Abstract
Background: Drug-Target interactions are vital for drug design and drug repositioning. However, traditional lab experiments are both expensive and time-consuming. Various computational methods which applied machine learning techniques performed efficiently and effectively in the field.
Results: The machine learning methods can be divided into three categories basically: Supervised methods, Semi-Supervised methods and Unsupervised methods. We reviewed recent representative methods applying machine learning techniques of each category in DTIs and summarized a brief list of databases frequently used in drug discovery. In addition, we compared the advantages and limitations of these methods in each category.
Conclusion: Every prediction model has both strengths and weaknesses and should be adopted in proper ways. Three major problems in DTIs prediction including the lack of nonreactive drug-target pairs data sets, over optimistic results due to the biases and the exploiting of regression models on DTIs prediction should be seriously considered.
Keywords: Drug-target interactions prediction, drug discovery, machine learning, computational methods, supervised learning, semisupervised learning, unsupervised learning.
[http://dx.doi.org/10.1186/2193-9616-1-17] [PMID: 25505661]
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[http://dx.doi.org/10.1038/nrd2261] [PMID: 17016423]
[http://dx.doi.org/10.1016/j.cbpa.2006.06.024] [PMID: 16822705]
[http://dx.doi.org/10.1177/1087057109350114] [PMID: 19822881]
[http://dx.doi.org/10.1016/S1367-5931(97)80078-6] [PMID: 9667878]
[http://dx.doi.org/10.1186/s13059-019-1689-0] [PMID: 30992073]
[http://dx.doi.org/10.15252/msb.20156651] [PMID: 27474269]
[http://dx.doi.org/10.1146/annurev-biodatasci-080917-013343]
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[http://dx.doi.org/10.1111/j.1747-0285.2009.00873.x] [PMID: 19751420]
[http://dx.doi.org/10.1021/jm00161a004] [PMID: 3783576]
[http://dx.doi.org/10.1007/978-1-62703-017-5_13] [PMID: 23034755]
[http://dx.doi.org/10.1016/j.cbd.2006.01.003] [PMID: 20483274]
[http://dx.doi.org/10.1109/BIBM.2018.8621087]
[http://dx.doi.org/10.1016/j.ymeth.2016.06.024] [PMID: 27378654]
[http://dx.doi.org/10.1517/17425255.2014.950222] [PMID: 25112457]
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[http://dx.doi.org/10.1016/j.febslet.2008.02.024] [PMID: 18291108]
[http://dx.doi.org/10.1093/nar/gkj102] [PMID: 16381885]
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[http://dx.doi.org/10.1093/nar/gkh081] [PMID: 14681450]
[PMID: 17942422]
[http://dx.doi.org/10.1093/bioinformatics/btp697] [PMID: 20031966]
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[http://dx.doi.org/10.1093/nar/gkx1121] [PMID: 29149325]
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[http://dx.doi.org/10.1371/journal.pone.0086499] [PMID: 24475134]
[http://dx.doi.org/10.1093/nar/gku1088] [PMID: 25378330]
[http://dx.doi.org/10.1093/nar/gkw993] [PMID: 27789690]
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[http://dx.doi.org/ 10.1093/nar/gkp456 ] [PMID: 19498078]
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[http://dx.doi.org/10.1093/nar/gkv1075] [PMID: 26481350]
[http://dx.doi.org/10.1093/nar/gkt1129] [PMID: 24265219]
[http://dx.doi.org/10.1186/1471-2105-9-104] [PMID: 18282303]
[http://dx.doi.org/10.3390/molecules24010023] [PMID: 30200333]
[http://dx.doi.org/10.1093/bib/bbt056] [PMID: 23933754]
[http://dx.doi.org/10.1093/bioinformatics/btp433] [PMID: 19605421]
[http://dx.doi.org/10.1155/2017/6340316] [PMID: 28744468]
[http://dx.doi.org/10.1089/big.2018.0175] [PMID: 31411491]
[http://dx.doi.org/10.1166/jmihi.2012.1117]
[http://dx.doi.org/10.1007/s10015-017-0416-8]
[http://dx.doi.org/10.1093/bioinformatics/bts360] [PMID: 22730431]
[http://dx.doi.org/10.1021/ci400219z] [PMID: 24289468]
[http://dx.doi.org/10.1016/j.chemolab.2015.01.004]
[http://dx.doi.org/10.1109/TCBB.2017.2666141] [PMID: 28186907]
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[http://dx.doi.org/10.1016/j.jtbi.2009.11.002] [PMID: 19903486]
[http://dx.doi.org/10.1504/IJCBDD.2008.022211] [PMID: 20063466]
[http://dx.doi.org/10.1160/ME0425] [PMID: 17492123]
[http://dx.doi.org/10.1016/j.ygeno.2018.12.007] [PMID: 30550813]
[http://dx.doi.org/10.1016/j.physrep.2012.02.006]
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[http://dx.doi.org/10.1073/pnas.1000488107] [PMID: 20176968]
[http://dx.doi.org/10.1088/1367-2630/11/12/123008]
[http://dx.doi.org/10.1371/journal.pone.0041064] [PMID: 22815915]
[PMID: 26944082]
[http://dx.doi.org/10.1111/bph.13629] [PMID: 27646592]
[http://dx.doi.org/10.1093/bioinformatics/btv256]
[http://dx.doi.org/10.1137/1.9781611972795.23]
[http://dx.doi.org/10.3115/v1/D14-1055]
[http://dx.doi.org/10.1186/1752-0509-4-S2-S6] [PMID: 20840733]
[http://dx.doi.org/10.1371/journal.pcbi.1004975] [PMID: 27415801]
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[http://dx.doi.org/10.1016/j.neucom.2016.03.080]
[http://dx.doi.org/10.1038/s41598-017-08079-7] [PMID: 28808275]
[http://dx.doi.org/10.1007/978-3-642-35289-8_32]
[http://dx.doi.org/ 10.1145/1458082.1458115]
[http://dx.doi.org/10.1109/TST.2015.7297749]
[http://dx.doi.org/10.1007/s11427-014-4747-6] [PMID: 25326068]
[http://dx.doi.org/10.1093/nar/gkt1223] [PMID: 24288371]
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[http://dx.doi.org/10.1073/pnas.84.13.4355] [PMID: 3474607]
[http://dx.doi.org/10.1088/1367-2630/17/11/113037]
[http://dx.doi.org/10.1140/epjb/e2009-00335-8]
[http://dx.doi.org/10.1093/bib/bbx041] [PMID: 28453640]
[http://dx.doi.org/10.1103/PhysRevE.64.025102] [PMID: 11497639]
[http://dx.doi.org/10.1038/s41598-017-13003-0] [PMID: 29062063]
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[http://dx.doi.org/10.1038/nmeth.2259] [PMID: 23223166]
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]