Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Kolaviron: A Biflavonoid with Numerous Health Benefits

Author(s): Ochuko L. Erukainure, Veronica F. Salau, Chika I. Chukwuma and Md. Shahidul Islam*

Volume 27, Issue 4, 2021

Published on: 13 November, 2020

Page: [490 - 504] Pages: 15

DOI: 10.2174/1381612826666201113094303

Price: $65

Abstract

Background: The increasing interests on the healing properties of medicinal plants have led to a paradigm shift from the use of synthetic drug to the search of natural medicines for the treatment and management of several diseases. Like other phenolics flavonoids have been continuously explored for their medicinal benefits, with their potent antioxidant activity being a major interest. Kolaviron (KVN) is a biflavonoid isolated from Garcinia kola Heckel, which has been reported for its potent antioxidant and anti-inflammatory properties. These properties have been explored in several disease models including reproductive toxicity, cardiotoxicity, diabetes mellitus, gastrotoxicity and hepatotoxicity.

Objectives: The present study was aimed to review the reported medicinal properties of KVN in order to provide some guidelines and direction to researchers on KVN research.

Methods: A literature search was conducted with the aim of identifying peer-reviewed published data on KVN and their biological activities. Different academic and/or scientific search engines were utilized including but not limited to Google Scholar, PubMed, ScienceDirect and so on.

Results: Among all the studied disease models obtained from the literatures, the effect of KVN on reproductive toxicity was the most studied as it represented 25% of all the studies, followed by neuroprotective, cardioprotective and hepatoprotective activities of Kolaviron. From our identified studies, KVN has been shown to have antidiabetic, cardioprotective, neuroprotective, hematoprotective, nephroprotective, gastroprotective, hepatoprotective activities. KVN also has effects on malaria and reproductive health, which can be explored for novel drug and nutraceutical developments for related ailments. Unfortunately, while toxicity data are lacking, most studies are limited to in vitro and/or in vivo models, which may impede translation in this area of research.

Conclusion: Based on data gathered from the literature search, it is evident that KVN possesses numerous health benefits, which can be attributed to its potent antioxidant and anti-inflammatory activities. However, more studies are required in this area of research to validate the medicinal value of kolaviron, which may positively influence the economic value of plant, Garcinia kola.

Keywords: Garcinia kola, kolaviron, reproductive, neuroprotective, cardioprotective, hepatoprotective.

[1]
Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: a review. Planta Med 2014; 80(5): 354-77.
[http://dx.doi.org/10.1055/s-0033-1360335] [PMID: 24535720]
[2]
Erukainure OL, Sanni O, Islam MS. Clerodendrum volubile: Phenolics and Applications to HealthPolyphenols: Mechanisms of Action in Human Health and Disease. Elsevier 2018.
[http://dx.doi.org/10.1016/B978-0-12-813006-3.00006-4]
[3]
Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J Ethnopharmacol 2019; 235: 329-60.
[http://dx.doi.org/10.1016/j.jep.2019.02.024] [PMID: 30769039]
[4]
Schreiner M, Huyskens-Keil S. Phytochemicals in fruit and vegetables: health promotion and postharvest elicitors. Crit Rev Plant Sci 2006; 25: 267-78.
[http://dx.doi.org/10.1080/07352680600671661]
[5]
Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. J Pharmacogn Phytochem 2013; 1: 168-82.
[6]
Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 2005; 579(1-2): 200-13.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023] [PMID: 16126236]
[7]
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26(8): 1001-43.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[8]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[9]
Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B. Phenolics in human health. Int J Chem Eng Appl 2014; 5: 393.
[http://dx.doi.org/10.7763/IJCEA.2014.V5.416]
[10]
Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56(11): 317-33.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[11]
Harborne J. General procedures and measurement of total phenolics. Methods Plant Biochem 1989; 1: 1-28.
[http://dx.doi.org/10.1016/B978-0-12-461011-8.50007-X]
[12]
Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules 2009; 14: 2202-11.
[http://dx.doi.org/10.3390/molecules14062202]
[13]
Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit Rev Food Sci Nutr 2013; 53(8): 818-36.
[http://dx.doi.org/10.1080/10408398.2011.561379] [PMID: 23768145]
[14]
Marais JP, Deavours B, Dixon RA, Ferreira D. The stereochemistry of flavonoidsThe Science of Flavonoids. Springer 2006; pp. 1-46.
[http://dx.doi.org/10.1007/978-0-387-28822-2_1]
[15]
Treml J, Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf 2016; 15: 720-38.
[http://dx.doi.org/10.1111/1541-4337.12204]
[16]
Cazarolli LH, Zanatta L, Alberton EH, et al. Flavonoids: prospective drug candidates. Mini Rev Med Chem 2008; 8(13): 1429-40.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[17]
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002; 96(2-3): 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[18]
Agada PO, Braide VB. Effect of dietary Garcinia kola seed on selected serum electrolytes and trace metals in male Albino rats. Niger J Physiol Sci 2009; 24(1): 53-7.
[http://dx.doi.org/10.4314/njps.v24i1.46381] [PMID: 19826464]
[19]
Okoye TC, Uzor PF, Onyeto CA, Okereke EK. Safe African Medicinal Plants for Clinical Studies.In: Kuete V, Ed Toxicological Survey of African Medicinal Plants. London: Elsevier 2014; pp. 535-55.
[http://dx.doi.org/10.1016/B978-0-12-800018-2.00018-2]
[20]
Udenze E, Braide V, Okwesilieze C, Akuodor G. Pharmacological Effects of Garcinia kola Seed Powder on Blood Sugar, Lipid Profile and Atherogenic Index of Alloxan-induced Diabetes in Rats In. Pharmacologia 2012; 3: 693-9.
[21]
Moneim A, Sulieman E. Garcinia Kola (Bitter Kola): Chemical Composition.In: Mariod A, Ed Wild Fruits: Composition, Nutritional Value and Products. Springer 2019; pp. 285-99.
[22]
Toyin YM, Olakunle AT, Adewunmi AM. Toxicity and beneficial effects of some african plants on the reproductive system. In: Kuete V, Ed.Toxicological Survey of African Medicinal Plants. London: Elsevier 2014; pp. 445-92.
[http://dx.doi.org/10.1016/B978-0-12-800018-2.00015-7]
[23]
Iwu M, Diop A, Meserole L, Okunji C. Garcinia kola" a new look 73 at an old adaptogenic agent In: Iwu M, Wootton In: J, Eds Advances in Phytomedicine Vol 1: Ethnomedicine and Drug Discovery. Amsterdam:: Amsterdam: Elsevier 2002.
[24]
Hemshekhar M, Sunitha K, Santhosh MS, et al. An overview on genus Garcinia: Phytochemical and therapeutical aspects. Phytochem Rev 2011; 10: 325-51.
[http://dx.doi.org/10.1007/s11101-011-9207-3]
[25]
Kolawole AO, Kolawole AN, Olofinsan KA, Elekofehinti OO. Kolaflavanone of Kolaviron selectively binds to subdomain 1B of human serum albumin: Spectroscopic and Molecular docking evidence. Computl Toxicol 2020; pp. 100-18.
[26]
Adaramoye OA, Nwosu IO, Farombi EO. Sub-acute effect of N(G)-nitro-l-arginine methyl-ester (L-NAME) on biochemical indices in rats: Protective effects of Kolaviron and extract of Curcuma longa L. Pharmacognosy Res 2012; 4(3): 127-33.
[http://dx.doi.org/10.4103/0974-8490.99071] [PMID: 22923949]
[27]
Gontijo VS, Dos Santos MH, Viegas C Jr. Biological and chemical aspects of natural biflavonoids from plants: a brief review. Mini Rev Med Chem 2017; 17(10): 834-62.
[http://dx.doi.org/10.2174/1389557517666161104130026] [PMID: 27823559]
[28]
Ijomone OM, Obi AU. Kolaviron, isolated from Garcinia kola, inhibits acetylcholinesterase activities in the hippocampus and striatum of wistar rats. Ann Neurosci 2013; 20(2): 42-6.
[http://dx.doi.org/10.5214/ans.0972.7531.200203] [PMID: 25206011]
[29]
Akinrinde AS, Olowu E, Oyagbemi AA, Omobowale OT. Gastrointestinal protective efficacy of Kolaviron (a bi-flavonoid from Garcinia kola) following a single administration of sodium arsenite in rats: Biochemical and histopathological studies. Pharmacognosy Res 2015; 7(3): 268-76.
[http://dx.doi.org/10.4103/0974-8490.157978] [PMID: 26130939]
[30]
IDF. IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation 2019.
[31]
I.D.F. IDF Diabetes Atlas. International Diabetes Federation 2016. Available at: https://www.diabetesatlas.org/en/
[32]
Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit 2006; 12(7): RA130-47.
[PMID: 16810145]
[33]
Oyebode OA, Erukainure OL, Sanni O, Islam MS. Crassocephalum rubens (Juss. Ex Jacq.) S. Moore improves pancreatic histology, insulin secretion, liver and kidney functions and ameliorates oxidative stress in fructose-streptozotocin induced type 2 diabetic rats. Drug Chem Toxicol 2020; 29: 1-10.
[http://dx.doi.org/10.1080/01480545.2020.1716783] [PMID: 31994415]
[34]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17(1): 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[35]
Erukainure OL, Ijomone OM, Chukwuma CI, Xiao X, Salau VF, Islam MS. Dacryodes edulis (G. Don) H.J. Lam modulates glucose metabolism, cholinergic activities and Nrf2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats. J Ethnopharmacol 2020.255112744
[http://dx.doi.org/10.1016/j.jep.2020.112744] [PMID: 32165174]
[36]
Adaramoye OA. Antidiabetic effect of kolaviron, a biflavonoid complex isolated from Garcinia kola seeds, in Wistar rats. Afr Health Sci 2012; 12(4): 498-506.
[PMID: 23515095]
[37]
Ayepola OR, Chegou NN, Brooks NL, Oguntibeju OO. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complement Altern Med 2013; 13: 363.
[http://dx.doi.org/10.1186/1472-6882-13-363] [PMID: 24359406]
[38]
Oyenihi OR, Brooks NL, Oguntibeju OO. Effects of kolaviron on hepatic oxidative stress in streptozotocin induced diabetes. BMC Complement Altern Med 2015; 15: 236.
[http://dx.doi.org/10.1186/s12906-015-0760-y] [PMID: 26179065]
[39]
Poulter N. Global risk of cardiovascular disease. Heart 2003; 89(Suppl. 2): ii2-5.
[http://dx.doi.org/10.1136/heart.89.suppl_2.ii2] [PMID: 12695425]
[40]
Wold LE, Ceylan-Isik AF, Ren J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin 2005; 26(8): 908-17.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00146.x] [PMID: 16038622]
[41]
Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des 2019; 25(38): 4063-84.
[http://dx.doi.org/10.2174/1381612825666190925163827] [PMID: 31553287]
[42]
Erukainure OL, Chukwuma CI, Matsabisa MG, Salau VF, Koorbanally NA, Islam MS. Buddleja saligna Willd (Loganiaceae) inhibits angiotensin-converting enzyme activity in oxidative cardiopathy with concomitant modulation of nucleotide hydrolyzing enzymatic activities and dysregulated lipid metabolic pathways. J Ethnopharmacol 2020.248112358
[http://dx.doi.org/10.1016/j.jep.2019.112358] [PMID: 31676404]
[43]
Agunloye OM, Oboh G, Ademiluyi AO, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother 2019; 109: 450-8.
[http://dx.doi.org/10.1016/j.biopha.2018.10.044] [PMID: 30399581]
[44]
Meenakshisundaram R, Cannie DE, Shankar PR, Zadeh HZ, Bajracharya O, Thirumalaikolundusubramanian P. Cardiovascular Toxicity of Cardiovascular Drugs. In: Ramachandran M, Ed Heart and Toxins. Elsevier 2015; pp. 225-74.
[http://dx.doi.org/10.1016/B978-0-12-416595-3.00008-6]
[45]
Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Bauer JA. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 2005; 96(1): 80-7.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto960112.x] [PMID: 15667600]
[46]
Adaramoye OA, Medeiros IA. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries. J Smooth Muscle Res 2009; 45(1): 39-53.
[http://dx.doi.org/10.1540/jsmr.45.39] [PMID: 19377272]
[47]
Adaramoye OA, Lawal SO. Kolaviron, a biflavonoid fraction from Garcinia kola, protects against isoproterenol-induced injury by mitigating cardiac dysfunction and oxidative stress in rats. J Basic Clin Physiol Pharmacol 2015; 26(1): 65-72.
[http://dx.doi.org/10.1515/jbcpp-2013-0139] [PMID: 24620014]
[48]
Oyagbemi AA, Omobowale TO, Farombi EO. Kolaviron and Garcinia kola Attenuate Homocysteine-Induced Arteriosclerosis and Cardiotoxicity in Wistar Rats. Toxicol Int 2016; 23: 246-53.
[http://dx.doi.org/10.22506/ti/2016/v23/i3/146718]
[49]
Oyagbemi AA, Omobowale TO, Adedapo AA, Yakubu MA. Kolaviron, biflavonoid complex from the seed of Garcinia kola attenuated angiotensin II-and lypopolysaccharide-induced vascular smooth muscle cell proliferation and nitric oxide production. Pharmacognosy Res 2016; 8(Suppl. 1): S50-5.
[http://dx.doi.org/10.4103/0974-8490.178647] [PMID: 27114693]
[50]
Oyagbemi AA, Omobowale TO, Olopade JO, Farombi EO. Kolaviron and Garcinia kola attenuate doxorubicin-induced cardiotoxicity in Wistar rats. J Complement Integr Med 2017; 15(1): 15.
[http://dx.doi.org/10.1515/jcim-2016-0168] [PMID: 28972943]
[51]
Omole JG, Ayoka OA, Alabi QK, et al. Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. J Evid Based Integr Med 2018.232156587218757649
[http://dx.doi.org/10.1177/2156587218757649] [PMID: 29468886]
[52]
Rizk MZ, Fouad GI, Aly HF. Neurological Disorders: Causes and Treatment Strategies. Int J Public Ment Health Neurosci 2018; 5: 32-40.
[53]
Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, de la Torre R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 2015; 20(3): 4655-80.
[http://dx.doi.org/10.3390/molecules20034655] [PMID: 25781069]
[54]
Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med 2008; 10(4): 259-74.
[http://dx.doi.org/10.1007/s12017-008-8052-z] [PMID: 19191039]
[55]
Adaramoye OA. Protective effect of kolaviron, a biflavonoid from Garcinia kola seeds, in brain of Wistar albino rats exposed to gamma-radiation. Biol Pharm Bull 2010; 33(2): 260-6.
[http://dx.doi.org/10.1248/bpb.33.260] [PMID: 20118550]
[56]
Abarikwu SO, Farombi EO, Kashyap MP, Pant AB. Kolaviron protects apoptotic cell death in PC12 cells exposed to atrazine. Free Radic Res 2011; 45(9): 1061-73.
[http://dx.doi.org/10.3109/10715762.2011.593177] [PMID: 21726175]
[57]
Abarikwu SO, Farombi EO, Pant AB. Biflavanone-kolaviron protects human dopaminergic SH-SY5Y cells against atrazine induced toxic insult. Toxicol In Vitro 2011; 25(4): 848-58.
[http://dx.doi.org/10.1016/j.tiv.2011.02.005] [PMID: 21333729]
[58]
Olajide OJ, Akinola BO, Ajao SM, Enaibe BU. Sodium azide-induced degenerative changes in the dorsolateral prefrontal cortex of rats: attenuating mechanisms of kolaviron. Eur J Anat 2016; 20: 47-64.
[59]
Ijomone O, Nwoha P, Olaibi O, Obi A, Alese M. Neuroprotective effects of kolaviron, a biflavonoid complex of Garcinia kola, on rats hippocampus against methamphetamine-induced neurotoxicity. Maced J Med Sci 2012; 5: 10-6.
[http://dx.doi.org/10.3889/MJMS.1857-5773.2011.0203]
[60]
Owoeye O, Adedara IA, Bakare OS, Adeyemo OA, Egun C, Farombi EO. Kolaviron and vitamin E ameliorate hematotoxicity and oxidative stress in brains of prepubertal rats treated with an anticonvulsant phenytoin. Toxicol Mech Methods 2014; 24(5): 353-61.
[http://dx.doi.org/10.3109/15376516.2014.913752] [PMID: 24712692]
[61]
Omotoso GO, Ukwubile II, Arietarhire L, Sulaimon F, Gbadamosi IT. Kolaviron protects the brain in cuprizone-induced model of experimental multiple sclerosis via enhancement of intrinsic antioxidant mechanisms: Possible therapeutic applications? Pathophysiology 2018; 25(4): 299-306.
[http://dx.doi.org/10.1016/j.pathophys.2018.04.004] [PMID: 29730092]
[62]
Snow RW, Trape J-F, Marsh K. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol 2001; 17(12): 593-7.
[http://dx.doi.org/10.1016/S1471-4922(01)02031-1] [PMID: 11756044]
[63]
Greenwood BM, Fidock DA, Kyle DE, et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118(4): 1266-76.
[http://dx.doi.org/10.1172/JCI33996] [PMID: 18382739]
[64]
Björkman A, Bhattarai A. Public health impact of drug resistant Plasmodium falciparum malaria. Acta Trop 2005; 94(3): 163-9.
[http://dx.doi.org/10.1016/j.actatropica.2005.04.015] [PMID: 15893289]
[65]
Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med 2007; 73(5): 461-7.
[http://dx.doi.org/10.1055/s-2007-967167] [PMID: 17566148]
[66]
Ovenden SP, Cobbe M, Kissell R, Birrell GW, Chavchich M, Edstein MD. Phenolic glycosides with antimalarial activity from Grevillea “Poorinda Queen”. J Nat Prod 2011; 74(1): 74-8.
[http://dx.doi.org/10.1021/np100737q] [PMID: 21155593]
[67]
Oluwatosin A, Tolulope A, Ayokulehin K, et al. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac J Trop Med 2014; 7(2): 97-104.
[http://dx.doi.org/10.1016/S1995-7645(14)60003-1] [PMID: 24461521]
[68]
Konziase B. Protective activity of biflavanones from Garcinia kola against Plasmodium infection. J Ethnopharmacol 2015; 172: 214-8.
[http://dx.doi.org/10.1016/j.jep.2015.06.038] [PMID: 26129936]
[69]
Elwej A, Ben Salah G, Kallel C, Fakhfakh F, Zeghal N, Ben Amara I. Protective effects of pomegranate peel against hematotoxicity, chromosomal aberrations, and genotoxicity induced by barium chloride in adult rats. Pharm Biol 2016; 54(6): 964-74.
[http://dx.doi.org/10.3109/13880209.2015.1087035] [PMID: 26971618]
[70]
Goudarzi M, Fatemi I, Siahpoosh A, Sezavar SH, Mansouri E, Mehrzadi S. Protective effect of ellagic acid against sodium arsenite-induced cardio-and hematotoxicity in rats. Cardiovasc Toxicol 2018; 18(4): 337-45.
[http://dx.doi.org/10.1007/s12012-018-9446-2] [PMID: 29383632]
[71]
Adaramoye OA, Akinloye O. Possible protective effect of kolaviron on CCl4-induced erythrocyte damage in rats. Biosci Rep 2000; 20(4): 259-64.
[http://dx.doi.org/10.1023/A:1026488823157] [PMID: 11092248]
[72]
Farombi EO, Møller P, Dragsted LO. Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells. Cell Biol Toxicol 2004; 20(2): 71-82.
[http://dx.doi.org/10.1023/B:CBTO.0000027916.61347.bc] [PMID: 15242183]
[73]
Muhammad A, Funmilola A, Aimola IA, Ndams IS, Inuwa MH, Nok AJ. Kolaviron shows anti-proliferative effect and down regulation of vascular endothelial growth factor-C and toll like receptor-2 in Wuchereria bancrofti infected blood lymphocytes. J Infect Public Health 2017; 10(5): 661-6.
[http://dx.doi.org/10.1016/j.jiph.2017.05.006] [PMID: 28619504]
[74]
Barnett LMA, Cummings BS. Nephrotoxicity and renal pathophysiology: a contemporary perspective. Toxicol Sci 2018; 164(2): 379-90.
[http://dx.doi.org/10.1093/toxsci/kfy159] [PMID: 29939355]
[75]
Ji X, Li C, Ou Y, et al. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway. Mol Cell Endocrinol 2016; 437: 268-79.
[http://dx.doi.org/10.1016/j.mce.2016.06.029] [PMID: 27378149]
[76]
Elmarakby AA, Faulkner J, Baban B, Sullivan JC. Induction of hemeoxygenase-1 reduces renal oxidative stress and inflammation in diabetic spontaneously hypertensive rats Int J Hypertens 2012; 2012
[http://dx.doi.org/10.1155/2012/957235]
[77]
Maalej A, Mahmoudi A, Bouallagui Z, Fki I, Marrekchi R, Sayadi S. Olive phenolic compounds attenuate deltamethrin-induced liver and kidney toxicity through regulating oxidative stress, inflammation and apoptosis. Food Chem Toxicol 2017; 106(Pt A): 455-65.
[http://dx.doi.org/10.1016/j.fct.2017.06.010] [PMID: 28595958]
[78]
Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 2016; 8: 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[79]
Adaramoye OA. Comparative effects of vitamin E and kolaviron (a biflavonoid from Garcinia kola) on carbon tetrachloride-induced renal oxidative damage in mice. Pak J Biol Sci 2009; 12(16): 1146-51.
[http://dx.doi.org/10.3923/pjbs.2009.1146.1151] [PMID: 19899326]
[80]
Adedara IA, Farombi EO. Influence of kolaviron and vitamin E on ethylene glycol monoethyl ether-induced haematotoxicity and renal apoptosis in rats. Cell Biochem Funct 2014; 32(1): 31-8.
[http://dx.doi.org/10.1002/cbf.2968] [PMID: 23494475]
[81]
Ayepola OR, Cerf ME, Brooks NL, Oguntibeju OO. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine 2014; 21(14): 1785-93.
[http://dx.doi.org/10.1016/j.phymed.2014.09.006] [PMID: 25481391]
[82]
Wallace JL. Possible mechanisms and mediators of gastritis associated with Helicobacter pylori infection. Scand J Gastroenterol Suppl 1991; 187: 65-70.
[http://dx.doi.org/10.3109/00365529109098226] [PMID: 1775926]
[83]
Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, Hyodo I. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 2011; 48(2): 107-11.
[http://dx.doi.org/10.3164/jcbn.10-79] [PMID: 21373261]
[84]
Boeing T, da Silva LM, Somensi LB, et al. Antiulcer mechanisms of Vernonia condensata Baker: A medicinal plant used in the treatment of gastritis and gastric ulcer. J Ethnopharmacol 2016; 184: 196-207.
[http://dx.doi.org/10.1016/j.jep.2016.02.049] [PMID: 26956376]
[85]
Siddaraju MN, Dharmesh SM. Inhibition of gastric H(+),K(+)-ATPase and Helicobacter pylori growth by phenolic antioxidants of Curcuma amada. J Agric Food Chem 2007; 55(18): 7377-86.
[http://dx.doi.org/10.1021/jf070719r] [PMID: 17725316]
[86]
Farombi EO, Adedara IA, Ajayi BO, Ayepola OR, Egbeme EE. Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevents dextran sulphate sodium-induced colitis in rats. Basic Clin Pharmacol Toxicol 2013; 113(1): 49-55.
[http://dx.doi.org/10.1111/bcpt.12050] [PMID: 23336970]
[87]
Olaleye SB, Farombi EO. Attenuation of indomethacin- and HCl/ethanol-induced oxidative gastric mucosa damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seed. Phytother Res 2006; 20(1): 14-20.
[http://dx.doi.org/10.1002/ptr.1793] [PMID: 16397915]
[88]
Odukanmi OA, Salami AT, Ashaolu OP, Adegoke AG, Olaleye SB. Kolaviron attenuates ischemia/reperfusion injury in the stomach of rats. Appl Physiol Nutr Metab 2018; 43(1): 30-7.
[http://dx.doi.org/10.1139/apnm-2017-0138] [PMID: 28841395]
[89]
Seif HSA. Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni-Suef Univ J Basic Appl Sci 2016; 5: 134-46.
[http://dx.doi.org/10.1016/j.bjbas.2016.03.004]
[90]
Abdel-Salam OM, Sleem AA, Shafee N. Hepatoprotective effects of Cynara extract and silymarin on carbon tetrachloride-induced hepatic damage in rats. Comp Clin Pathol 2014; 23: 709-16.
[http://dx.doi.org/10.1007/s00580-012-1675-3]
[91]
Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci 2012; 2: 233-43.
[92]
Farombi EO. Mechanisms for the hepatoprotective action of kolaviron: studies on hepatic enzymes, microsomal lipids and lipid peroxidation in carbontetrachloride-treated rats. Pharmacol Res 2000; 42(1): 75-80.
[http://dx.doi.org/10.1006/phrs.1999.0648] [PMID: 10860638]
[93]
Farombi EO, Tahnteng JG, Agboola AO, Nwankwo JO, Emerole GO. Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron-a Garcinia kola seed extract. Food Chem Toxicol 2000; 38(6): 535-41.
[http://dx.doi.org/10.1016/S0278-6915(00)00039-9] [PMID: 10828505]
[94]
Farombi EO, Shrotriya S, Surh Y-J. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-kappaB and AP-1. Life Sci 2009; 84(5-6): 149-55.
[http://dx.doi.org/10.1016/j.lfs.2008.11.012] [PMID: 19081081]
[95]
Adaramoye OA, Awogbindin I, Okusaga JO. Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on ethanol-induced oxidative stress in liver of adult wistar rats. J Med Food 2009; 12(3): 584-90.
[http://dx.doi.org/10.1089/jmf.2008.0138] [PMID: 19627207]
[96]
Alabi QK, Akomolafe RO, Olukiran OS, et al. The Garcinia kola biflavonoid kolaviron attenuates experimental hepatotoxicity induced by diclofenac. Pathophysiology 2017; 24(4): 281-90.
[http://dx.doi.org/10.1016/j.pathophys.2017.07.003] [PMID: 28822616]
[97]
Mattison DR, Thomford PJ. The mechanisms of action of reproductive toxicants. Toxicol Pathol 1989; 17(2): 364-76.
[http://dx.doi.org/10.1177/019262338901700213] [PMID: 2675287]
[98]
Kime DE. A strategy for assessing the effects of xenobiotics on fish reproduction. Sci Total Environ 1999; 225(1-2): 3-11.
[http://dx.doi.org/10.1016/S0048-9697(98)00328-3] [PMID: 10028699]
[99]
Erukainure OL, Reddy R, Islam MS. Raffia palm (Raphia hookeri) wine extenuates redox imbalance and modulates activities of glycolytic and cholinergic enzymes in hyperglycemia-induced testicular injury in type 2 diabetic rats. J Food Biochem 2019; 43(3)e12764
[http://dx.doi.org/10.1111/jfbc.12764] [PMID: 31353550]
[100]
Erukainure O, Okafor O, Obode O, Ajayi A, Oluwole O, Oke O. Blend of roselle calyx and selected fruit modulates testicular redox status and sperm quality of diabetic rats. J Diabetes Metab 2012; 3: 2.
[101]
Al-Olayan EM, El-Khadragy MF, Metwally DM, Abdel Moneim AE. Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats. BMC Complement Altern Med 2014; 14: 164.
[http://dx.doi.org/10.1186/1472-6882-14-164] [PMID: 24884677]
[102]
Farombi EO, Abarikwu SO, Adedara IA, Oyeyemi MO. Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic Clin Pharmacol Toxicol 2007; 100(1): 43-8.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00005.x] [PMID: 17214610]
[103]
Adaramoye OA, Adedara IA, Farombi EO. Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats. Exp Toxicol Pathol 2012; 64(4): 379-85.
[http://dx.doi.org/10.1016/j.etp.2010.10.002] [PMID: 21036568]
[104]
Adaramoye OA, Arisekola M. Kolaviron, a biflavonoid complex from Garcinia kola seeds, ameliorates ethanol-induced reproductive toxicity in male wistar rats. Niger J Physiol Sci 2013; 28(1): 9-15.
[PMID: 23955400]
[105]
Abarikwu SO, Farombi EO, Pant AB. Kolaviron biflavanoids of Garcinia kola seeds protect atrazine-induced cytotoxicity in primary cultures of rat Leydig cells. Int J Toxicol 2012; 31(4): 407-15.
[http://dx.doi.org/10.1177/1091581812445476] [PMID: 22674924]
[106]
Farombi EO, Adedara IA, Akinrinde SA, Ojo OO, Eboh AS. Protective effects of kolaviron and quercetin on cadmium-induced testicular damage and endocrine pathology in rats. Andrologia 2012; 44(4): 273-84.
[http://dx.doi.org/10.1111/j.1439-0272.2012.01279.x] [PMID: 22356231]
[107]
Adedara IA, Mathur PP, Farombi EO. Kolaviron prevents ethylene glycol monoethyl ether-induced testicular apoptosis via down-regulation of stress proteins, Fas/Fas-L and caspases expressions in rats. Toxicol Mech Methods 2013; 23(9): 689-96.
[http://dx.doi.org/10.3109/15376516.2013.843107] [PMID: 24024662]
[108]
Adedara IA, Vaithinathan S, Jubendradass R, Mathur PP, Farombi EO. Kolaviron prevents carbendazim-induced steroidogenic dysfunction and apoptosis in testes of rats. Environ Toxicol Pharmacol 2013; 35(3): 444-53.
[http://dx.doi.org/10.1016/j.etap.2013.01.010] [PMID: 23474402]
[109]
Adedara IA, Farombi EO. Kolaviron protects against ethylene glycol monoethyl ether-induced toxicity in boar spermatozoa. Andrologia 2014; 46(4): 399-407.
[http://dx.doi.org/10.1111/and.12095] [PMID: 23581499]
[110]
Kehinde A, Adefisan A, Adebayo O, Adaramoye O. Biflavonoid fraction from Garcinia kola seed ameliorates hormonal imbalance and testicular oxidative damage by anti-tuberculosis drugs in Wistar rats. J Basic Clin Physiol Pharmacol 2016; 27(4): 393-401.
[http://dx.doi.org/10.1515/jbcpp-2015-0063] [PMID: 27089414]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy