Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis of Novel bis-spirooxindoles Catalyzed by Magnetic Cobalt Ferrite Encapsulated MCM-41@MgO as a Solid Base

Author(s): Somaye Mohammadi and Hossein Naeimi*

Volume 18, Issue 2, 2021

Published on: 11 November, 2020

Page: [214 - 224] Pages: 11

DOI: 10.2174/1570179417666201111160600

Price: $65

Abstract

Aims and Objective: Synthesis of novel bis-spirooxindoles was carried out from isatins, two equivalents of malononitrile, and various derivatives of cyclohexanones.

Background: A facile one-pot and four-component reaction was investigated for the synthesis of novel bisspirooxindoles from different derivatives of isatins, two equivalents of malononitrile and various derivatives of cyclohexanone in the presence of magnetic CoFe2O4@MCM-41@MgO NPS catalyst under mild conditions.

Materials and Methods: Firstly, the magnetic CoFe2O4@MCM-41@MgO was prepared in three steps. Afterwards, the CoFe2O4@MCM-41@MgO was used as a base catalyst for the one-pot synthesis of bisspirooxindoles.

Results and Discussion: The procedure exhibited several benefits, an excellent yield of products, short reaction times, reusability, and recyclability of the nanocatalyst.

Conclusion: The structure of nanocatalyst was recognized by FT-IR, XRD, VSM, SEM, BET, and EDX techniques, and the structure of the organic products was determined by melting point, FT-IR, 1H NMR, 13C NMR, Mass spectra, and C.H.N analyses.

Keywords: Bis-spirooxindoles, MCM-41, isatin, malononitrile, cyclohexanone, C.H.N analyses.

Graphical Abstract

[1]
Rani, P.; Srivastava, V.K.; Kumar, A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem., 2004, 39(5), 449-452.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.002] [PMID: 15110970]
[2]
Sharma, V.; Kumar, P.; Pathak, D. Biological Iimportance of the Iindole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem., 2010, 47, 491.
[3]
Chai, W.; Breitenbucher, J.G.; Kwok, A.; Li, X.; Wong, V.; Carruthers, N.I.; Lovenberg, T.W.; Mazur, C.; Wilson, S.J.; Axe, F.U.; Jones, T.K. Non-imidazole heterocyclic histamine H3 receptor antagonists. Bioorg. Med. Chem. Lett., 2003, 13(10), 1767-1770.
[http://dx.doi.org/10.1016/S0960-894X(03)00299-3] [PMID: 12729661]
[4]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[5]
Carson, C.A.; Kerr, M.A. Heterocycles from cyclopropanes: Applications in natural product synthesis. Chem. Soc. Rev., 2009, 38(11), 3051-3060.
[http://dx.doi.org/10.1039/b901245c] [PMID: 19847340]
[6]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[7]
Sravanthi, T.V.; Manju, S.L. Indoles - A promising scaffold for drug development. Eur. J. Pharm. Sci., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[8]
Venkatesan, P.; Sumathi, S. Piperidine mediated synthesis of n‐heterocyclic chalcones and their antibacterial activity. J. Heterocycl. Chem., 2009, 47, 81.
[http://dx.doi.org/10.1002/jhet.268]
[9]
Sakhuja, R.; Panda, S.S.; Khanna, L.; Khurana, S.; Jain, S.C. Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5465-5469.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.121] [PMID: 21782421]
[10]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; el-Bady, ShM. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2483-2488.
[http://dx.doi.org/10.1016/j.bmc.2003.10.063] [PMID: 15080944]
[11]
Wu, J-S.; Zhang, X.; Zhang, Y-L.; Xie, J-W. Synthesis and antifungal activities of novel polyheterocyclic spirooxindole derivatives. Org. Biomol. Chem., 2015, 13(17), 4967-4975.
[http://dx.doi.org/10.1039/C5OB00256G] [PMID: 25820179]
[12]
Zhu, S-L.; Ji, S-J.; Zhang, Y. A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron, 2007, 63, 9365.
[http://dx.doi.org/10.1016/j.tet.2007.06.113]
[13]
Alizadeh, A.; Bayat, F.; Moafi, L. Application of 3-methylene- and 3-(monosubstituted)alkylideneoxindoles in the Synthesis of Heterocyclic Compounds. Curr. Org. Chem., 2017, 21, 1292.
[http://dx.doi.org/10.2174/1385272821666170127153449]
[14]
Huang, X-F.; Liu, Z-M.; Geng, Z-C.; Zhang, S-Y.; Wang, Y.; Wang, X-W. Enantioselective construction of multifunctionalized spirocyclohexaneoxindoles through organocatalytic Michael-Aldol cyclization of isatin derived alkenes with linear dialdehydes. Org. Biomol. Chem., 2012, 10(44), 8794-8799.
[http://dx.doi.org/10.1039/c2ob26205c] [PMID: 23044749]
[15]
Zuo, X.; Liu, X-L.; Wang, J-X.; Yao, Y-M.; Zhou, Y-Y.; Wei, Q-D.; Gong, Y.; Zhou, Y. Organocatalytic reaction of chromone-oxindole synthon: Access to chromanone-based spirocyclohexaneoxindoles with five adjacent stereocenters. J. Org. Chem., 2019, 84(11), 6679-6688.
[http://dx.doi.org/10.1021/acs.joc.9b00326] [PMID: 31083948]
[16]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. Engl., 2007, 46(46), 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342] [PMID: 17943924]
[17]
Antonchick, A.P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products. Nat. Chem., 2010, 2(9), 735-740.
[http://dx.doi.org/10.1038/nchem.730] [PMID: 20729892]
[18]
Parthasarathy, K.; Praveen, C.; Saranraj, K.; Balachandran, C.; Kumar, P.S. Synthesis, antimicrobial and cytotoxic evaluation of spirooxindole. Med. Chem. Res., 2016, 25, 2155.
[http://dx.doi.org/10.1007/s00044-016-1645-4]
[19]
Barbosa, C.A.L.; Teixeira, R.R.W.; Amarante, G. Synthetic strategies for the preparation of butenolides and their transformation into other derivatives. Curr. Org. Synth., 2015, 12, 746.
[http://dx.doi.org/10.2174/157017941206150828111855]
[20]
Cui, C-B.; Kakeya, H.; Osada, H. Synthesis, antimicrobial and cytotoxic evaluation of spirooxindole. Tetrahedron, 1996, 52, 12651.
[http://dx.doi.org/10.1016/0040-4020(96)00737-5]
[21]
Sebahar, P.R.; Williams, R.M. The asymmetric total synthesis of (+)- and. (-)- Spirotryprostatin B. J. Am. Chem. Soc., 2000, 122, 5666.
[http://dx.doi.org/10.1021/ja001133n]
[22]
Witkop, B.; Patrick, J.B.; Gelsemine, I.I. The chemistry and rearrangements of spiroöxindoles. J. Am. Chem. Soc., 1953, 75, 2572.
[http://dx.doi.org/10.1021/ja01107a008]
[23]
Newcombe, N.J.; Ya, F.; Vijn, R.J.; Hiemstra, H.; Speckamp, W.N. The total synthesis of (±)-gelsemine. J. Chem. Soc. Chem. Commun., 1994, 767.
[http://dx.doi.org/10.1039/C39940000767]
[24]
Elinson, M.N.; Vereshchagin, A.N.; Nasybullin, R.F.; Bobrovsky, S.I.; Ilovaisky, A.I.; Merkulova, V.M.; Bushmarinov, I.S.; Egorov, M.P. General approach to a spiro indole-3,1′-naphthalene tetracyclic system: stereoselective pseudo four-component reaction of isatins and cyclic ketones with two molecules of malononitrile. RSC Advances, 2015, 5, 50421.
[http://dx.doi.org/10.1039/C5RA03452C]
[25]
Zhao, X.S.; Lu, G.Q.; Millar, G. Advances in mesoporous molecular Sieve MCM-41. J. Ind. Eng. Chem. Res., 1996, 35, 2075.
[http://dx.doi.org/10.1021/ie950702a]
[26]
Munoz, B.; Ramila, A.; Perez-Pariente, J.; Diaz, I.; Vallet-Regi, M. MCM-41 organic modification as drug delivery rate regulator. Chem. Mater., 2003, 15, 500.
[http://dx.doi.org/10.1021/cm021217q]
[27]
Jentys, A.; Pham, N.H.; Vinek, H. Nature of hydroxy groups in MCM-41. J. Chem. Soc., Faraday Trans., 1996, 92, 3287.
[http://dx.doi.org/10.1039/ft9969203287]
[28]
Mokaya, R. Post-synthesis grafting of Al onto MCM-41. Chem. Commun. (Camb.), 1997, 2185.
[http://dx.doi.org/10.1039/a705340a]
[29]
Vallet-Regi, M.; Ramila, A.; Del Real, R.P. Pérez-Pariente. A new property of MCM-41: drug delivery system. J. Chem. Mater., 2001, 13, 308.
[http://dx.doi.org/10.1021/cm0011559]
[30]
Horcajada, P.; Ramila, A.; Perez-Pariente, J.; Vallet-Regı, M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater., 2004, 68, 105.
[http://dx.doi.org/10.1016/j.micromeso.2003.12.012]
[31]
Manzano, M.; Aina, V.; Arean, C.O.; Balas, F.; Cauda, V.; Colilla, M.; Delgado, M.R.; Vallet-Regi, M. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chem. Eng. J., 2008, 137, 30.
[http://dx.doi.org/10.1016/j.cej.2007.07.078]
[32]
Qin, Q.; Ma, J.; Liu, K. Adsorption of nitrobenzene from aqueous solution by MCM-41. J. Colloid Interface Sci., 2007, 315(1), 80-86.
[http://dx.doi.org/10.1016/j.jcis.2007.06.060] [PMID: 17673227]
[33]
Kamarudin, K.S.N.; Alias, N. Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Process. Technol., 2013, 106, 332.
[http://dx.doi.org/10.1016/j.fuproc.2012.08.017]
[34]
Mangrulkar, P.A.; Kamble, S.P.; Meshram, J.; Rayalu, S.S. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J. Hazard. Mater., 2008, 160(2-3), 414-421.
[http://dx.doi.org/10.1016/j.jhazmat.2008.03.013] [PMID: 18524474]
[35]
Serrano, D.P.; Calleja, G.; Botas, J.A.; Gutierrez, F. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. J. Ind. Eng. Chem. Res., 2004, 43, 7010.
[http://dx.doi.org/10.1021/ie040108d]
[36]
Zhao, X.S.; Ma, Q.; Lu, G.Q. VOC removal:Comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuels, 1998, 12, 1051.
[http://dx.doi.org/10.1021/ef980113s]
[37]
Masteri-Farahani, M.; Farzaneh, F.; Ghandi, M. Synthesis and characterization of molybdenum complexes with bidentate Schiff base ligands within nanoreactors of MCM-41 as epoxidation catalysts. J. Mol. Catal. Chem., 2006, 248, 53.
[http://dx.doi.org/10.1016/j.molcata.2005.12.008]
[38]
Yang, H.; Zhang, G.; Hong, X.; Zhu, Y. Dicyano-functionalized MCM-41 anchored-palladium complexes as recoverable catalysts for Heck reaction. J. Mol. Catal. Chem., 2004, 210, 143.
[http://dx.doi.org/10.1016/j.molcata.2003.09.009]
[39]
González‐Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Pd(II)‐Schiff base complexes heterogenised on MCM‐41 and delaminated zeolites as efficient and recyclable catalysts for the heck reaction. Adv. Synth. Catal., 2004, 346, 1758.
[http://dx.doi.org/10.1002/adsc.200404119]
[40]
Shaughnessy, K.H.; De Vasher, R.B. Palladium-Catalyzed cross-coupling in aqueous media: Recent progress and current applications. Curr. Org. Chem., 2005, 9, 585.
[http://dx.doi.org/10.2174/1385272053765042]
[41]
Saadatjoo, N.; Golshekan, M.; Shariati, S.; Kefayati, H.; Azizi, P. Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo[α]xanthenone derivatives. J. Mol. Catal. Chem., 2013, 377, 173.
[http://dx.doi.org/10.1016/j.molcata.2013.05.007]
[42]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374–375, 102.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[43]
Rostamizadeh, S.; Azad, M.; Shadjou, N.; Hasanzadeh, M. (α-Fe2O3)-MCM-41-SO3H as a novel magnetic nanocatalyst for the synthesis of N-aryl-2-amino-1,6-naphthyridine derivatives. Catal. Commun., 2012, 25, 83.
[http://dx.doi.org/10.1016/j.catcom.2012.04.013]
[44]
Kruk, M.; Jaroniec, M.; Sayari, A. Relations between pore structure parameters and their implications for characterization of MCM-41 using gas adsorption and x-ray diffraction. Chem. Mater., 1999, 11, 492.
[http://dx.doi.org/10.1021/cm981006e]
[45]
Omidi, F.; Behbahani, M.; Kalate Bojdi, M.; Shahtaheri, S.J. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica. J. Magn. Magn. Mater., 2015, 395, 213.
[http://dx.doi.org/10.1016/j.jmmm.2015.07.093]
[46]
Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem. Mater., 2002, 14, 4603.
[http://dx.doi.org/10.1021/cm0202355]
[47]
Arica, T.A.; Ayas, E.; Arica, M.Y. Magnetic MCM-41 silica particles grafted with poly(glycidylmethacrylate) brush: Modification and application for removal of direct dyes. Microporous Mesoporous Mater., 2017, 243, 164.
[http://dx.doi.org/10.1016/j.micromeso.2017.02.011]
[48]
Hegade, P.G.; Chinchkar, S.D.; Pore, D.M. DABCO catalyzed pseudo multi-component synthesis of functionalized spirooxindoles. Monatshefte für Chemie - Chem. Mon. Int. J. Chem., 2016, 147, 1243-1249.
[http://dx.doi.org/10.1007/s00706-015-1637-y]
[49]
Huang, X.; Zhang, Y.; Qi, Z.; Li, N.; Geng, Z.; Li, K. A highly efficient DBU-catalyzed green synthesis of spiro-oxindoles. 2014, 86, 4372.
[50]
Shanthi, G.; Subbulakshmi, G.; Perumal, P.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron, 2007, 63, 2057.
[http://dx.doi.org/10.1016/j.tet.2006.12.042]
[51]
Kumar, S. Brijeshlata; Dixit, S. Screening of traditional indian spices for inhibitory activity of acetylcholinesterase and butyrylcholinesterase enzymes. Int. J. Pharma Bio Sci., 2012, 3, 59.
[52]
Hegade, P.G.; Chinchkar, S.D.; Pore, D.M. DABCO catalyzed pseudo multi-component synthesis of functionalized spirooxindoles. Monatshefte für Chemie -. Chem. Mon., 2016, 147, 1243-1249.
[http://dx.doi.org/10.1007/s00706-015-1637-y]
[53]
Babu, T.H.; Joseph, A.A.; Muralidharan, D.; Perumal, P.T. A novel method for the synthesis of functionalized spirocyclic oxindoles by one-pot tandem reaction of vinyl malononitriles with isatylidene malononitriles. Tetrahedron Lett., 2010, 51, 994.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.082]
[54]
Mohammadi, S.; Naeimi, H. A bifunctional Yolk–Shell nanocatalyst with Lewis and organic functional base for the synthesis of spirooxindoles. Appl. Catal. A Gen., 2020, 602117720
[http://dx.doi.org/10.1016/j.apcata.2020.117720]
[55]
Huang, X.; Chen, Z. Preparation of CoFe2O4/SiO2 nanocomposites by sol–gel method. J. Cryst. Growth, 2004, 271, 287.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.07.064]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy