong, H.S. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci., 2018, 434, 1048-1054.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.047]
[86]
Minh Triet, N. Thai Duy, L.; Hwang, B.U.; Hanif, A.; Siddiqui, S.; Park, K.H.; Cho, C.Y.; Lee, N.E. High-Performance schottky diode gas sensor based on the heterojunction of three-dimensional nanohybrids of reduced graphene oxide-vertical ZnO nanorods on an AlGaN/GaN Layer. ACS Appl. Mater. Interfaces, 2017, 9(36), 30722-30732.
[http://dx.doi.org/10.1021/acsami.7b06461] [PMID: 28825301]
[87]
Maity, I.; Acharyya, D.; Huang, K.; Chung, P.; Ho, M.; Bhattacharya, P. A comparative study on performance improvement of ZnO nanotubes based alcohol sensor devices by Pd and rGO hybridization. IEEE Trans. Electron Dev., 2018, 65, 3528-3534.
[http://dx.doi.org/10.1109/TED.2018.2846784]
[88]
Zou, R.; He, G.; Xu, K.; Liu, Q.; Zhang, Z.; Hu, J. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor, and photocatalytic properties. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 8445-8452.
[http://dx.doi.org/10.1039/c3ta11490b]
[89]
Xia, Y.; Wang, J.; Xu, J.L.; Li, X.; Xie, D.; Xiang, L.; Komarneni, S. Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl. Mater. Interfaces, 2016, 8(51), 35454-35463.
[http://dx.doi.org/10.1021/acsami.6b12501] [PMID: 27966870]
[90]
Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuators B Chem., 2017, 249, 715-724.
[http://dx.doi.org/10.1016/j.snb.2017.04.190]
[91]
Kamal, T. High-performance NiO decorated graphene as a potential H2 gas sensor. J. Alloys Compd., 2017, 729, 1058-1063.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.124]
[92]
Zhang, D.; Chang, H.; Li, P.; Liu, R. Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci. Mater. Electron., 2016, 27, 3723-3730.
[http://dx.doi.org/10.1007/s10854-015-4214-6]
[93]
Srivastava, S.; Jain, K.; Singh, V.N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T.D. Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology, 2012, 23(20)205501
[http://dx.doi.org/10.1088/0957-4484/23/20/205501] [PMID: 22543228]
[94]
An, X.; Yu, J.C.; Hu, Y.; Yu, X.; Zhang, G. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem., 2012, 22, 8525-8531.
[http://dx.doi.org/10.1039/c2jm16709c]
[95]
Jie, X.; Zeng, D.; Zhang, J.; Xu, K.; Wu, J.; Zhu, B. Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens. Actuators B Chem., 2015, 220, 201-209.
[http://dx.doi.org/10.1016/j.snb.2015.05.047]
[96]
Shi, J.; Cheng, Z.; Gao, L.; Zhang, Y.; Xu, J.; Zhao, H. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem., 2016, 230, 736-745.
[http://dx.doi.org/10.1016/j.snb.2016.02.134]
[97]
Hao, Q.; Liu, T.; Liu, J.; Liu, Q.; Jing, X.; Zhang, H. Controllable synthesis and enhanced gas sensing properties of a single-crystalline WO3-rGO porous nanocomposite. RSC Advances, 2017, 7, 14192-14199.
[http://dx.doi.org/10.1039/C6RA28379A]
[98]
Choi, S.J.; Choi, C.; Kim, S.J.; Cho, H.J.; Hakim, M.; Jeon, S.; Kim, I.D. Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci. Rep., 2015, 5, 8067.
[http://dx.doi.org/10.1038/srep08067] [PMID: 25626399]
[99]
Zhao, T. Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chin. Chem. Lett., 2019, 30, 2032-2038.
[http://dx.doi.org/10.1016/j.cclet.2019.05.006]
[100]
Jeevitha, G.; Abhinayaa, R.; Mangalraj, D.; Ponpandian, N.; Meena, P.; Mounasamy, V.; Madanagurusamy, S. Porous reduced graphene oxide (rGO)/WO3 nanocomposites for the enhanced detection of NH3 at room temperature. Nanoscale Advances, 2019, 1, 1799-1811.
[http://dx.doi.org/10.1039/C9NA00048H]
[101]
Hung, C.M.; Dat, D.Q.; Van Duy, N.; Van Quang, V.; Van Toan, N.; Van Hieu, N.; Hoa, N.D. Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors. Mater. Res. Bull., 2020.125110810
[http://dx.doi.org/10.1016/j.materresbull.2020.110810]
[102]
Dong, Y.L.; Zhang, X.F.; Cheng, X.L.; Xu, Y.M.; Gao, S.; Zhao, H.; Huo, L. Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Advances, 2014, 4, 57493-57500.
[http://dx.doi.org/10.1039/C4RA10136G]
[103]
Guo, L.; Kou, X.; Dinga, M.; Wanga, C.; Dong, L.; Zhang, H. Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors. Sens. Actuators B Chem., 2017, 244, 233-242.
[http://dx.doi.org/10.1016/j.snb.2016.12.137]
[104]
Song, H.; Yan, S.; Yao, Y.; Xia, L.; Jia, X.; Xu, J. 3D α-Fe2O3 nanorods arrays@graphene oxide nanosheets as sensing materials for improved gas sensitivity. Chem. Eng. J., 2019, 370, 1331-1340.
[http://dx.doi.org/10.1016/j.cej.2019.03.254]
[105]
Jiang, Z. A high efficiency H2S gas sensor material: Paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 6714-6717.
[http://dx.doi.org/10.1039/C3TA15180H]
[106]
Zhang, C.; Zhang, S.; Yang, Y.; Yu, H.; Dong, X. Highly sensitive H2S sensors based on metal-organic framework driven γ-Fe2O3 on reduced graphene oxide composites at room temperature. Sens. Actuators B Chem., 2020, 325128804
[http://dx.doi.org/10.1016/j.snb.2020.128804]
[107]
Hoang, V.N. Enhanced H2S gas-sensing performance of α-Fe2O3 nanofibers by optimizing process conditions and loading with reduced graphene oxide. J. Alloys Compd., 2020, 826154169
[http://dx.doi.org/10.1016/j.jallcom.2020.154169]
[108]
Wei, Q.; Sun, J.; Song, P.; Li, J.; Yang, Z.; Wang, Q. MOF-derived α-Fe2O3 porous spindle combined with reduced graphene oxide for improvement of TEA sensing performance. Sens. Actuators B Chem., 2020, 2020127306
[http://dx.doi.org/10.1016/j.snb.2019.127306]
[109]
Haridas, V.; Sukhananazerin, A.; Mary Sneha, J.; Pullithadathil, B.; Narayanan, B. α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Appl. Surf. Sci., 2020, 517146158
[http://dx.doi.org/10.1016/j.apsusc.2020.146158]
[110]
Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Nematov, S. Reduced graphene oxide-TiO2 nanotube composite: Comprehensive study for gas-sensing applications. ACS Appl. Nano Mat., 2018, 1, 7098-7105.
[http://dx.doi.org/10.1021/acsanm.8b01924]
[111]
Acharyya, D.; Bhattacharyya, P. Highly efficient room-temperature gas sensor based on TiO2 nanotube-reduced graphene-oxide hybrid device. IEEE Electron Device Lett., 2016, 37, 656-659.
[http://dx.doi.org/10.1109/LED.2016.2544954]
[112]
Karthik, P.; Gowthaman, P.; Venkatachalam, M.; Rajamanickam, A.T. Propose of high performance resistive type H2S and CO2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO2) hybrid sensors. J. Mater. Sci. Mater. Electron., 2020, 31, 3695-3705.
[http://dx.doi.org/10.1007/s10854-020-02928-4]
[113]
Li, Z.; Liu, Y.; Guo, D.; Guo, J.; Su, Y. Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sens. Actuators B Chem., 2018, 271, 306-310.
[http://dx.doi.org/10.1016/j.snb.2018.05.097]
[114]
Yang, Y.; Tian, C.; Wang, J.; Sun, L.; Shi, K.; Zhou, W.; Fu, H. Facile synthesis of novel 3D nanoflower-like Cu(x)O/multilayer graphene composites for room temperature NO(x) gas sensor application. Nanoscale, 2014, 6(13), 7369-7378.
[http://dx.doi.org/10.1039/c4nr00196f] [PMID: 24872200]
[115]
Zhang, L.; Fang, Q.; Huang, Y.; Xu, K.; Ma, F.; Chu, P.K. Facet-engineered CeO2/graphene composites for enhanced NO2 gas-sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5, 6973-6981.
[http://dx.doi.org/10.1039/C7TC01523B]
[116]
Selvakumar, D.; Sivaram, H.; Alsalme, A.; Alghamdi, A.; Jayavel, R. Freestanding flexible, pure and composite form of reduced graphene oxide paper for ammonia vapor sensing. Sci. Rep., 2019, 9(1), 8749.
[http://dx.doi.org/10.1038/s41598-019-45408-4] [PMID: 31217450]
[117]
Choi, S.J.; Ryu, W.H.; Kim, S.J.; Cho, H.J.; Kim, I.D. Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(41), 7160-7167.
[http://dx.doi.org/10.1039/C4TB00767K] [PMID: 32261794]
[118]
Feng, Q.; Li, X.; Wang, J.; Gaskov, A.M. Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuators B Chem., 2016, 222, 864-870.
[http://dx.doi.org/10.1016/j.snb.2015.09.021]
[119]
Lin, G.; Wang, H.; Lai, X.; Yang, R.; Zou, Y.; Wan, J.; Liu, D.; Jiang, H.; Hu, Y. Co3O4/N-doped RGO nanocomposites derived from MOFs and their highly enhanced gas sensing performance. Sens. Actuators B Chem., 2020, 2020127219
[http://dx.doi.org/10.1016/j.snb.2019.127219]
[120]
Liu, J.; Li, S.; Zhang, B.; Wang, Y.; Gao, Y.; Liang, X.; Wang, Y.; Lu, G. Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J. Colloid Interface Sci., 2017, 504, 206-213.
[http://dx.doi.org/10.1016/j.jcis.2017.05.053] [PMID: 28551514]
[121]
Tian, Z.; Song, P.; Yang, Z.; Wang, Q. Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing. Chin. Chem. Lett., 2020, 31, 2067-2070.
[http://dx.doi.org/10.1016/j.cclet.2020.01.025]
[122]
Deng, S.; Tjoa, V.; Fan, H.M.; Tan, H.R.; Sayle, D.C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C.H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc., 2012, 134(10), 4905-4917.
[http://dx.doi.org/10.1021/ja211683m] [PMID: 22332949]
[123]
Zhou, L.; Shen, F.; Xike, T. Wang, D; Zhang, T; Chen, W. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale, 2012, 5, 1564-1569.
[http://dx.doi.org/10.1039/c2nr33164k] [PMID: 23325161]
[124]
Bhati, V.S.; Sheela, D.; Roul, B.; Raliya, R.; Biswas, P.; Kumar, M.; Roy, M.S.; Nanda, K.K.; Krupanidhi, S.B.; Kumar, M. NO2 gas sensing performance enhancement based on reduced graphene oxide decorated V2O5 thin films. Nanotechnology, 2019, 30(22)224001
[http://dx.doi.org/10.1088/1361-6528/ab0321] [PMID: 30699385]
[125]
Qiao, X.; Ma, C.; Chang, X.; Li, X.; Li, K.; Zhu, L.; Xia, F.; Xue, Q. 3D radial Co3O4 nanorod cluster derived from cobalt-based layered hydroxide metal salt for enhanced trace acetone detection. Sens. Actuators B Chem., 2021, 327128926
[http://dx.doi.org/10.1016/j.snb.2020.128926]
[126]
Umpathy, S.; Nasimsha, N.; Kumar, M.; Kalidoss, R.; Thomas, A.C.; Lakshmi, M.; Gafoor, E.R. Design and development of portable prototype for human breath analysis: A comparative study between haemodialysis patients and healthy subjects. Biomed. Phys. Eng. Express, 2019, 5025045
[http://dx.doi.org/10.1088/2057-1976/ab005c]
[127]
Jones, A.W.; Cowan, J.M. Reflections on variability in the blood–breath ratio of ethanol and its importance when evidential breath-alcohol instruments are used in law enforcement; Forensic Sciences Research, 2020.
[128]
Jha, R.K.; D’Costa, J.V.; Sakhuja, N.; Bhat, N. MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sens. Actuators B Chem., 2019, 297126687
[http://dx.doi.org/10.1016/j.snb.2019.126687]
[129]
Brinkman, P.; van de Pol, M.A.; Gerritsen, M.G.; Bos, L.D.; Dekker, T.; Smids, B.S.; Sinha, A.; Majoor, C.J.; Sneeboer, M.M.; Knobel, H.H.; Vink, T.J.; de Jongh, F.H.; Lutter, R.; Sterk, P.J.; Fens, N. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin. Exp. Allergy, 2017, 47(9), 1159-1169.
[http://dx.doi.org/10.1111/cea.12965] [PMID: 28626990]
[130]
Amann, A.; Corradi, M.; Mazzone, P.; Mutti, A. Lung cancer biomarkers in exhaled breath. Expert Rev. Mol. Diagn., 2011, 11(2), 207-217.
[http://dx.doi.org/10.1586/erm.10.112] [PMID: 21405971]
[131]
Tang, J.; Li, B.; Wang, J. High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 µm. Atmos. Meas. Tech., 2019, 12, 2851-2861.
[http://dx.doi.org/10.5194/amt-12-2851-2019]
[132]
Chen, H.; Qi, X.; Ma, J.; Zhang, C.; Feng, H.; Yao, M. Breath-borne VOC Biomarkers for COVID-19; MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.21.20136523.]
[133]
Shan, B.; Broza, Y.Y.; Li, W.; Wang, Y.; Wu, S.; Liu, Z.; Wang, J.; Gui, S.; Wang, L.; Zhang, Z.; Liu, W.; Zhou, S.; Jin, W.; Zhang, Q.; Hu, D.; Lin, L.; Zhang, Q.; Li, W.; Wang, J.; Liu, H.; Pan, Y.; Haick, H. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano, 2020, 14(9), 12125-12132.
[http://dx.doi.org/10.1021/acsnano.0c05657] [PMID: 32808759]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy