Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Detailed Mechanistic Pattern in Halogen Dance Reactions of Iodothiophenes

Author(s): Nader Sakhaee*, Sahar Sakhaee, Esmail Doustkhah and Akbar mobaraki

Volume 8, Issue 2, 2021

Published on: 23 November, 2020

Page: [228 - 237] Pages: 10

DOI: 10.2174/2213337207999201123195958

Price: $65

Abstract

Background: Synthetic chemists have utilized base catalyzed halogen dance reactions ever since their discovery by Bunnet et al. Many modifications under various conditions have enabled synthetic chemists to build substituted heterocyclic targets with rich structural diversity.

Methods: Using DFT-Cam-B3LYP/ land2dz computations and focusing on Hannes Frohlich et al. Halogen dance reactions of iodothiophenes, a new iodo-bridged transition state is proposed. This iodo- bridged TS was then used to put forth 8 possible isomerization as well as 8 possible disproportionation paths.

Results & Discussion: All mechanistic pathways were then thoroughly investigated based on TS’s energy and protonation/deprotonation steps to find the most suitable pathways. Collectively, these mechanistic pathways were joined like a jigsaw puzzle to yield, for the first time, a comprehensive cascade-like pattern for base-catalyzed halogen dance in iodothiophenes.

Conclusion: The present work may shed light on a dynamic domino mechanism that may well dominate the organic chemistry of iodothiophenyl anions. Trends like this may reveal mechanistic pathways in base digestion of halogenated aromatic compounds in CS2.

Keywords: Substituted heterocyclic, base-catalyzed halogen dance, dynamic domino mechanisms, Iodothiophenes, cascadelike pattern, mechanistic pathways.

Graphical Abstract

[1]
Higasio, Y.S.; Shoji, T. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Appl. Catal. A Gen., 2001, 221(1-2), 197-207.
[http://dx.doi.org/10.1016/S0926-860X(01)00815-8]
[2]
Abramovitch, R.A. Pyridine and Its Derivatives. The Chemistry of Heterocyclic Compounds. Wiley; , 2009.
[3]
Mubarak, M.S.; Peters, D.G. Electrochemical reduction of mono-and dihalothiophenes at carbon cathodes in dimethylformamide. First example of an electrolytically induced halogen dance. J. Org. Chem., 1996, 61(23), 8074-8078.
[http://dx.doi.org/10.1021/jo9613646] [PMID: 11667791]
[4]
FROHLICH, J., Substituted heterocyclic compounds by selective control of halogen-dance reactions. Progress in Heterocyclic Chemistry: A Critical Review of the 1993 Literature Preceded by Two Chapters on Current Heterocyclic Topics, 2013.
[5]
Bailey, W.F.; Patricia, J.J. The mechanism of the lithium-halogen interchange reaction: A review of the literature. J. Organomet. Chem., 1988, 352(1-2), 1-46.
[http://dx.doi.org/10.1016/0022-328X(88)83017-1]
[6]
Bunnett, J.F. Base-catalyzed halogen dance, and other reactions of aryl halides. Acc. Chem. Res., 1972, 5(4), 139-147.
[http://dx.doi.org/10.1021/ar50052a004]
[7]
Duan, X-F.; Zhang, Z-B. Recent progress of halogen-dance reactions in heterocycles. Heterocycles, 2005, 65(8), 2005-2012.
[http://dx.doi.org/10.3987/REV-05-598]
[8]
Schlosser, M. The 2 x 3 toolbox of organometallic methods for regiochemically exhaustive functionalization. Angew. Chem. Int. Ed., 2005, 44(3), 376-393.
[http://dx.doi.org/10.1002/anie.200300645] [PMID: 15558637]
[9]
Jones, L.; Whitaker, B.J. Modeling a halogen dance reaction mechanism: A density functional theory study. J. Comput. Chem., 2016, 37(18), 1697-1703.
[http://dx.doi.org/10.1002/jcc.24385] [PMID: 27075112]
[10]
Vaitiekunas, A.; Nord, F. Tetrabromothiophene from 2-bromothiophene by means of sodium acetylide in liquid ammonia. Nature, 1951, 168(4281), 875.
[http://dx.doi.org/10.1038/168875a0]
[11]
Vaitiekunas, A.; Nord, F. Studies on the Chemistry of Heterocyclics. XXII. Investigations on the Mechanism of Reactions of 2-Thienyl Halides with Sodium Amide and Sodium Acetylide in Liquid Ammonia. J. Am. Chem. Soc., 1953, 75(7), 1764-1768.
[http://dx.doi.org/10.1021/ja01103a537]
[12]
Stangeland, E.L.; Sammakia, T. Use of thiazoles in the halogen dance reaction: application to the total synthesis of WS75624 B. J. Org. Chem., 2004, 69(7), 2381-2385.
[http://dx.doi.org/10.1021/jo0351217] [PMID: 15049634]
[13]
Sammakia, T.; Stangeland, E.L.; Whitcomb, M.C. Total synthesis of caerulomycin C via the halogen dance reaction. Org. Lett., 2002, 4(14), 2385-2388.
[http://dx.doi.org/10.1021/ol026135m] [PMID: 12098253]
[14]
Fröhlich, J.; Hametner, C.; Kalt, W. Synthesis of trisubstituted thiophenesvia a halogen dance reaction at 2-bromo-5-methylthiophene. Monatshefte für Chemie/Chemical Monthly, 1996, 127(3), 325-330.
[15]
Getmanenko, Y.A.; Tongwa, P.; Timofeeva, T.V.; Marder, S.R. Base-catalyzed halogen dance reaction and oxidative coupling sequence as a convenient method for the preparation of dihalo-bisheteroarenes. Org. Lett., 2010, 12(9), 2136-2139.
[http://dx.doi.org/10.1021/ol1006423] [PMID: 20377230]
[16]
Stanetty, P.; Schnürch, M.; Mereiter, K.; Mihovilovic, M.D. Investigations of the halogen dance reaction on N-substituted 2-thiazolamines. J. Org. Chem., 2005, 70(2), 567-574.
[http://dx.doi.org/10.1021/jo0484326] [PMID: 15651803]
[17]
Vinicius Nora de Souza, M. Halogen dance reaction and its application in organic synthesis. Curr. Org. Chem., 2007, 11(7), 637-646.
[http://dx.doi.org/10.2174/138527207780598846]
[18]
Schnürch, M. Recent progress on the halogen dance reaction on heterocycles. Halogenated Heterocycles. Springer; , 2011, pp. pp. 185-218.
[http://dx.doi.org/10.1007/7081_2011_64]
[19]
Miller, R.E.; Rantanen, T.; Ogilvie, K.A.; Groth, U.; Snieckus, V. Combined directed ortho metalation-halogen dance (HD) synthetic strategies. HD-anionic ortho fries rearrangement and double HD sequences. Org. Lett., 2010, 12(10), 2198-2201.
[http://dx.doi.org/10.1021/ol100493v] [PMID: 20397661]
[20]
Gakh, A.A.; Tuinman, A.A. ‘Fluorine dance’on the fullerene surface. Tetrahedron Lett., 2001, 42(41), 7137-7139.
[http://dx.doi.org/10.1016/S0040-4039(01)01475-7]
[21]
Donham, L.L.; Gronert, S. Substitution Reactions on Iodine and Bromine: Mechanisms for Facile Halogenations of Heterocycles. J. Org. Chem., 2019, 84(9), 5757-5762.
[http://dx.doi.org/10.1021/acs.joc.9b00721] [PMID: 30908041]
[22]
Schnürch, M.; Spina, M.; Khan, A.F.; Mihovilovic, M.D.; Stanetty, P. Halogen dance reactions-a review. Chem. Soc. Rev., 2007, 36(7), 1046-1057.
[http://dx.doi.org/10.1039/B607701N] [PMID: 17576473]
[23]
Wang, D.; Lü, R.; Yuan, M.; Fu, A.; Chu, T. A DFT/TD-DFT study of thiazolidinedione derivative in dimethylformamide: cooperative roles of hydrogen bondings, electronic and vibrational spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 125, 131-137.
[http://dx.doi.org/10.1016/j.saa.2014.01.094] [PMID: 24531543]
[24]
Bouzzine, S.; Salgado-Morán, G.; Hamidi, M.; Bouachrine, M.; Pacheco, A.G.; Glossman-Mitnik, D. DFT study of polythiophene energy band gap and substitution effects. J. Chem., 2015.
[http://dx.doi.org/10.1155/2015/296386]
[25]
Torii, H.; Yoshida, M. Properties of halogen atoms for representing intermolecular electrostatic interactions related to halogen bonding and their substituent effects. J. Comput. Chem., 2010, 31(1), 107-116.
[http://dx.doi.org/10.1002/jcc.21302] [PMID: 19421995]
[26]
Lu, Y.X.; Zou, J.W.; Fan, J.C.; Zhao, W.N.; Jiang, Y.J.; Yu, Q.S. Ab initio calculations on halogen-bonded complexes and comparison with density functional methods. J. Comput. Chem., 2009, 30(5), 725-732.
[http://dx.doi.org/10.1002/jcc.21094] [PMID: 18727160]
[27]
Carrera, E.I.; Seferos, D.S. Efficient halogen photoelimination from dibromo, dichloro and difluoro tellurophenes. Dalton Trans., 2015, 44(5), 2092-2096.
[http://dx.doi.org/10.1039/C4DT01751J] [PMID: 25154588]
[28]
Lu, Y.; Zou, J.; Wang, H.; Yu, Q.; Zhang, H.; Jiang, Y. Triangular halogen trimers. A DFT study of the structure, cooperativity, and vibrational properties. J. Phys. Chem. A, 2005, 109(51), 11956-11961.
[http://dx.doi.org/10.1021/jp0547360] [PMID: 16366648]
[29]
Siiskonen, A.; Priimagi, A. Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. J. Mol. Model., 2017, 23(2), 50.
[http://dx.doi.org/10.1007/s00894-017-3212-4] [PMID: 28161778]
[30]
Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, revision D. 01. Gaussian, Inc.: Wallingford CT; , 2009.
[31]
Gaussian, G. 09, Revision A. 02, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J; Bloino and, 2009.
[32]
Forni, A.; Pieraccini, S.; Rendine, S.; Gabas, F.; Sironi, M. Halogen-bonding interactions with π systems: CCSD(T), MP2, and DFT calculations. ChemPhysChem, 2012, 13(18), 4224-4234.
[http://dx.doi.org/10.1002/cphc.201200605] [PMID: 23169496]
[33]
Kolář, M.H.; Hobza, P. Computer modeling of halogen bonds and other σ-hole interactions. Chem. Rev., 2016, 116(9), 5155-5187.
[http://dx.doi.org/10.1021/acs.chemrev.5b00560] [PMID: 26840433]
[34]
Mitin, A.V.; van Wüllen, C. Two-component relativistic density- functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods. J. Chem. Phys., 2006, 124(6), 64305.
[http://dx.doi.org/10.1063/1.2165175] [PMID: 16483205]
[35]
Sedlak, R.; Riley, K.E.; Řezáč, J.; Pitoňák, M.; Hobza, P. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. ChemPhysChem, 2013, 14(4), 698-707.
[http://dx.doi.org/10.1002/cphc.201200850] [PMID: 23315749]
[36]
Kato, M.; Hada, M.; Fukuda, R.; Nakatsuji, H. Relativistic configuration interaction and coupled cluster methods using four-component spinors: Magnetic shielding constants of HX and CH3X (X= F, Cl, Br, I). Chem. Phys. Lett., 2005, 408(1-3), 150-156.
[http://dx.doi.org/10.1016/j.cplett.2005.03.147]
[37]
Liakos, D.G.; Hansen, A.; Neese, F. Weak molecular interactions studied with parallel implementations of the local pair natural orbital coupled pair and coupled cluster methods. J. Chem. Theory Comput., 2011, 7(1), 76-87.
[http://dx.doi.org/10.1021/ct100445s] [PMID: 26606220]
[38]
Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA, 1986, 83(22), 8440-8441.
[http://dx.doi.org/10.1073/pnas.83.22.8440] [PMID: 16578791]
[39]
Duxbury, D.F. The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chem. Rev., 1993, 93(1), 381-433.
[http://dx.doi.org/10.1021/cr00017a018]
[40]
Pearson, R.G. Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ., 1987, 64(7), 561.
[http://dx.doi.org/10.1021/ed064p561]
[41]
Parthasarathi, R.; Subramanian, V.; Chattaraj, P. Effect of electric field on the global and local reactivity indices. Chem. Phys. Lett., 2003, 382(1-2), 48-56.
[http://dx.doi.org/10.1016/j.cplett.2003.09.160]
[42]
Azizi, Z.; Ghambarian, M.; Rezaei, M.A.; Ghashghaee, M.; Saturated, N. X-Heterocyclic Carbenes (X= N, O, S, P, Si, C, and B): Stability, Nucleophilicity, and Basicity. Aust. J. Chem., 2015, 68(9), 1438-1445.
[http://dx.doi.org/10.1071/CH14715]
[43]
Ghambarian, M.; Azizi, Z.; Ghashghaee, M. Saturated five-membered N, B-heterocyclic carbene: A computational study. Chem. Lett., 2015, 44(11), 1586-1588.
[http://dx.doi.org/10.1246/cl.150660]
[44]
Ghambarian, M.; Azizi, Z.; Ghashghaee, M. Cluster modeling and coordination structures of Cu+ ions in Al-incorporated Cu-MEL catalysts-a density functional theory study. J. Mex. Chem. Soc., 2017, 61(1), 1-13.
[http://dx.doi.org/10.29356/jmcs.v61i1.122]
[45]
Sakhaee, N.; Jalili, S. Do coordinating and solvating effects of H2 explain high concentrations of H 3+ in interstellar dense clouds? A molecular orbital study of hydrogen cluster ions H 3+ to H 21+. J. Indian Chem. Soc., 2016, 13(9), 1561-1569.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy