Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction

Author(s): Xiaoping Min, Fengqing Lu and Chunyan Li*

Volume 27, Issue 15, 2021

Published on: 24 November, 2020

Page: [1847 - 1855] Pages: 9

DOI: 10.2174/1381612826666201124112710

Price: $65

Abstract

Enhancer-promoter interactions (EPIs) in the human genome are of great significance to transcriptional regulation, which tightly controls gene expression. Identification of EPIs can help us better decipher gene regulation and understand disease mechanisms. However, experimental methods to identify EPIs are constrained by funds, time, and manpower, while computational methods using DNA sequences and genomic features are viable alternatives. Deep learning methods have shown promising prospects in classification and efforts that have been utilized to identify EPIs. In this survey, we specifically focus on sequence-based deep learning methods and conduct a comprehensive review of the literature. First, we briefly introduce existing sequence- based frameworks on EPIs prediction and their technique details. After that, we elaborate on the dataset, pre-processing means, and evaluation strategies. Finally, we concluded with the challenges these methods are confronted with and suggest several future opportunities. We hope this review will provide a useful reference for further studies on enhancer-promoter interactions.

Keywords: Enhancer-promoter interactions, sequence features, prediction, deep learning, attention mechanism, word embedding, convolutional neural network, recurrent neural network, interpretable model.

[1]
Williamson I, Hill RE, Bickmore WA. Enhancers: from developmental genetics to the genetics of common human disease. Dev Cell 2011; 21(1): 17-9.
[http://dx.doi.org/10.1016/j.devcel.2011.06.008] [PMID: 21763601]
[2]
Lenhard B, Sandelin A, Carninci P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 2012; 13(4): 233-45.
[http://dx.doi.org/10.1038/nrg3163] [PMID: 22392219]
[3]
Liu B, Li K. iPromoter-2L2.0: identifying promoters and their types by combining Smoothing Cutting Window algorithm and sequence-based features. Mol Ther Nucleic Acids 2019; 18: 80-7.
[http://dx.doi.org/10.1016/j.omtn.2019.08.008] [PMID: 31536883]
[4]
Zuo YC, Li QZ. Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility. Genomics 2011; 97(2): 112-20.
[http://dx.doi.org/10.1016/j.ygeno.2010.11.002] [PMID: 21112384]
[5]
Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet 2013; 14(4): 288-95.
[http://dx.doi.org/10.1038/nrg3458] [PMID: 23503198]
[6]
Krivega I, Dean A. Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev 2012; 22(2): 79-85.
[http://dx.doi.org/10.1016/j.gde.2011.11.001] [PMID: 22169023]
[7]
Dixon JR, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature 2015; 518(7539): 331-6.
[http://dx.doi.org/10.1038/nature14222] [PMID: 25693564]
[8]
Zhang Y, Wong C-H, Birnbaum RY, et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 2013; 504(7479): 306-10.
[http://dx.doi.org/10.1038/nature12716] [PMID: 24213634]
[9]
Li G, Ruan X, Auerbach RK, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012; 148(1-2): 84-98.
[http://dx.doi.org/10.1016/j.cell.2011.12.014] [PMID: 22265404]
[10]
Rao SS, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014; 159(7): 1665-80.
[http://dx.doi.org/10.1016/j.cell.2014.11.021] [PMID: 25497547]
[11]
Javierre BM, Burren OS, Wilder SP, et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 2016; 167(5): 84-19.
[http://dx.doi.org/10.1016/j.cell.2016.09.037]
[12]
Roy S, Siahpirani AF, Chasman D, et al. A predictive modeling approach for cell line-specific long-range regulatory interactions. Nucleic Acids Res 2015; 43(18): 8694-712.
[http://dx.doi.org/10.1093/nar/gkv865] [PMID: 26338778]
[13]
Whalen S, Truty RM, Pollard KS. Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 2016; 48(5): 488-96.
[http://dx.doi.org/10.1038/ng.3539] [PMID: 27064255]
[14]
Cao Q, Anyansi C, Hu X, et al. Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat Genet 2017; 49(10): 1428-36.
[http://dx.doi.org/10.1038/ng.3950] [PMID: 28869592]
[15]
Feng Z-X, Li Q-Z, Meng J-J. Modeling the relationship of diverse genomic signatures to gene expression levels with the regulation of long-range enhancer-promoter interactions. Biophys Rep 2019; 5(3): 123-32.
[http://dx.doi.org/10.1007/s41048-019-0089-z]
[16]
Zhang T, Wang Y. An approach for recognition of enhancer-promoter associations based on random forest. Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019) 46-50.
[http://dx.doi.org/10.1145/3354031.3354039]
[17]
Talukder A, Saadat S, Li X, Hu H. EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics 2019; 35(20): 3877-83.
[http://dx.doi.org/10.1093/bioinformatics/btz641] [PMID: 31410461]
[18]
Singh S, Yang Y, Póczos B, Ma J. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant Biol 2019; 7(2): 122-37.
[19]
Yang Y, Zhang R, Singh S, Ma J. Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics 2017; 33(14): i252-60.
[http://dx.doi.org/10.1093/bioinformatics/btx257] [PMID: 28881991]
[20]
Mao W, Kostka D, Chikina M. Modeling Enhancer-promoter interactions with attention-based. Neural Netw 2017; 219667.
[21]
Zeng W, Wu M, Jiang R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics 2018; 19(Suppl. 2): 84.
[http://dx.doi.org/10.1186/s12864-018-4459-6] [PMID: 29764360]
[22]
Hong Z, Zeng X, Wei L, Liu X. Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics 2019; 36(4)
[http://dx.doi.org/10.1093/bioinformatics/btz694] [PMID: 31588505]
[23]
Zhuang Z, Shen X, Pan W. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data. Bioinformatics 2019; 35(17): 2899-906.
[http://dx.doi.org/10.1093/bioinformatics/bty1050] [PMID: 30649185]
[24]
Wei L, Liao M, Gao Y, Ji R, He Z, Zou Q. Improved and promising identification of human microRNAs by incorporating a high-quality negative set. Comput Biol Bioinform 2014; 11(1): 192-201.
[http://dx.doi.org/10.1109/TCBB.2013.146]
[25]
Chen X, Pérez-Jiménez MJ, Valencia-Cabrera L, Wang B, Zeng X. Computing with viruses. Theor Comput Sci 2016; 623: 146-59.
[http://dx.doi.org/10.1016/j.tcs.2015.12.006]
[26]
Cabarle FGC, Adorna HN, Jiang M, Zeng X. Spiking Neural P Systems With Scheduled Synapses. IEEE Trans Nanobioscience 2017; 16(8): 792-801.
[http://dx.doi.org/10.1109/TNB.2017.2762580] [PMID: 29035221]
[27]
Song T, Rodríguez-Patón A, Zheng P. Zeng XJIToC, Systems D. Spiking Neural P Systems with Colored Spikes. IEEE Transac Cognit Dev Sys 2018; 10(4): 1106-15.
[http://dx.doi.org/10.1109/TCDS.2017.2785332]
[28]
Wei L, Xing P, Zeng J, Chen J, Su R, Guo F. Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier. Artif Intell Med 2017; 83: 67-74.
[http://dx.doi.org/10.1016/j.artmed.2017.03.001] [PMID: 28320624]
[29]
Wei L, Wan S, Guo J, Wong KK. A novel hierarchical selective ensemble classifier with bioinformatics application. Artif Intell Med 2017; 83: 82-90.
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[30]
Cabarle FGC, de la Cruz RTA, Cailipan DPP, Zhang DF, Liu XR, Zeng XX. On solutions and representations of spiking neural P systems with rules on synapses. Inf Sci 2019; 501: 30-49.
[http://dx.doi.org/10.1016/j.ins.2019.05.070]
[31]
Liao ZJ, Li DP, Wang XR, Li LS, Zou Q. Cancer diagnosis through IsomiR expression with machine learning method. Curr Bioinform 2018; 13(1): 57-63.
[http://dx.doi.org/10.2174/1574893611666160609081155]
[32]
Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H. Predicting diabetes mellitus with machine learning techniques. Front Genet 2018; 9: 515.
[http://dx.doi.org/10.3389/fgene.2018.00515] [PMID: 30459809]
[33]
Qu K, Guo F, Liu X, Lin Y, Zou Q. Application of machine learning in microbiology. Front Microbiol 2019; 10: 827.
[http://dx.doi.org/10.3389/fmicb.2019.00827] [PMID: 31057526]
[34]
Ding H, Yang W, Tang H, et al. PHYPred: a tool for identifying bacteriophage enzymes and hydrolases. Virol Sin 2016; 31(4): 350-2.
[http://dx.doi.org/10.1007/s12250-016-3740-6] [PMID: 27151186]
[35]
Yang W, Zhu XJ, Huang J, Ding H, Lin H. A brief survey of machine learning methods in protein sub-Golgi localization. Curr Bioinform 2019; 14: 234-40.
[http://dx.doi.org/10.2174/1574893613666181113131415]
[36]
Zhu XJ, Feng CQ, Lai HY, Chen W, Lin H. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl Base Syst 2019; 163: 787-93.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[37]
Zhang ZY, Yang YH, Ding H, Wang D, Chen W, Lin H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief Bioinform 2021; 22(1): 526-35.
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[38]
Li H, Song M, Yang W, Cao P, Zheng L, Zuo Y. A comparative analysis of single-cell transcriptome identifies reprogramming driver factors for efficiency improvement. Mol Ther Nucleic Acids 2020; 19: 1053-64.
[http://dx.doi.org/10.1016/j.omtn.2019.12.035] [PMID: 32045876]
[39]
Li H, Ta N, Long C, et al. The spatial binding model of the pioneer factor Oct4 with its target genes during cell reprogramming. Comput Struct Biotechnol J 2019; 17: 1226-33.
[http://dx.doi.org/10.1016/j.csbj.2019.09.002] [PMID: 31921389]
[40]
Hu B, Zheng L, Long C, et al. EmExplorer: a database for exploring time activation of gene expression in mammalian embryos. Open Biol 2019; 9(6): 190054.
[http://dx.doi.org/10.1098/rsob.190054] [PMID: 31164042]
[41]
Liang P, Yang W, Chen X, et al. Machine learning of single-cell transcriptome highly identifies mRNA signature by comparing F-score selection with DGE analysis. Mol Ther Nucleic Acids 2020; 20: 155-63.
[http://dx.doi.org/10.1016/j.omtn.2020.02.004] [PMID: 32169803]
[42]
Liu D, Li G, Zuo Y. Function determinants of TET proteins: the arrangements of sequence motifs with specific codes. Brief Bioinform 2019; 20(5): 1826-35.
[http://dx.doi.org/10.1093/bib/bby053] [PMID: 29947743]
[43]
Dao FY, Lv H, Zulfiqar H, et al. A computational platform to identify origins of replication sites in eukaryotes. Brief Bioinform 2020; 22(2)
[http://dx.doi.org/10.1093/bib/bbaa017] [PMID: 32065211]
[44]
Lai HY, Zhang ZY, Su ZD, et al. iProEP: A Computational Predictor for Predicting Promoter. Mol Ther Nucleic Acids 2019; 17: 337-46.
[http://dx.doi.org/10.1016/j.omtn.2019.05.028] [PMID: 31299595]
[45]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2019; 35(9): 1469-77.
[http://dx.doi.org/10.1093/bioinformatics/bty827] [PMID: 30247625]
[46]
Lin H, Liang ZY, Tang H, Chen W. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1316-21.
[http://dx.doi.org/10.1109/TCBB.2017.2666141] [PMID: 28186907]
[47]
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015; 12(10): 931-4.
[http://dx.doi.org/10.1038/nmeth.3547] [PMID: 26301843]
[48]
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015; 33(8): 831-8.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[49]
Min X, Zeng W, Chen N, Chen T, Jiang R. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics 2017; 33(14): i92-i101.
[http://dx.doi.org/10.1093/bioinformatics/btx234] [PMID: 28881969]
[50]
Qu K, Wei L, Zou Q. A Review of DNA-binding proteins prediction methods. Curr Bioinform 2019; 14(3): 246-54.
[http://dx.doi.org/10.2174/1574893614666181212102030]
[51]
Zou Q, Wan S, Ju Y, Tang J, Zeng X. Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Syst Biol 2016; 10(4)(Suppl. 4): 114.
[http://dx.doi.org/10.1186/s12918-016-0353-5] [PMID: 28155714]
[52]
Ta N, Li H, Liu S, Zuo Y. Mining Key Regulators of cell reprogramming and prediction research based on deep learning neural networks. IEEE Access 2020; 8: 23179-85.
[http://dx.doi.org/10.1109/ACCESS.2020.2970442]
[53]
Liu B, Li C, Yan K. DeepSVM-fold: Protein fold recognition by combining Support Vector Machines and pairwise sequence similarity scores generated by deep learning networks. Brief Bioinform 2019; 21(Supp 11)
[http://dx.doi.org/10.1093/bib/bbz098] [PMID: 31665221]
[54]
Lv Z, Ao C, Zou Q. Protein function prediction: from traditional classifier to deep learning. Proteomics 2019; 19(14)
[http://dx.doi.org/10.1002/pmic.201900119] [PMID: 31187588]
[55]
Peng L, Peng MM, Liao B, Huang GH, Li WB, Xie DF. The advances and challenges of deep learning application in biological big data processing. Curr Bioinform 2018; 13(4): 352-9.
[http://dx.doi.org/10.2174/1574893612666170707095707]
[56]
He B, Jiang L, Duan Y, et al. Biopanning data bank 2018: hugging next generation phage display. Database 2018.
[57]
Mathelier A, Fornes O, Arenillas DJ, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2016; 44(D1): D110-5.
[PMID: 26531826]
[58]
Bai S, Kolter JZ, Koltun V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling Engineering. Modeling 2018.
[59]
Zheng L, Huang S, Mu N, et al. RAACBook: a web server of reduced amino acid alphabet for sequence-dependent inference by using Chou’s five-step rule. Database 2019; 2019: baz131.
[http://dx.doi.org/10.1093/database/baz131]]
[60]
Tan JX, Li SH, Zhang ZM, et al. Identification of hormone binding proteins based on machine learning methods. Math Biosci Eng 2019; 16(4): 2466-80.
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[61]
Tang H, Zhao YW, Zou P, et al. HBPred: a tool to identify growth hormone-binding proteins. Int J Biol Sci 2018; 14(8): 957-64.
[http://dx.doi.org/10.7150/ijbs.24174] [PMID: 29989085]
[62]
Yang H, Yang W, Dao FY, et al. A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bbz123] [PMID: 31633777]
[63]
Kulakovskiy IV, Vorontsov IE, Yevshin IS, et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res 2016; 44(D1): D116-25.
[http://dx.doi.org/10.1093/nar/gkv1249] [PMID: 26586801]
[64]
Le QV, Mikolov T. Distributed representations of sentences and documents. Proccedings 2013.
[65]
Ng P. dna2vec: Consistent vector representations of variablelength k-mers arXiv e-prints 2017 Available from:. https://ui.adsabs.harvard.edu/abs/2017arXiv170106279N
[66]
Wei L, Zou Q, Liao M, Lu H, Zhao Y. A novel machine learning method for cytokine-receptor interaction prediction. Comb Chem High Throughput Screen 2016; 19(2): 144-52.
[http://dx.doi.org/10.2174/1386207319666151110122621] [PMID: 26552440]
[67]
Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief Bioinform 2019; 20(4): 1280-94.
[http://dx.doi.org/10.1093/bib/bbx165] [PMID: 29272359]
[68]
Liang ZY, Lai HY, Yang H, et al. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics 2017; 33(3): 467-9.
[PMID: 28171531]
[69]
Xu ZC, Feng PM, Yang H, Qiu WR, Chen W, Lin H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics 2019; 35(23): 4922-9.
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[70]
Zhang T, Tan P, Wang L, et al. RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res 2017; 45(D1): D135-8.
[PMID: 27543076]
[71]
Consortium TEP, Dunham I, Kundaje A, et al. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[72]
Kundaje A, Meuleman W, Ernst J, et al. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518(7539): 317-30.
[http://dx.doi.org/10.1038/nature14248] [PMID: 25693563]
[73]
Andersson R, Gebhard C, Miguel-Escalada I, et al. An atlas of active enhancers across human cell types and tissues. Nature 2014; 507(7493): 455-61.
[http://dx.doi.org/10.1038/nature12787] [PMID: 24670763]
[74]
Cao F, Fullwood MJ. Inflated performance measures in enhancer-promoter interaction-prediction methods. Nat Genet 2019; 51(8): 1196-8.
[http://dx.doi.org/10.1038/s41588-019-0434-7] [PMID: 31332378]
[75]
Chen X, Xie D, Wang L, Zhao Q, You Z-H, Liu H. BNPMDA: bipartite network projection for MiRNA-disease association prediction. Bioinformatics 2018; 34(18): 3178-86.
[http://dx.doi.org/10.1093/bioinformatics/bty333] [PMID: 29701758]
[76]
Zhang J, Chen Q, Liu B. DeepDRBP-2L: a new genome annotation predictor for identifying DNA binding proteins and RNA binding proteins using Convolutional Neural Network and Long Short-Term Memory. IEEE/ACM Trans Comput Biol Bioinformatics 2019.
[http://dx.doi.org/10.1109/TCBB.2019.2952338] [PMID: 31722485]
[77]
Zuo Y-c, Li Q-z. The hidden physical codes for modulating the prokaryotic transcription initiation. Physica A 2010; 389(19): 4217-23.
[http://dx.doi.org/10.1016/j.physa.2010.05.034]
[78]
Dao FY, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[http://dx.doi.org/10.1093/bioinformatics/bty943] [PMID: 30428009]
[79]
Zeng X, Ding N, Rodríguez-Patón A, Zou Q. Probability-based collaborative filtering model for predicting gene-disease associations. BMC Med Genomics 2017; 10(5)(Suppl. 5): 76.
[http://dx.doi.org/10.1186/s12920-017-0313-y] [PMID: 29297351]
[80]
Liu Y, Zeng X, He Z, Zou Q. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(4): 905-15.
[http://dx.doi.org/10.1109/TCBB.2016.2550432] [PMID: 27076459]
[81]
Zeng X, Lin W, Guo M, Zou Q. Details in the evaluation of circular RNA detection tools: Reply to Chen and Chuang. PLOS Comput Biol 2019; 15(4)
[http://dx.doi.org/10.1371/journal.pcbi.1006916] [PMID: 31022173]
[82]
Wei H, Liu B. iCircDA-MF: Identification of CircRNA-disease associations based on matrix factorization. Brief Bioinform 2019; 21(4): 1356-67.
[http://dx.doi.org/10.1093/bib/bbz057] [PMID: 31197324]
[83]
Su R, Wu H, Xu B, Liu X, Wei L. Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1231-9.
[http://dx.doi.org/10.1109/TCBB.2018.2858756] [PMID: 30040651]
[84]
Wei L, Xing P, Shi G, Ji Z, Zou Q. Fast prediction of methylation sites using sequence-based feature selection technique. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1264-73.
[http://dx.doi.org/10.1109/TCBB.2017.2670558] [PMID: 28222000]
[85]
Liu ML, Su W, Guan ZX, et al. An Overview on Predicting Protein Subchloroplast Localization by using Machine Learning Methods. Curr Protein Pept Sci 2020; 21(12)
[http://dx.doi.org/10.2174/1389203721666200117153412] [PMID: 31957607]
[86]
Li SH, Zhang J, Zhao YW, et al. iPhoPred: a predictor for identifying phosphorylation sites in human protein. IEEE Access 2019; 7: 177517-28.
[http://dx.doi.org/10.1109/ACCESS.2019.2953951]
[87]
Chen W, Feng P, Liu T, Jin D. Recent advances in machine learning methods for predicting heat shock proteins. Curr Drug Metab 2019; 20(3): 224-8.
[http://dx.doi.org/10.2174/1389200219666181031105916] [PMID: 30378494]
[88]
Basith S, Manavalan B, Shin TH, Lee G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput Struct Biotechnol J 2018; 16: 412-20.
[http://dx.doi.org/10.1016/j.csbj.2018.10.007] [PMID: 30425802]
[89]
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med Res Rev 2020; 40(4): 1276-314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[90]
Stephenson N, Shane E, Chase J, et al. Survey of machine learning techniques in drug discovery. Curr Drug Metab 2019; 20(3): 185-93.
[http://dx.doi.org/10.2174/1389200219666180820112457] [PMID: 30124147]
[91]
Tang H, Cao RZ, Wang W, Liu TS, Wang LM, He CM. A two-step discriminated method to identify thermophilic proteins. Int J Biomath 2017; 10(4)
[http://dx.doi.org/10.1142/S1793524517500504]
[92]
Bao WZ, Huang DS, Chen YH. MSIT: Malonylation sites identification tree. Curr Bioinform 2020; 15(1): 59-67.
[http://dx.doi.org/10.2174/1574893614666190730110747]
[93]
Zhang TH, Zhang SW. Advances in the Prediction of protein subcellular locations with machine learning. Curr Bioinform 2019; 14(5): 406-21.
[http://dx.doi.org/10.2174/1574893614666181217145156]
[94]
Fang M, Lei XJ, Guo L. A survey on computational methods for essential proteins and genes prediction. Curr Bioinform 2019; 14(3): 211-25.
[http://dx.doi.org/10.2174/1574893613666181112150422]
[95]
Lv H, Dao F-Y, Zhang D, et al. iDNA-MS: an integrated computational tool for detecting DNA modification sites in multiple genomes. (iScience)2020; 23(4): 100991.
[96]
Zeng X, Pan L, Pérez-Jiménez MJJSCIS. Small universal simple spiking neural P systems with weights. Sci China Inf Sci 2014; 57(9): 1-11.
[http://dx.doi.org/10.1007/s11432-013-4848-z]
[97]
Song T, Zou Q, Liu X, Zeng XJN. Asynchronous spiking neural P systems with rules on synapses. Neurocomputing 2015; 151: 1439-45.
[http://dx.doi.org/10.1016/j.neucom.2014.10.044]
[98]
Cao R, Freitas C, Chan L, Sun M, Jiang H, Chen Z. ProLanGO: protein function prediction using neural machine translation based on a recurrent neural network. Molecules 2017; 22(10)
[http://dx.doi.org/10.3390/molecules22101732] [PMID: 29039790]
[99]
Cao R, Bhattacharya D, Hou J, Cheng J. DeepQA: improving the estimation of single protein model quality with deep belief networks. BMC Bioinformatics 2016; 17(1): 495.
[http://dx.doi.org/10.1186/s12859-016-1405-y] [PMID: 27919220]
[100]
Wu BZ, Zhang HX, Lin LM, et al. A similarity searching system for biological phenotype images using deep convolutional encoder-decoder architecture. Curr Bioinform 2019; 14(7): 628-39.
[http://dx.doi.org/10.2174/1574893614666190204150109]
[101]
Xu H, Zeng W, Zeng X, Yen GG. An evolutionary algorithm based on Murkowski distance for many-objective optimization. IEEE Trans Cybern 2019; 49(11): 3968-79.
[http://dx.doi.org/10.1109/TCYB.2018.2856208] [PMID: 30059330]
[102]
Xu H, Zeng W, Zhang D, Zeng X. MOEA/HD: A multiobjective evolutionary algorithm based on hierarchical decomposition. IEEE Trans Cybern 2019; 49(2): 517-26.
[http://dx.doi.org/10.1109/TCYB.2017.2779450] [PMID: 29990272]
[103]
Zeng X, Wang W, Chen C, Yen GGJIToC. A consensus community- based particle swarm optimization for dynamic community detection. IEEE Trans Cybern 2019; (99): 1-12.
[http://dx.doi.org/10.1109/TCYB.2019.2938895] [PMID: 31545758]
[104]
Wu Y, He Z, Lin H, Zheng Y, Zhang J, Xu D. A fast projection-based algorithm for clustering big data. Interdiscip Sci 2019; 11(3): 360-6.
[http://dx.doi.org/10.1007/s12539-018-0294-3] [PMID: 29882026]
[105]
Cao F, Zhang Y, Loh YP, Cai Y, Fullwood MJ. Predicting chromatin interactions between open chromatin regions from DNA sequences 2019; 720748.
[106]
Heidari N, Phanstiel DH, He C, et al. Genome-wide map of regulatory interactions in the human genome. Genome Res 2014; 24(12): 1905-17.
[http://dx.doi.org/10.1101/gr.176586.114] [PMID: 25228660]
[107]
Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326(5950): 289-93.
[http://dx.doi.org/10.1126/science.1181369] [PMID: 19815776]
[108]
Wang X, Zeng X, Ju Y, Jiang Y, Zhang Z, Chen WJCB. A Classification Method for Microarrays Based on Diversity. Curr Bioinform 2016; 11(5): 590-7.
[http://dx.doi.org/10.2174/1574893609666140820224436]
[109]
Wei L, Su R, Wang B, Li X, Zou Q. Integration of deep feature representations and handcrafted features to improve the prediction of N 6-methyladenosine sites. Neurocomputing 2018; 324: 3-9.
[110]
Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using hetesim scores. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 687-95.
[http://dx.doi.org/10.1109/TCBB.2016.2520947] [PMID: 26890920]
[111]
Zhu Y, Chen Z, Zhang K, et al. Constructing 3D interaction maps from 1D epigenomes. Nat Commun 2016; 7(1): 10812.
[http://dx.doi.org/10.1038/ncomms10812] [PMID: 26960733]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy