Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Polyisoprenylated Cysteinyl Amide Inhibitors: A Novel Approach to Controlling Cancers with Hyperactive Growth Signaling

Author(s): Nazarius S. Lamango*, Augustine T. Nkembo, Elizabeth Ntantie and Nada Tawfeeq

Volume 28, Issue 18, 2021

Published on: 11 November, 2020

Page: [3476 - 3489] Pages: 14

DOI: 10.2174/0929867327666201111140825

open access plus

Abstract

Aberrant activation of monomeric G-protein signaling pathways drives some of the most aggressive cancers. Suppressing these hyperactivities has been the focus of efforts to obtain targeted therapies. Polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in various cancers. Its inhibition induces the death of cancer cells that harbor the constitutively active K-Ras proteins. Furthermore, the viability of cancer cells driven by factors upstream of K-Ras, such as overexpressed growth factors and their receptors or the mutationally-activated receptors, is also susceptible to PMPMEase inhibition. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) were thus designed to target cancers with hyperactive signaling pathways involving the G-proteins. The PCAIs were, however, poor inhibitors of PMPMEase, with Ki values ranging from 3.7 to 20 μM. On the other hand, they inhibited cell viability, proliferation, colony formation, induced apoptosis in cells with mutant K-Ras and inhibited cell migration and invasion with EC50 values of 1 to 3 μM. HUVEC tube formation was inhibited at submicromolar concentrations through their disruption of actin filament organization. At the molecular level, the PCAIs at 2 to 5 μM depleted monomeric G-proteins such as K-Ras, RhoA, Cdc42 and Rac1. The PCAIs also deplete vinculin and fascin that are involved in actin organization and function while disrupting vinculin punctates in the process. These demonstrate a polyisoprenylation-dependent mechanism that explains the observed PCAIs’ inhibition of the proliferative, invasive and angiogenic processes that promote both tumor growth and metastasis.

Keywords: Polyisoprenylated Cysteinyl Amide Inhibitors (PCAIs), K-Ras, Polyisoprenylated methylated protein methyl esterase (PMPMEase), isoprenylation, polyisoprenylation, G-proteins, fascin, vinculin, RhoA.

[1]
Nalivaeva, N.N.; Turner, A.J. Post-translational modifications of proteins: acetylcholinesterase as a model system. Proteomics, 2001, 1(6), 735-747.
[http://dx.doi.org/10.1002/1615-9861(200106)1:6<735::AID-PROT735>3.0.CO;2-8] [PMID: 11677779]
[2]
Barbu, V.D. [Isoprenylation of proteins: what is its role?]. C. R. Seances Soc. Biol. Fil., 1991, 185(5), 278-289.
[PMID: 1806187]
[3]
Khosravi-Far, R.; Cox, A.D.; Kato, K.; Der, C.J. Protein prenylation: key to ras function and cancer intervention? Cell Growth Differ., 1992, 3(7), 461-469.
[PMID: 1419908]
[4]
Lerner, S.; Haklai, R.; Kloog, Y. Isoprenylation and carboxylmethylation in small GTP-binding proteins of pheochromocytoma (PC-12) cells. Cell. Mol. Neurobiol., 1992, 12(4), 333-351.
[http://dx.doi.org/10.1007/BF00734934] [PMID: 1394371]
[5]
Kitten, G.T.; Nigg, E.A. The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J. Cell Biol., 1991, 113(1), 13-23.
[http://dx.doi.org/10.1083/jcb.113.1.13] [PMID: 2007618]
[6]
Rowell, C.A.; Kowalczyk, J.J.; Lewis, M.D.; Garcia, A.M. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J. Biol. Chem., 1997, 272(22), 14093-14097.
[http://dx.doi.org/10.1074/jbc.272.22.14093] [PMID: 9162034]
[7]
Zhang, F.L.; Casey, P.J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem., 1996, 65, 241-269.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001325] [PMID: 8811180]
[8]
Hurwitz, H.I.; Casey, P.J. Prenylation of CaaX-type proteins: Basic principles through clinical applications. Curr. Top. Membr., 2002, 52, 531-550.
[http://dx.doi.org/10.1016/S1063-5823(02)52021-4]
[9]
Jiang, H.; Zhang, X.; Chen, X.; Aramsangtienchai, P.; Tong, Z.; Lin, H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev., 2018, 118(3), 919-988.
[http://dx.doi.org/10.1021/acs.chemrev.6b00750] [PMID: 29292991]
[10]
Whyte, D.B.; Kirschmeier, P.; Hockenberry, T.N.; Nunez-Oliva, I.; James, L.; Catino, J.J.; Bishop, W.R.; Pai, J.K. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem., 1997, 272(22), 14459-14464.
[http://dx.doi.org/10.1074/jbc.272.22.14459] [PMID: 9162087]
[11]
Berndt, N.; Hamilton, A.D.; Sebti, S.M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer, 2011, 11(11), 775-791.
[http://dx.doi.org/10.1038/nrc3151] [PMID: 22020205]
[12]
Kazi, A.; Carie, A.; Blaskovich, M.A.; Bucher, C.; Thai, V.; Moulder, S.; Peng, H.; Carrico, D.; Pusateri, E.; Pledger, W.J.; Berndt, N.; Hamilton, A.; Sebti, S.M. Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol. Cell. Biol., 2009, 29(8), 2254-2263.
[http://dx.doi.org/10.1128/MCB.01029-08] [PMID: 19204084]
[13]
Karasic, T.B.; Chiorean, E.G.; Sebti, S.M.; O’Dwyer, P.J. A Phase I study of GGTI-2418 (geranylgeranyl transferase I inhibitor) in patients with advanced solid tumors. Target. Oncol., 2019, 14(5), 613-618.
[http://dx.doi.org/10.1007/s11523-019-00661-5] [PMID: 31372813]
[14]
Oboh, O.T.; Lamango, N.S. Liver prenylated methylated protein methyl esterase is the same enzyme as Sus scrofa carboxylesterase. J. Biochem. Mol. Toxicol., 2008, 22(1), 51-62.
[http://dx.doi.org/10.1002/jbt.20214] [PMID: 18273909]
[15]
Lamango, N.S. Liver prenylated methylated protein methyl esterase is an organophosphate-sensitive enzyme. J. Biochem. Mol. Toxicol., 2005, 19(5), 347-357.
[http://dx.doi.org/10.1002/jbt.20100] [PMID: 16292756]
[16]
Wang, M.; Casey, P.J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol., 2016, 17(2), 110-122.
[http://dx.doi.org/10.1038/nrm.2015.11] [PMID: 26790532]
[17]
Gosser, Y.Q.; Nomanbhoy, T.K.; Aghazadeh, B.; Manor, D.; Combs, C.; Cerione, R.A.; Rosen, M.K. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature, 1997, 387(6635), 814-819.
[http://dx.doi.org/10.1038/42961] [PMID: 9194563]
[18]
Schmohl, M.; Rimmele, S.; Pötz, O.; Kloog, Y.; Gierschik, P.; Joos, T.O.; Schneiderhan-Marra, N. Protein-protein-interactions in a multiplexed, miniaturized format a functional analysis of Rho GTPase activation and inhibition. Proteomics, 2010, 10(8), 1716-1720.
[http://dx.doi.org/10.1002/pmic.200900597] [PMID: 20127689]
[19]
Aguilar, B.J.; Nkembo, A.T.; Duverna, R.; Poku, R.A.; Amissah, F.; Ablordeppey, S.Y.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase: a putative biomarker and therapeutic target for pancreatic cancer. Eur. J. Med. Chem., 2014, 81, 323-333.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.018] [PMID: 24852279]
[20]
Poku, R.A.; Amissah, F.; Duverna, R.; Aguilar, B.J.; Kiros, G.E.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase as a putative drug target for androgen-insensitive prostate cancer. Ecancermedicalscience, 2014, 8, 459.
[http://dx.doi.org/10.3332/ecancer.2014.459] [PMID: 25228915]
[21]
Amissah, F.; Duverna, R.; Aguilar, B.J.; Poku, R.A.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase is both sensitive to curcumin and overexpressed in colorectal cancer: implications for chemoprevention and treatment. BioMed Res. Int., 2013, 2013, 416534.
[http://dx.doi.org/10.1155/2013/416534] [PMID: 23936796]
[22]
Amissah, F.; Duverna, R.; Aguilar, B.J.; Poku, R.A.; Kiros, G.E.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase overexpression and hyperactivity promotes lung cancer progression. Am. J. Cancer Res., 2014, 4(2), 116-134.
[PMID: 24660102]
[23]
Aguilar, B.; Amissah, F.; Duverna, R.; Lamango, N.S. Polyisoprenylation potentiates the inhibition of polyisoprenylated methylated protein methyl esterase and the cell degenerative effects of sulfonyl fluorides. Curr. Cancer Drug Targets, 2011, 11(6), 752-762.
[http://dx.doi.org/10.2174/156800911796191015] [PMID: 21599633]
[24]
Ayuk-Takem, L.; Amissah, F.; Aguilar, B.J.; Lamango, N.S. Inhibition of polyisoprenylated methylated protein methyl esterase by synthetic musks induces cell degeneration. Environ. Toxicol., 2014, 29(4), 466-477.
[http://dx.doi.org/10.1002/tox.21773] [PMID: 22489002]
[25]
Bergo, M.O.; Gavino, B.J.; Hong, C.; Beigneux, A.P.; McMahon, M.; Casey, P.J.; Young, S.G. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest., 2004, 113(4), 539-550.
[http://dx.doi.org/10.1172/JCI200418829] [PMID: 14966563]
[26]
Majmudar, J.D.; Hahne, K.; Hrycyna, C.A.; Gibbs, R.A. Probing the isoprenylcysteine carboxyl methyltransferase (Icmt) binding pocket: sulfonamide modified farnesyl cysteine (SMFC) analogs as Icmt inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(9), 2616-2620.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.078] [PMID: 21334890]
[27]
Rando, R.R. Chemical biology of protein isoprenylation/methylation. Biochim. Biophys. Acta, 1996, 1300(1), 5-16.
[http://dx.doi.org/10.1016/0005-2760(95)00233-2] [PMID: 8608162]
[28]
Tan, E.W.; Pérez-Sala, D.; Cañada, F.J.; Rando, R.R. Identifying the recognition unit for G protein methylation. J. Biol. Chem., 1991, 266(17), 10719-10722.
[http://dx.doi.org/10.1016/S0021-9258(18)99074-5] [PMID: 1904056]
[29]
Pérez-Sala, D.; Tan, E.W.; Cañada, F.J.; Rando, R.R. Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments. Proc. Natl. Acad. Sci. USA, 1991, 88(8), 3043-3046.
[http://dx.doi.org/10.1073/pnas.88.8.3043] [PMID: 1901651]
[30]
Perezsala, D.; Tan, E.W.; Rando, R.R. G-Protein Methylation in Rod Outer Segments. Investigative Ophthalmology and Visual Science, annual meeting, Sarasota, Florida 1991, 32, pp. 667-1427.
[31]
Philips, M.R.; Pillinger, M.H.; Staud, R.; Volker, C.; Rosenfeld, M.G.; Weissmann, G.; Stock, J.B. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science, 1993, 259(5097), 977-980.
[http://dx.doi.org/10.1126/science.8438158] [PMID: 8438158]
[32]
Bergo, M.O.; Leung, G.K.; Ambroziak, P.; Otto, J.C.; Casey, P.J.; Gomes, A.Q.; Seabra, M.C.; Young, S.G. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J. Biol. Chem., 2001, 276(8), 5841-5845.
[http://dx.doi.org/10.1074/jbc.C000831200] [PMID: 11121396]
[33]
Bergo, M.O.; Leung, G.K.; Ambroziak, P.; Otto, J.C.; Casey, P.J.; Young, S.G. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J. Biol. Chem., 2000, 275(23), 17605-17610.
[http://dx.doi.org/10.1074/jbc.C000079200] [PMID: 10747846]
[34]
Lamango, N.S.; Ayuk-Takem, L.T.; Nesby, R.; Zhao, W.Q.; Charlton, C.G. Inhibition mechanism of S-adenosylmethionine-induced movement deficits by prenylcysteine analogs. Pharmacol. Biochem. Behav., 2003, 76(3-4), 433-442.
[http://dx.doi.org/10.1016/j.pbb.2003.08.017] [PMID: 14643842]
[35]
Lamango, N.S.; Charlton, C.G. Farnesyl-L-cysteine analogs block SAM-induced Parkinson’s disease-like symptoms in rats. Pharmacol. Biochem. Behav., 2000, 66(4), 841-849.
[http://dx.doi.org/10.1016/S0091-3057(00)00274-4] [PMID: 10973524]
[36]
Lamango, N.S.; Nesby, R.A.; Charlton, C.G. Quantification of S-adenosylmethionine-induced tremors: a possible tremor model for Parkinson’s disease. Pharmacol. Biochem. Behav., 2000, 65(3), 523-529.
[http://dx.doi.org/10.1016/S0091-3057(99)00220-8] [PMID: 10683494]
[37]
Lamango, N.S.; Duverna, R.; Zhang, W.; Ablordeppey, S.Y. Porcine liver carboxylesterase requires polyisoprenylation for high affinity binding to cysteinyl substrates. Open Enzyme Inhib. J., 2009, 2, 12-27.
[http://dx.doi.org/10.2174/1874940200902010012] [PMID: 20664805]
[38]
Bencharit, S.; Edwards, C.C.; Morton, C.L.; Howard-Williams, E.L.; Kuhn, P.; Potter, P.M.; Redinbo, M.R. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J. Mol. Biol., 2006, 363(1), 201-214.
[http://dx.doi.org/10.1016/j.jmb.2006.08.025] [PMID: 16962139]
[39]
Fleming, C.D.; Bencharit, S.; Edwards, C.C.; Hyatt, J.L.; Tsurkan, L.; Bai, F.; Fraga, C.; Morton, C.L.; Howard-Williams, E.L.; Potter, P.M.; Redinbo, M.R. Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil. J. Mol. Biol., 2005, 352(1), 165-177.
[http://dx.doi.org/10.1016/j.jmb.2005.07.016] [PMID: 16081098]
[40]
Redinbo, M.R.; Bencharit, S.; Potter, P.M. Human carboxylesterase 1: from drug metabolism to drug discovery. Biochem. Soc. Trans., 2003, 31(Pt 3), 620-624.
[http://dx.doi.org/10.1042/bst0310620] [PMID: 12773168]
[41]
Bencharit, S.; Morton, C.L.; Hyatt, J.L.; Kuhn, P.; Danks, M.K.; Potter, P.M.; Redinbo, M.R. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine: from binding promiscuity to selective inhibition. Chem. Biol., 2003, 10(4), 341-349.
[http://dx.doi.org/10.1016/S1074-5521(03)00071-1] [PMID: 12725862]
[42]
Duverna, R.; Ablordeppey, S.Y.; Lamango, N.S. Biochemical and docking analysis of substrate interactions with polyisoprenylated methylated protein methyl esterase. Curr. Cancer Drug Targets, 2010, 10(6), 634-648.
[http://dx.doi.org/10.2174/156800910791859443] [PMID: 20491620]
[43]
Sierra-Fonseca, J.A.; Najera, O.; Martinez-Jurado, J.; Walker, E.M.; Varela-Ramirez, A.; Khan, A.M.; Miranda, M.; Lamango, N.S.; Roychowdhury, S. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci., 2014, 15, 132.
[http://dx.doi.org/10.1186/s12868-014-0132-4] [PMID: 25552352]
[44]
Nobes, C.D.; Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995, 81(1), 53-62.
[http://dx.doi.org/10.1016/0092-8674(95)90370-4] [PMID: 7536630]
[45]
Zankov, D.P.; Ogita, H. Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. BioMed Res. Int., 2015, 2015, 314178.
[http://dx.doi.org/10.1155/2015/314178] [PMID: 25883953]
[46]
Nkembo, A.T.; Ntantie, E.; Salako, O.O.; Amissah, F.; Poku, R.A.; Latinwo, L.M.; Lamango, N.S. The antiangiogenic effects of polyisoprenylated cysteinyl amide inhibitors in HUVEC, chick embryo and zebrafish is dependent on the polyisoprenyl moiety. Oncotarget, 2016, 7(42), 68194-68205.
[http://dx.doi.org/10.18632/oncotarget.11908] [PMID: 27626690]
[47]
Nkembo, A.T.; Salako, O.; Poku, R.A.; Amissah, F.; Ntantie, E.; Flores-Rozas, H.; Lamango, N.S. Disruption of actin filaments and suppression of pancreatic cancer cell viability and migration following treatment with polyisoprenylated cysteinyl amides. Am. J. Cancer Res., 2016, 6(11), 2532-2546.
[PMID: 27904769]
[48]
Ntantie, E.; Fletcher, J.; Amissah, F.; Salako, O.O.; Nkembo, A.T.; Poku, R.A.; Ikpatt, F.O.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors disrupt actin cytoskeleton organization, induce cell rounding and block migration of non-small cell lung cancer. Oncotarget, 2017, 8(19), 31726-31744.
[http://dx.doi.org/10.18632/oncotarget.15956] [PMID: 28423648]
[49]
Poku, R.A.; Salako, O.O.; Amissah, F.; Nkembo, A.T.; Ntantie, E.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors induce caspase 3/7- and 8-mediated apoptosis and inhibit migration and invasion of metastatic prostate cancer cells. Am. J. Cancer Res., 2017, 7(7), 1515-1527.
[PMID: 28744401]
[50]
Nkembo, A.T.; Amissah, F.; Ntantie, E.; Poku, R.A.; Salako, O.O.; Ikpatt, O.F.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors deplete K-Ras and induce caspase-dependent apoptosis in lung cancer cells. Curr. Cancer Drug Targets, 2019, 19(10), 838-851.
[http://dx.doi.org/10.2174/1568009619666190325144636] [PMID: 30914025]
[51]
Ntantie, E.; Allen, M.J.; Fletcher, J.; Nkembo, A.T.; Lamango, N.S.; Ikpatt, O.F. Suppression of focal adhesion formation may account for the suppression of cell migration, invasion and growth of non-small cell lung cancer cells following treatment with polyisoprenylated cysteinyl amide inhibitors. Oncotarget, 2018, 9(40), 25781-25795.
[http://dx.doi.org/10.18632/oncotarget.25372] [PMID: 29899821]
[52]
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
[53]
Sánchez-Muñoz, A.; Gallego, E.; de Luque, V.; Pérez-Rivas, L.G.; Vicioso, L.; Ribelles, N.; Lozano, J.; Alba, E. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer, 2010, 10, 136.
[http://dx.doi.org/10.1186/1471-2407-10-136] [PMID: 20385028]
[54]
Neumann, J.; Zeindl-Eberhart, E.; Kirchner, T.; Jung, A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol. Res. Pract., 2009, 205(12), 858-862.
[http://dx.doi.org/10.1016/j.prp.2009.07.010] [PMID: 19679400]
[55]
Prior, I.A.; Hood, F.E.; Hartley, J.L. The frequency of ras mutations in cancer. Cancer Res., 2020, 80(14), 2969-2974.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3682] [PMID: 32209560]
[56]
Hodis, E.; Watson, I.R.; Kryukov, G.V.; Arold, S.T.; Imielinski, M.; Theurillat, J.P.; Nickerson, E.; Auclair, D.; Li, L.; Place, C.; Dicara, D.; Ramos, A.H.; Lawrence, M.S.; Cibulskis, K.; Sivachenko, A.; Voet, D.; Saksena, G.; Stransky, N.; Onofrio, R.C.; Winckler, W.; Ardlie, K.; Wagle, N.; Wargo, J.; Chong, K.; Morton, D.L.; Stemke-Hale, K.; Chen, G.; Noble, M.; Meyerson, M.; Ladbury, J.E.; Davies, M.A.; Gershenwald, J.E.; Wagner, S.N.; Hoon, D.S.; Schadendorf, D.; Lander, E.S.; Gabriel, S.B.; Getz, G.; Garraway, L.A.; Chin, L. A landscape of driver mutations in melanoma. Cell, 2012, 150(2), 251-263.
[http://dx.doi.org/10.1016/j.cell.2012.06.024] [PMID: 22817889]
[57]
Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr; Laird, P.W.; Baty, J.D.; Fulton, L.L.; Fulton, R.; Heath, S.E.; Kalicki-Veizer, J.; Kandoth, C.; Klco, J.M.; Koboldt, D.C.; Kanchi, K.L.; Kulkarni, S.; Lamprecht, T.L.; Larson, D.E.; Lin, L.; Lu, C.; McLellan, M.D.; McMichael, J.F.; Payton, J.; Schmidt, H.; Spencer, D.H.; Tomasson, M.H.; Wallis, J.W.; Wartman, L.D.; Watson, M.A.; Welch, J.; Wendl, M.C.; Ally, A.; Balasundaram, M.; Birol, I.; Butterfield, Y.; Chiu, R.; Chu, A.; Chuah, E.; Chun, H.J.; Corbett, R.; Dhalla, N.; Guin, R.; He, A.; Hirst, C.; Hirst, M.; Holt, R.A.; Jones, S.; Karsan, A.; Lee, D.; Li, H.I.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, K.; Parker, J.; Pleasance, E.; Plettner, P.; Schein, J.; Stoll, D.; Swanson, L.; Tam, A.; Thiessen, N.; Varhol, R.; Wye, N.; Zhao, Y.; Gabriel, S.; Getz, G.; Sougnez, C.; Zou, L.; Leiserson, M.D.; Vandin, F.; Wu, H.T.; Applebaum, F.; Baylin, S.B.; Akbani, R.; Broom, B.M.; Chen, K.; Motter, T.C.; Nguyen, K.; Weinstein, J.N.; Zhang, N.; Ferguson, M.L.; Adams, C.; Black, A.; Bowen, J.; Gastier-Foster, J.; Grossman, T.; Lichtenberg, T.; Wise, L.; Davidsen, T.; Demchok, J.A.; Shaw, K.R.; Sheth, M.; Sofia, H.J.; Yang, L.; Downing, J.R.; Eley, G. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med., 2013, 368(22), 2059-2074.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[58]
Weinstein, J.N.; Akbani, R.; Broom, B.M.; Wang, W.Y.; Verhaak, R.G.W.; McConkey, D.; Lerner, S.; Morgan, M.; Creighton, C.J.; Smith, C. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 2014, 507(7492), 315-322.
[http://dx.doi.org/10.1038/nature12965] [PMID: 24476821]
[59]
Fritz, G.; Just, I.; Kaina, B. Rho GTPases are over-expressed in human tumors. Int. J. Cancer, 1999, 81(5), 682-687.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990531)81:5<682::AID-IJC2>3.0.CO;2-B] [PMID: 10328216]
[60]
Fritz, G.; Brachetti, C.; Bahlmann, F.; Schmidt, M.; Kaina, B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br. J. Cancer, 2002, 87(6), 635-644.
[http://dx.doi.org/10.1038/sj.bjc.6600510] [PMID: 12237774]
[61]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res., 2011, 39(Database issue), D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[62]
Schnelzer, A.; Prechtel, D.; Knaus, U.; Dehne, K.; Gerhard, M.; Graeff, H.; Harbeck, N.; Schmitt, M.; Lengyel, E. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene, 2000, 19(26), 3013-3020.
[http://dx.doi.org/10.1038/sj.onc.1203621] [PMID: 10871853]
[63]
Shieh, D.B.; Godleski, J.; Herndon, J.E., II; Azuma, T.; Mercer, H.; Sugarbaker, D.J.; Kwiatkowski, D.J. Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression. Cancer, 1999, 85(1), 47-57.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990101)85:1<47::AID-CNCR7>3.0.CO;2-L] [PMID: 9921973]
[64]
Gómez Del Pulgar, T.; Valdés-Mora, F.; Bandrés, E.; Pérez-Palacios, R.; Espina, C.; Cejas, P.; García-Cabezas, M.A.; Nistal, M.; Casado, E.; González-Barón, M.; García-Foncillas, J.; Lacal, J.C. Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. Int. J. Oncol., 2008, 33(1), 185-193.
[http://dx.doi.org/10.3892/ijo.33.1.185] [PMID: 18575765]
[65]
Rajalingam, K.; Schreck, R.; Rapp, U.R.; Albert, S. Ras oncogenes and their downstream targets. Biochim. Biophys. Acta, 2007, 1773(8), 1177-1195.
[http://dx.doi.org/10.1016/j.bbamcr.2007.01.012] [PMID: 17428555]
[66]
Haklai, R.; Weisz, M.G.; Elad, G.; Paz, A.; Marciano, D.; Egozi, Y.; Ben-Baruch, G.; Kloog, Y. Dislodgment and accelerated degradation of Ras. Biochemistry, 1998, 37(5), 1306-1314.
[http://dx.doi.org/10.1021/bi972032d] [PMID: 9477957]
[67]
Kloog, Y.; Cox, A.D. RAS inhibitors: potential for cancer therapeutics. Mol. Med. Today, 2000, 6(10), 398-402.
[http://dx.doi.org/10.1016/S1357-4310(00)01789-5] [PMID: 11006529]
[68]
Cushman, I.; Cushman, S.M.; Potter, P.M.; Casey, P.J. Control of RhoA methylation by carboxylesterase I. J. Biol. Chem., 2013, 288(26), 19177-19183.
[http://dx.doi.org/10.1074/jbc.M113.467407] [PMID: 23658012]
[69]
Sperlich, B.; Kapoor, S.; Waldmann, H.; Winter, R.; Weise, K. Regulation of K-Ras4B membrane binding by calmodulin. Biophys. J., 2016, 111(1), 113-122.
[http://dx.doi.org/10.1016/j.bpj.2016.05.042] [PMID: 27410739]
[70]
Weise, K.; Kapoor, S.; Werkmüller, A.; Möbitz, S.; Zimmermann, G.; Triola, G.; Waldmann, H.; Winter, R. Dissociation of the K-Ras4B/PDEδ complex upon contact with lipid membranes: membrane delivery instead of extraction. J. Am. Chem. Soc., 2012, 134(28), 11503-11510.
[http://dx.doi.org/10.1021/ja305518h] [PMID: 22721555]
[71]
Ntantie, E.; Fletcher, J.; Amissah, F.; Salako, O.O.; Nkembo, A.T.; Poku, R.A.; Ikpatt, F.O.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors disrupt actin cytoskeleton organization, induce cell rounding and block migration of non-small cell lung cancer. Oncotarget, 2017, 8(19), 31726-31744.
[http://dx.doi.org/10.18632/oncotarget.15956] [PMID: 28423648]
[72]
Troiani, T.; Martinelli, E.; Capasso, A.; Morgillo, F.; Orditura, M.; De Vita, F.; Ciardiello, F. Targeting EGFR in pancreatic cancer treatment. Curr. Drug Targets, 2012, 13(6), 802-810.
[http://dx.doi.org/10.2174/138945012800564158] [PMID: 22458527]
[73]
Wong, A.J.; Bigner, S.H.; Bigner, D.D.; Kinzler, K.W.; Hamilton, S.R.; Vogelstein, B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl. Acad. Sci. USA, 1987, 84(19), 6899-6903.
[http://dx.doi.org/10.1073/pnas.84.19.6899] [PMID: 3477813]
[74]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[75]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[76]
Lee, J.W.; Soung, Y.H.; Kim, S.Y.; Nam, H.K.; Park, W.S.; Nam, S.W.; Kim, M.S.; Sun, D.I.; Lee, Y.S.; Jang, J.J.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin. Cancer Res., 2005, 11(8), 2879-2882.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2029] [PMID: 15837736]
[77]
Bhargava, R.; Gerald, W.L.; Li, A.R.; Pan, Q.; Lal, P.; Ladanyi, M.; Chen, B. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol., 2005, 18(8), 1027-1033.
[http://dx.doi.org/10.1038/modpathol.3800438] [PMID: 15920544]
[78]
Ranjbar, R.; Nejatollahi, F.; Nedaei Ahmadi, A.S.; Hafezi, H.; Safaie, A. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with serous ovarian carcinoma and their clinical significance. Iran. J. Cancer Prev., 2015, 8(4), e3428.
[http://dx.doi.org/10.17795/ijcp-3428] [PMID: 26478789]
[79]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[80]
Li, Q.; Wang, D.; Li, J.; Chen, P. Clinicopathological and prognostic significance of HER-2/neu and VEGF expression in colon carcinomas. BMC Cancer, 2011, 11, 277.
[http://dx.doi.org/10.1186/1471-2407-11-277] [PMID: 21708009]
[81]
Normanno, N.; Bianco, C.; De Luca, A.; Maiello, M.R.; Salomon, D.S. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr. Relat. Cancer, 2003, 10(1), 1-21.
[http://dx.doi.org/10.1677/erc.0.0100001] [PMID: 12653668]
[82]
Chan, J.M.; Stampfer, M.J.; Giovannucci, E.; Gann, P.H.; Ma, J.; Wilkinson, P.; Hennekens, C.H.; Pollak, M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 1998, 279(5350), 563-566.
[http://dx.doi.org/10.1126/science.279.5350.563] [PMID: 9438850]
[83]
Hankins, G.R.; De Souza, A.T.; Bentley, R.C.; Patel, M.R.; Marks, J.R.; Iglehart, J.D.; Jirtle, R.L. M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene, 1996, 12(9), 2003-2009.
[PMID: 8649861]
[84]
De Souza, A.T.; Hankins, G.R.; Washington, M.K.; Orton, T.C.; Jirtle, R.L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat. Genet., 1995, 11(4), 447-449.
[http://dx.doi.org/10.1038/ng1295-447] [PMID: 7493029]
[85]
Souza, R.F.; Wang, S.; Thakar, M.; Smolinski, K.N.; Yin, J.; Zou, T.T.; Kong, D.; Abraham, J.M.; Toretsky, J.A.; Meltzer, S.J. Expression of the wild-type insulin-like growth factor II receptor gene suppresses growth and causes death in colorectal carcinoma cells. Oncogene, 1999, 18(28), 4063-4068.
[http://dx.doi.org/10.1038/sj.onc.1202768] [PMID: 10435587]
[86]
Dirix, L.Y.; Vermeulen, P.B.; Pawinski, A.; Prové, A.; Benoy, I.; De Pooter, C.; Martin, M.; Van Oosterom, A.T. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br. J. Cancer, 1997, 76(2), 238-243.
[http://dx.doi.org/10.1038/bjc.1997.368] [PMID: 9231925]
[87]
Abdelkarim, H.; Banerjee, A.; Grudzien, P.; Leschinsky, N.; Abushaer, M.; Gaponenko, V. The hypervariable region of K-Ras4B governs molecular recognition and function. Int. J. Mol. Sci., 2019, 20(22), E5718.
[http://dx.doi.org/10.3390/ijms20225718] [PMID: 31739603]
[88]
Jiang, Y.; Mackley, H.; Cheng, H.; Ajani, J.A. Use of K-Ras as a predictive biomarker for selecting anti-EGF receptor/pathway treatment. Biomarkers Med., 2010, 4(4), 535-541.
[http://dx.doi.org/10.2217/bmm.10.74] [PMID: 20701442]
[89]
Dempke, W.C.M.; Heinemann, V. Ras mutational status is a biomarker for resistance to EGFR inhibitors in colorectal carcinoma. Anticancer Res., 2010, 30(11), 4673-4677.
[PMID: 21115922]
[90]
Cagnol, S.; Chambard, J.C. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J., 2010, 277(1), 2-21.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07366.x] [PMID: 19843174]
[91]
Singh, A.V.; Kishore, V.; Santomauro, G.; Yasa, O.; Bill, J.; Sitti, M. Mechanical coupling of puller and pusher active microswimmers influences motility. Langmuir, 2020, 36(19), 5435-5443.
[http://dx.doi.org/10.1021/acs.langmuir.9b03665] [PMID: 32343587]

© 2025 Bentham Science Publishers | Privacy Policy