Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Extraction Procedures and Analytical Methods for the Determination of Methylene Blue, Rhodamine B and Crystal Violet - An Overview

Author(s): Afnan A.H. Hakami, Saikh M. Wabaidur, Moonis A. Khan, Zeid A. AlOthman and Masoom R. Siddiqui*

Volume 17, Issue 5, 2021

Published on: 25 November, 2020

Page: [708 - 728] Pages: 21

DOI: 10.2174/1573411017999201125203536

Price: $65

Abstract

Background: Dyes have been a blessing to mankind owing to their numerous applications in several industries ranging from textile, food, pharmaceuticals, and paper to leather, and many more. At the same time, these dyes pose a potential threat to mankind, when they are present beyond their permissible limits. This review covers the extraction and determination methods of dyes in different matrices.

Introduction: Methylene blue (MB), rhodamine B (RB), and crystal violet (CV) are the three cationic dyes discussed in this review. These dyes can pose a potential threat to biota beyond their permissible limits.

Methods: This review article mentions different analytical methods and extraction techniques involved in the determination of dyes.

Result: Almost all the analytical methods reported in this article involve proper extraction of the analyte, which finds a place in this review article. Spectrophotometric and electrochemical methods are cost-effective, although the former is less sensitive than the latter. Liquid chromatography (LC) and liquid chromatography coupled with mass spectrometry (LC/MS) are capable of simultaneously determining a number of dyes.

Conclusion: This review also offers a compilation of different mobile phase combinations that have been used for the quantitative analysis of these three dyes. The article also contains a list of different solvents for liquid-liquid extraction and different types of sorbent materials used during the solid-phase extraction of the reviewed dyes.

Keywords: Methylene blue, rhodamine B, crystal violet, extraction procedure, determination, analytical methods.

« Previous
Graphical Abstract

[2]
Ginimuge, P.R.; Jyothi, S.D. Methylene blue: revisited. J. Anaesthesiol. Clin. Pharmacol., 2010, 26(4), 517-520.
[PMID: 21547182]
[3]
Gillman, P.K. CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. J. Psychopharmacol., 2011, 25(3), 429-436.
[http://dx.doi.org/10.1177/0269881109359098] [PMID: 20142303]
[4]
Garza, F.; Kearney, T.E. Chapter 205. Methylene Blue in Poisoning drug overdose; The McGraw-Hill Companies, 2012.
[5]
Vutskits, L.; Briner, A.; Klauser, P.; Gascon, E.; Dayer, A.G.; Kiss, J.Z.; Muller, D.; Licker, M.J.; Morel, D.R. Adverse effects of methylene blue on the central nervous system. Anesthesiology, 2008, 108(4), 684-692.
[http://dx.doi.org/10.1097/ALN.0b013e3181684be4] [PMID: 18362601]
[6]
Muthuraman, G.; Teng, T.T.; Leh, C.P.; Norli, I. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant. J. Hazard. Mater., 2009, 163(1), 363-369.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.122] [PMID: 18782652]
[7]
El-Ashtoukhy, E-S.Z.; Fouad, Y.O. Liquid–liquid extraction of methylene blue dye from aqueous solutions using sodium dodecylbenzenesulfonate as an extractant. Alexandria Eng. J., 2015, 54(1), 77-81.
[http://dx.doi.org/10.1016/j.aej.2014.11.007]
[8]
Soniya, M.; Muthuraman, G. Recovery of methylene blue from aqueous solution by liquid–liquid extraction Desal. water Treat., 2015, 53, 2501-2509..
[http://dx.doi.org/10.1080/19443994.2013.866055]
[9]
Swathi, P.; Muthuraman, G. Extraction and Stripping of Methylene Blue from Industrial Wastewater by Liquid-Liquid Extraction. SSRG Int. J. App. Chem., 2019, 6(2), 14-22.
[http://dx.doi.org/10.14445/23939133/IJAC-V6I2P103]
[10]
Soniya, M.; Muthuraman, G. Comparative study between liquid–liquid extraction and bulk liquid membrane for the removal and recovery of methylene blue from wastewater. J. Ind. Eng. Chem., 2015, 30, 266-273.
[http://dx.doi.org/10.1016/j.jiec.2015.05.032]
[11]
Talbi, Z.; Haddou, B.; Ghouas, H.; Kameche, M.; Derriche, Z. Gourdon. C. Cationic Dye Removal from Aqueous Solutions Using Ionic Liquid and Nonionic Surfactant-Ionic Liquid Systems: A Comparative Study Based upon Experimental Design. Chem. Eng. Commun., 2014, 201(1), 41-52.
[http://dx.doi.org/10.1080/00986445.2012.759563]
[12]
Pandit, P.; Basu, S. Removal of organic dyes from water by liquid-liquid extraction using reverse micelles. J. Colloid Interface Sci., 2002, 245(1), 208-214.
[http://dx.doi.org/10.1006/jcis.2001.7939] [PMID: 16290352]
[13]
Razmara, R.S.; Daneshfar, A.; Sahrai, R. Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid–liquid extraction. J. Ind. Eng. Chem., 2011, 17, 533-536.
[http://dx.doi.org/10.1016/j.jiec.2010.10.028]
[14]
Regel-Rosocka, M.; Szymanowski, J. Direct Yellow and Methylene Blue liquid-liquid extraction with alkylene carbonates. Chemosphere, 2005, 60(8), 1151-1156.
[http://dx.doi.org/10.1016/j.chemosphere.2005.01.019] [PMID: 15993164]
[15]
Marshall, P.N.; Lewis, S.M. The purification of methylene blue and azure B by solvent extraction and crystallization. Stain Technol., 1975, 50(6), 375-381.
[http://dx.doi.org/10.3109/10520297509117095] [PMID: 1226556]
[16]
Kinugasa, T.; Hashimoto, T.; Nishii, Y. Reversed Micellar Extraction of Methylene blue by using Di(2-ethylhexyl) phosphoric Acid. Solvent Extr. Res. Dev. Jpn., 2015, 22(2), 169-176.
[http://dx.doi.org/10.15261/serdj.22.169]
[17]
Chen, X.; Li, F.; Asumana, C.; Yu, G. Extraction of soluble dyes from aqueous solutions with quaternary ammonium-based ionic liquids. Separ. Purif. Tech., 2013, 106, 105-109.
[http://dx.doi.org/10.1016/j.seppur.2013.01.002]
[18]
Xu, J-Z.; Dai, L.; Wu, B.; Ding, T.; Zhu, J-J.; Lin, H.; Chen, H-L.; Shen, C-Y.; Jiang, Y. Determination of methylene blue residues in aquatic products by liquid chromatography-tandem mass spectrometry. J. Sep. Sci., 2009, 32(23-24), 4193-4199.
[http://dx.doi.org/10.1002/jssc.200900364] [PMID: 20066681]
[19]
Belaz-David, N.; Decosterd, L.A.; Appenzeller, M.; Ruetsch, Y.A.; Chioloro, R.; Buclin, T.; Biollaz, J. Spectrophotometric determination of methylene blue in biological fluids after ion-pair extraction and evidence of its adsorption on plastic polymers. Eur. J. Pharm. Sci., 1997, 5, 335-345.
[http://dx.doi.org/10.1016/S0928-0987(97)00061-4]
[20]
Ahmadi, R.; Kazemi, G.; Ramezani, A.M.; Safavi, A. Shaker-assisted liquid-liquid microextraction of methylene blue using deep eutectic solvent followed by back-extraction and spectrophotometric determination. Microchem. J., 2019, 145, 501-507.
[http://dx.doi.org/10.1016/j.microc.2018.11.005]
[21]
Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction Technique – Trends, Opportunities and Applications. Polish. J. Environ. Stud. (Northborough), 2006, 15(5), 677-690.
[22]
Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review. part ii. TrAC., 2016, 80, 655-667.
[http://dx.doi.org/10.1016/j.trac.2015.08.014]
[23]
Liska, I.; Bilikova, K. Stability of polar pesticides on disposable solid-phase extraction precolumns. J. Chromatogr. A, 1998, 795, 61-69.
[http://dx.doi.org/10.1016/S0021-9673(97)01038-8]
[25]
Khan, M.R.; Khan, M.A.; Alothman, Z.A.; Alsohaimi, I.H.; Naushad, M.; Al-Shaalan, N.H. Quantitative determination of methylene blue in environmental samples by solid-phase extraction and ultra-performance liquid chromatographytandem mass spectrometry: a green approach. RSC Advances, 2014, 4, 34037-34044.
[http://dx.doi.org/10.1039/C4RA03504F]
[26]
Youssef, A.M.; Al-Awadhi, M.M.; Akl, M.A. Solid Phase Extraction and Spectrophotometric Determination of Methylene Blue in Environmental Samples using Bentonite and Acid Activated Bentonite from Egypt. Anal. Bioanal. Tech., 2014, 5, 179.
[27]
Tang, D.; Santschi, P.H. Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. J. Chromatogr. A, 2000, 883(1-2), 305-309.
[http://dx.doi.org/10.1016/S0021-9673(00)00381-2] [PMID: 10910224]
[28]
Khaled, E.; Elries, M.A.; Zidane, F.I.; Shaban, S.; Abdel-Monem, M.S. Potentiometric determination of methylene blue in pharmaceutical preparation using simple PVC electrode. Anal. Chem. An Indian J., 2010, 9(3), 334-341.
[29]
Wen, M.L.; Zhao, Y.B.; Chen, X.; Wang, C.Y. Potentiometric sensor for methylene blue based on methylene blue-silicotungstate ion association and its pharmaceutical applications. J. Pharm. Biomed. Anal., 1999, 18(6), 957-961.
[http://dx.doi.org/10.1016/S0731-7085(98)00104-6] [PMID: 9925330]
[30]
Piccardi, G.; Pergola, F.; Foresti, M.L. Guidelli. R. A detailed analysis of the polarographic behaviour of methylene blue in phosphate buffer on mercury. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(2), 235-253.
[http://dx.doi.org/10.1016/S0022-0728(77)80375-6]
[31]
Nekouei, F.; Kargarzadeh, H.; Nekouei, S.; Keshtpour, F.; Makhlouf, A.S.H. Efficient method for determination of methylene blue dye in water samples based on a combined dispersive solid phase and cloud point extraction using Cu(OH)2 nanoflakes: central composite design optimization. Anal. Bioanal. Chem., 2017, 409(4), 1079-1092.
[http://dx.doi.org/10.1007/s00216-016-0026-7] [PMID: 27815609]
[32]
Kirsten, W.J.; Patel, V.J. On the Spectrophotometric Measurement of Methylene Blue. Microchem. J., 1972, 17, 277-284.
[http://dx.doi.org/10.1016/0026-265X(72)90065-3]
[33]
Onur, F.; Acar, N. Simultaneous determination of methylene blue, hexamethylene tetramine and resorcinol in pharmaceutical formulations by first-derivative UV spectrophotometry. Int. J. Pharm., 1992, 78, 89-91.
[http://dx.doi.org/10.1016/0378-5173(92)90359-A]
[34]
Badiee, H.; Zanjanchi, M.A.; Zamani, A.; Fashi, A. Hollow fiber liquid-phase microextraction based on the use of a rotating extraction cell: A green approach for trace determination of rhodamine 6G and methylene blue dyes. Environ. Pollut., 2019, 255(Pt 2), 113287.
[PMID: 31600705]
[35]
Borwitzky, H.; Haefeli, W.E.; Burhenne, J. Analysis of methylene blue in human urine by capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 826(1-2), 244-251.
[http://dx.doi.org/10.1016/j.jchromb.2005.09.013] [PMID: 16182616]
[36]
Li, N.; Shi, X-J.; Guo, F-H.; Wang, Z-M.; Cui, X-Y. Zhong. M.-K. Determination of methylene blue in pig plasma using RP-HPLC with solid phase extraction. J. Chin. Pharm. Sci., 2011, 46(3), 231-234.
[37]
Li, L.I.; Lei, T.; Jia-yu, H.; Min, Z.; Yi, Z. HPLC determination of related substances of methylene blue. Yaowu Fenxi Zazhi, 2008, 28, 1698-1701.
[38]
Roybal, J.E.; Munns, R.K.; Holland, D.C.; Hurlbut, J.A.; Long, A.R. Application of Electrochemical and UV/Visible Detection to the LC Separation and Determination of Methylene Blue and Its Demethylated Metabolites from Milk.Analysis of Antibiotic/Drug Residues in Food Products of Animal Origin; Agarwal, V.K., Ed.; Springer: Boston, MA, 1992.
[http://dx.doi.org/10.1007/978-1-4615-3356-6_16]
[39]
Michał, J.M.; Krzesimir, C.; Magdalena, B.F.; Julia, J.; Marta, K. Fast Method for Quantitative Determination of Methylene Blue by Micellar Electrokinetic Chromatography Biomed. J. Sci. Tech. Res., 2018, 3(3)
[40]
Chen, R-C.; Wei, K-J.; Wang, T-M.; Yu, Y-M.; Li, J-Y.; Lee, S-H.; Wang, W-H.; Ren, T-J. Tsai. C.-W. Simultaneous quantification of antibiotic dyes inaquatic products and feeds by liquid chromatography- tandem mass spectrometry. Yao Wu Shi Pin Fen Xi, 2013, 21, 339-346.
[41]
Kim, S-J.; Ha, D-J.; Koo, T-S. Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study. Biomed. Chromatogr., 2014, 28(4), 518-524.
[http://dx.doi.org/10.1002/bmc.3063] [PMID: 24122875]
[42]
Yang, F.; Xia, S.; Liu, Z.; Chen, J.; Lin, Y.; Qiu, B.; Chen, G. Analysis of methylene blue and its metabolites in blood by capillary electrophoresis/electrospray ionization mass spectrometry. Electrophoresis, 2011, 32(6-7), 659-664.
[http://dx.doi.org/10.1002/elps.201000514] [PMID: 21328395]
[43]
Nagaraja, R.; Kottam, N.; Girija, C.R.; Nagabhushana, B.M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol., 2012, 91-97.
[44]
Richardson, S.D.; Willson, C.S.; Rusch, K.A. Use of Rhodamine water tracer in the marshland upwelling system. Ground Water, 2004, 42(5), 678-688.
[http://dx.doi.org/10.1111/j.1745-6584.2004.tb02722.x] [PMID: 15457791]
[45]
Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev., 2008, 37(8), 1465-1472.
[http://dx.doi.org/10.1039/b802497a] [PMID: 18648672]
[46]
Yang, Q.; Zou, J.; Chirumarry, S.; Huo, C.; Tang, L.; Zhang, F.; Xiang, Y.; Zuo, H.; Shin, D-S.; Peng, X. A New Rhodamine B based Fluorescent Probe for pH Detection and Bioimaging under Strong Acidic Conditions. Bull. Korean Chem. Soc., 2016, 37(9), 1453-1457.
[http://dx.doi.org/10.1002/bkcs.10888]
[47]
Shelley, W.B. Fluorescent staining of elastic tissue with Rhodamine B and related xanthene dyes. Histochemie, 1969, 20(3), 244-249.
[http://dx.doi.org/10.1007/BF00306012] [PMID: 4190306]
[48]
Kolmakov, K.; Belov, V.N.; Bierwagen, J.; Ringemann, C.; Müller, V.; Eggeling, C.; Hell, S.W. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chemistry, 2010, 16(1), 158-166.
[http://dx.doi.org/10.1002/chem.200902309] [PMID: 19950338]
[49]
Khaled, E.; El-Ries, M.A.; Zidane, F.I.; Ibrahim, S.A. A Simple Potentiometric Sensor for Rhodamine B. Sensing in electrolysis, 2010, 5, 127-140..
[50]
Roda, G.; Faggiani, F.; Bolchi, C.; Pallavicini, M.; Dei Cas, M. Review’. Anal. Sci., 2019, 35(5), 479-491.
[http://dx.doi.org/10.2116/analsci.18R004] [PMID: 30686797]
[51]
Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage., 2007, 85(4), 956-964.
[http://dx.doi.org/10.1016/j.jenvman.2006.11.002] [PMID: 17239520]
[52]
Zhang, J.; Zhang, L.; Wang, W. Sensitive Electrochemical Determination of Rhodamine B Based on a Silica-Pillared Zirconium Phosphate/Nafion Composite Modified Glassy Carbon Electrode. J. AOAC Int., 2016, 99, 760-765.
[http://dx.doi.org/10.5740/jaoacint.15-0262] [PMID: 27076279]
[53]
Qi, P.; Lin, Z.; Li, J.; Wang, C.; Meng, W.; Hong, H.; Zhang, X. Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products. Food Chem., 2014, 164, 98-103.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.036] [PMID: 24996311]
[54]
Tatebe, C.; Zhong, X.; Ohtsuki, T.; Kubota, H.; Sato, K.; Akiyama, H. A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine B, auramine O, and pararosaniline) in processed foods. Food Sci. Nutr., 2014, 2(5), 547-556.
[http://dx.doi.org/10.1002/fsn3.127] [PMID: 25473512]
[55]
Bişgin, A.T.; Sürme, Y.; Uçan, M. Narin, Separation, Preconcentration and Spectrophotometric Determination of Rhodamine B in Industrial, Cosmetic and Water Samples by Cloud Point and Solid Phase Extraction. J. Anal. Chem., 2018, 73(5), 452-458.
[http://dx.doi.org/10.1134/S1061934818050040]
[56]
Chiang, T-L.; Wang, Y-C.; Ding, W-H. Trace Determination of Rhodamine B and Rhodamine 6G Dyes in Aqueous Samples by Solid-phase Extraction and High-performance Liquid Chromatography Coupled with Fluorescence Detection. J. Chin. Chem. Soc. (Taipei), 2012, 59, 515-519.
[http://dx.doi.org/10.1002/jccs.201100318]
[57]
Soylak, M.; Unsal, Y.E.; Yilmaz, E.; Tuzen, M. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food Chem. Toxicol., 2011, 49(8), 1796-1799.
[http://dx.doi.org/10.1016/j.fct.2011.04.030] [PMID: 21570440]
[58]
Ozkantar, N.; Soylak, M.; Tuzen, M. Spectrophotometric detection of rhodamine B in tap water, lipstick, rouge, and nail polish samples after supramolecular solvent microextraction. Turk. J. Chem., 2017, 41, 987-994.
[http://dx.doi.org/10.3906/kim-1702-72]
[59]
Unsal, Y.E.; Soylak, M.; Tuzen, M. Dispersive liquid–liquid microextraction–spectrophotometry combination for determination of rhodamine B in food, water, and environmental samples. Desal. Water Treat., 2018, 55(8), 1459-1462.
[60]
Yilmaz, E.; Soylak, M. A novel and simple deep eutectic solvent based liquid phase microextraction method for rhodamine B in cosmetic products and water samples prior to its spectrophotometric determination. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202, 81-86.
[http://dx.doi.org/10.1016/j.saa.2018.04.073] [PMID: 29778709]
[61]
Gagliardi, L.; Orsi, D.D.; Cavazzutti, G.; Multari, G.; Tonelli, D. HPLC Determination of Rhodamine B (C.I. 45170) in Cosmetic Products. Chromatographia, 1996, 43, 76-78.
[http://dx.doi.org/10.1007/BF02272825]
[62]
Unsal, Y.E.; Soylak, M.; Tuzen, M. Spectrophotometric Detection of Rhodamine B after Separation-Enrichment by Using Multi-walled Carbon Nanotubes. J. AOAC Int., 2014, 97(5), 1459-1462.
[http://dx.doi.org/10.5740/jaoacint.12-458] [PMID: 25903000]
[63]
Shi, J.; Chen, L. Determination of rhodamine B in lipsticks by high performance liquid chromatography after extraction with AOT reversed micelles. Anal. Methods, 2014, 6, 8627-8632.
[http://dx.doi.org/10.1039/C4AY01740D]
[64]
Pourreza, N.; Rastegarzadeh, S.; Larki, A. Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100. Talanta, 2008, 77, 733-736.
[http://dx.doi.org/10.1016/j.talanta.2008.07.031]
[65]
Hasanin, T.H.A.; Tsukahara, S.; Fujiwara, T. Acid-base behavior of rhodamine B in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol-cyclohexane/water. Anal. Sci., 2010, 26(12), 1247-1254.
[http://dx.doi.org/10.2116/analsci.26.1247] [PMID: 21157092]
[66]
Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Li, J.; Ma, J.; Chen, L. Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta, 2020, 215120933
[http://dx.doi.org/10.1016/j.talanta.2020.120933] [PMID: 32312469]
[67]
Wang, Z.; Zhang, L.; Li, N.; Lei, L.; Shao, M.; Yang, X.; Song, Y.; Yu, A.; Zhang, H.; Qiu, F. Ionic liquid-based matrix solid-phase dispersion coupled with homogeneous liquid-liquid microextraction of synthetic dyes in condiments. J. Chromatogr. A, 2014, 1348, 52-62.
[http://dx.doi.org/10.1016/j.chroma.2014.04.086] [PMID: 24857032]
[68]
Hassan, S.S.; El-Shahawi, M.S.; Othman, A.M.; Mosaad, M.A. A potentiometric rhodamine-B based membrane sensor for the selective determination of chromium ions in wastewater. Anal. Sci., 2005, 21(6), 673-678.
[http://dx.doi.org/10.2116/analsci.21.673] [PMID: 15984204]
[69]
Yu, L.; Mao, Y.; Qu, L. Simple Voltammetric Determination of Rhodamine B by Using the Glassy Carbon Electrode in Fruit Juice and Preserved Fruit. Food Anal. Methods, 2013, 6, 1665-1670.
[http://dx.doi.org/10.1007/s12161-013-9580-1]
[70]
He, Q.; Liu, J.; Xia, Y.; Tuo, D.; Deng, P.; Tian, Y.; Wu, Y.; Li, G.; Chen, D. Rapid and Sensitive Voltammetric Detection of Rhodamine B in Chili-Containing Foodstuffs Using MnO2 Nanorods/Electro-Reduced Graphene Oxide Composite. J. Electrochem. Soc., 2019, 166(10), B805-B813.
[http://dx.doi.org/10.1149/2.1271910jes]
[71]
Yi, Y.; Sun, H.; Zhu, G.; Zhang, Z.; Wu, X. Sensitive Electrochemical Determination of Rhodamine B Based on Cyclodextrin-Functionalized Nanogold/Hollow Carbon Nanospheres. Anal. Methods, 2015, 7(12), 4965-4970.
[http://dx.doi.org/10.1039/C5AY00654F]
[72]
Razi-Asrami, M.; Ghasemi, J.B.; Amiri, N.; Sadeghi, S.J. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction. Environ. Monit. Assess., 2017, 189(4), 196.
[http://dx.doi.org/10.1007/s10661-017-5898-2] [PMID: 28361487]
[73]
Azarkohan, A.; Shemirani, F.; Alvand, M. .Fast Analysis of Water Samples for Trace Amount of Crystal Violet Dye Based on Solid Phase Extraction Using Nanoporous SBA-3 prior to Determination by Fiber Optic-Linear Array Detection Spectrophotometry. J. Chem., 2013, 530843.
[http://dx.doi.org/10.1155/2013/530843]
[74]
Lian, Z.; Wang, J. Determination of crystal violet in seawater and seafood samples through off-line molecularly imprinted SPE followed by HPLC with diode-array detection. J. Sep. Sci., 2013, 36(5), 980-985.
[http://dx.doi.org/10.1002/jssc.201200939] [PMID: 23390113]
[75]
Yantih, N.; Lestari, D.A. . Validation of visible spectrophotometry for determination of rhodamine b in lipstick Published at The 24th FAPA Congress in Bali Nusa Dua Convention Center, Bali, IndonesiaSeptember, 13-16th. 2012.
[76]
Cai, S-S.; Stark, J.D. A method for the determination of rhodamine b and brilliant sulfaflavine on cotton string collectors and in a spray tank solution mixture. J. Environ. Sci. Health B, 1997, 32(6), 985-1004.
[http://dx.doi.org/10.1080/03601239709373124]
[77]
Bhooma, V.; Nagasathiya, K.; Vairamani, M.; Parani, M. Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron. Food Chem., 2020, 309125793
[http://dx.doi.org/10.1016/j.foodchem.2019.125793] [PMID: 31699557]
[78]
Tonica, W.W.; Hardianti, M.F.; Prasetya, S.A.; Rachmaniaha, O. Determination of Rhodamine-B and Amaranth in Snacks at Primary School Sukolilo District of Surabaya-Indonesia by Thin Layer Chromatography. AIP Conf. Proc., 2018, 2049020043
[http://dx.doi.org/10.1063/1.5082448]]
[80]
Nevitasar, R.; Rohman, A.; Martono, S. Validation and quantitative analysis of carmine and rhodamine b in lipstick formulation Int. J. App. Pharmaceut., 2019, 11, 176-180.
[http://dx.doi.org/10.22159/ijap.2019v11i3.32492]
[81]
Yantih, N.; Aziza, Z.; Prasetya, A.D. Optimization and Validation of HPLC for the Analysis of Rhodamine-B in Sponge Cake Proceedings of The 9 th Joint Conference on Chemistry., FSM, Diponegoro University. 2015.
[82]
Cheng, Y-Y.; Tsai, T-H. A validated LC-MS/MS determination method for the illegal food additive rhodamine B: Applications of a pharmacokinetic study in rats. J. Pharm. Biomed. Anal., 2016, 125, 394-399.
[http://dx.doi.org/10.1016/j.jpba.2016.04.018] [PMID: 27131149]
[83]
AlTamimi, A.; AlRabeh, M.; AlTamimi, A.; AlAjlan, A.; Alowaifeer, A. Fast and simple method for the detection and quantification of 15 synthetic dyes in sauce, cotton candy, and pickle by liquid chromatography/tandem mass spectrometry. Arab. J. Chem., 2020, 13, 3882-3888.
[http://dx.doi.org/10.1016/j.arabjc.2019.09.008]
[84]
Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci., 2010, 343(2), 463-473.
[http://dx.doi.org/10.1016/j.jcis.2009.11.060] [PMID: 20045526]
[85]
Maley, A.M.; Arbiser, J.L. Gentian violet: a 19th century drug re-emerges in the 21st century. Exp. Dermatol., 2013, 22(12), 775-780.
[http://dx.doi.org/10.1111/exd.12257] [PMID: 24118276]
[86]
Choudhary, K.N.; Soni, P.P.; Sao, D.K.; Murthy, R.; Deshkar, A.M.; Nanda, B.R. Role of gentian violet paint in burn wound management: a prospective randomised control trial. J. Indian Med. Assoc., 2013, 111(4), 248-250.
[PMID: 24475556]
[87]
Krause, R.G.E.; Goldring, J.P.D. Crystal violet stains proteins in SDS-PAGE gels and zymograms. Anal. Biochem., 2019, 566, 107-115.
[http://dx.doi.org/10.1016/j.ab.2018.11.015] [PMID: 30458124]
[88]
Kadoo, P.; Dandekar, R.; Kulkarni, M.; Mahajan, A.; Kumawat, R.; Parate, N. Correlation of mitosis obtained by using 1% crystal violet stain with Ki67LI in histological grades of oral squamous cell carcinoma. J. Oral Biol. Craniofac. Res., 2018, 8(3), 234-240.
[http://dx.doi.org/10.1016/j.jobcr.2017.09.010] [PMID: 30191116]
[89]
Suzuki, T.; Hara, T.; Kitagawa, Y.; Yamaguchi, T. Magnified endoscopic observation of early colorectal cancer by linked color imaging with crystal violet staining (with video). Gastrointest. Endosc., 2016, 84(4), 726-729.
[http://dx.doi.org/10.1016/j.gie.2016.05.023] [PMID: 27215791]
[90]
Senthilkumaar, S.; Kalaamani, P.; Subburaam, C.V. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater., 2006, 136(3), 800-808.
[http://dx.doi.org/10.1016/j.jhazmat.2006.01.045] [PMID: 16675107]
[91]
Li, S. Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Bioresour. Technol., 2010, 101(7), 2197-2202.
[http://dx.doi.org/10.1016/j.biortech.2009.11.044] [PMID: 19969451]
[92]
Patil, S.R.; Sutar, S.S.; Jadhav, J.P. Sorption of crystal violet from aqueous solution using live roots of Eichhornia crassipes: Kinetic, isotherm, phyto and cyto-genotoxicity studies. Environ. Technol. Innovat., 2020, 100648
[http://dx.doi.org/10.1016/j.eti.2020.100648]]
[93]
Mani, S.; Bharagava, R.N. Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety. Rev. Environ. Contam. Toxicol., 2016, 237, 71-104.
[http://dx.doi.org/10.1007/978-3-319-23573-8_4] [PMID: 26613989]
[94]
An, L.; Deng, J.; Zhou, L.; Li, H.; Chen, F.; Wang, H.; Liu, Y. Simultaneous spectrophotometric determination of trace amount of malachite green and crystal violet in water after cloud point extraction using partial least squares regression. J. Hazard. Mater., 2010, 175(1-3), 883-888.
[http://dx.doi.org/10.1016/j.jhazmat.2009.10.092] [PMID: 19939555]
[95]
Ghasemi, E.; Kaykhaii, M. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 164, 93-97.
[http://dx.doi.org/10.1016/j.saa.2016.04.001] [PMID: 27085294]
[96]
Manzo, V.; Navarro, O.; Honda, L.; Sánchez, K.; Inés Toral, M.; Richter, P. Determination of crystal violet in water by direct solid phase spectrophotometry after rotating disk sorptive extraction. Talanta, 2013, 106, 305-308.
[http://dx.doi.org/10.1016/j.talanta.2012.11.004] [PMID: 23598132]
[97]
Sadeghi, S.; Nasehi, Z. Simultaneous determination of Brilliant Green and Crystal Violet dyes in fish and water samples with dispersive liquid-liquid micro-extraction using ionic liquid followed by zero crossing first derivative spectrophotometric analysis method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 201, 134-142.
[http://dx.doi.org/10.1016/j.saa.2018.04.061] [PMID: 29747083]
[98]
Xie, J.; Peng, T.; Chen, D-D.; Zhang, Q-J.; Wang, G-M.; Wang, X.; Guo, Q.; Jiang, F.; Chen, D.; Deng, J. Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 913-914, 123-128.
[http://dx.doi.org/10.1016/j.jchromb.2012.12.002] [PMID: 23286983]
[99]
Lee, J.B.; Kim, H.Y.; Jang, Y.M.; Song, J.Y.; Woo, S.M.; Park, M.S.; Lee, H.S.; Lee, S.K.; Kim, M. Determination of malachite green and crystal violet in processed fish products Food Add. Contam., 2010, 27(7), 953-961.
[http://dx.doi.org/10.1080/19440041003705839]
[100]
ElHamd, M.A.; Ali, R.; Abdellatif, A.A.H. Non-Aqueous Titrimetric Assay for Determination of Loratadine in Pharmaceutical Preparations. J. Anal. Bioanal. Tech., 2016, 7(1), 294.
[101]
Masadome, T. Determination of Cationic Surfactants by a Photometric Titration Method with Crystal Violet as a Color Indicator. Anal. Lett., 2003, 37, 499-506.
[http://dx.doi.org/10.1081/AL-120028622]
[102]
Lan, Q.; Li, Q.; Zhang, X.; Chen, Z. A novel electrochemiluminescence system of CuS film and K2S2O8 for determination of crystal violet. J. Electroanal. Chem. (Lausanne Switz.), 2018, 810, 216-221.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.008]
[103]
Pradel, J.S.; Tong, W.G. Determination of Malachite Green, Crystal Violet, Brilliant Green and Methylene Blue with Micro-Cloud-Point Extraction and Nonlinear Laser Wave-Mixing Detection Interfaced to Micellar Capillary Electrophoresis. Anal. Methods, 2017, 9(45), 6411-6419.
[http://dx.doi.org/10.1039/C7AY01706E]
[104]
Vishnu, D.; Dhandapani, B.; Authilingam, S.; Sivakumar, S.V. A Comprehensive Review of Effective Adsorbents Used for the Removal of Dyes from Wastewater. Curr. Anal. Chem.,
[http://dx.doi.org/10.2174/1573411016999200831111155]]
[105]
Al Shamari, Y.M.G.; Wabaidur, S.M.; Alwarthan, A.A.; Khan, M.A.; Siddiqui, M.R. Corncob Waste Based Adsorbent for Solid Phase Extraction of Tartrazine in Carbonated Drinks and Analytical Method using Ultra Performance Liquid Chromatography-Mass Spectrometry. Curr. Anal. Chem., 2020, 16, 924-932.
[http://dx.doi.org/10.2174/1573411015666191028113257]
[106]
Al Shamari, Y.M.G.; Alwarthan, A.A.; Wabaidur, S.M.; Khan, M.A.; Alqadami, A.A.; Siddiqui, M.R. New Ultra Performance liquid chromatography-mass spectrometric method for the determination of allura red in soft drinks using corncob as solid phase extraction sorbent: Analysis and food waste management approach. Journal of King Saud University-Science., 2019, 32, 1135-1141.
[http://dx.doi.org/10.1016/j.jksus.2019.10.011]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy