Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Steroid-resistant Nephrotic Syndrome in Children: A Mini-review on Genetic Mechanisms, Predictive Biomarkers and Pharmacotherapy Strategies

Author(s): Hong-Li Guo, Ling Li, Ze-Yue Xu, Xia Jing, Ying Xia, Jin-Chun Qiu, Xing Ji, Feng Chen*, Jing Xu* and Fei Zhao*

Volume 27, Issue 2, 2021

Published on: 02 November, 2020

Page: [319 - 329] Pages: 11

DOI: 10.2174/1381612826666201102104412

Price: $65

Abstract

Steroid-resistant nephrotic syndrome (SRNS) constitutes the second most frequent cause of chronic kidney disease in childhood. The etiology of SRNS remains largely unknown and no standardized treatment exists. Recent advances in genomics have helped to build understanding of the molecular mechanisms and pathogenesis of the disease. The genetic polymorphisms in genes encoding proteins which are involved in the pharmacokinetics and pharmacodynamics of glucocorticoids (GCs) partially account for the different responses between patients with nephrotic syndrome. More importantly, single-gene causation in podocytes-associated proteins was found in approximately 30% of SRNS patients. Some potential biomarkers have been tested for their abilities to discriminate against pediatric patients who are sensitive to GCs treatment and patients who are resistant to the same therapy. This article reviews the recent findings on genetic mechanisms, predictive biomarkers and current therapies for SRNS with the goal to improve the management of children with this syndrome.

Keywords: Steroid-resistant nephrotic syndrome, glucocorticoids, glucocorticoid receptors, monogenetic mutations, podocytes, biomarkers, management.

« Previous
[1]
Sun JY, Xu ZJ, Sun F, et al. Individualized Tacrolimus Therapy for Pediatric Nephrotic Syndrome: Considerations for Ontogeny and Pharmacogenetics of CYP3A. Curr Pharm Des 2018; 24(24): 2765-73.
[http://dx.doi.org/10.2174/1381612824666180829101836] [PMID: 30156148]
[2]
Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children. Lancet 2018; 392(10141): 61-74.
[http://dx.doi.org/10.1016/S0140-6736(18)30536-1] [PMID: 29910038]
[3]
Banh TH, Hussain-Shamsy N, Patel V, et al. Ethnic Differences in Incidence and Outcomes of Childhood Nephrotic Syndrome. Clin J Am Soc Nephrol 2016; 11(10): 1760-8.
[http://dx.doi.org/10.2215/CJN.00380116] [PMID: 27445165]
[4]
Chapter 4: Steroid-resistant nephrotic syndrome in children. Kidney Int Suppl 2011; 2012(2): 172-6.
[5]
Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 2010; 25(9): 1621-32.
[http://dx.doi.org/10.1007/s00467-010-1495-0] [PMID: 20333530]
[6]
Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. Kidney Int 1981; 20(6): 765-71.
[http://dx.doi.org/10.1038/ki.1981.209] [PMID: 7334749]
[7]
Mendonça AC, Oliveira EA, Fróes BP, et al. A predictive model of progressive chronic kidney disease in idiopathic nephrotic syndrome. Pediatr Nephrol 2015; 30(11): 2011-20.
[http://dx.doi.org/10.1007/s00467-015-3136-0] [PMID: 26084617]
[8]
Trautmann A, Schnaidt S, Lipska-Ziętkiewicz BS, et al. PodoNet Consortium. Long-Term Outcome of Steroid-Resistant Nephrotic Syndrome in Children. J Am Soc Nephrol 2017; 28(10): 3055-65.
[http://dx.doi.org/10.1681/ASN.2016101121] [PMID: 28566477]
[9]
Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA. Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 2007; 11(4): 366-73.
[http://dx.doi.org/10.1111/j.1399-3046.2007.00704.x] [PMID: 17493215]
[10]
Cheong HI. Genetic tests in children with steroid-resistant nephrotic syndrome. Kidney Res Clin Pract 2020; 39(1): 7-16.
[http://dx.doi.org/10.23876/j.krcp.20.001] [PMID: 32155690]
[11]
Hejazian SM, Zununi Vahed S, Moghaddas Sani H, et al. Steroid-resistant nephrotic syndrome: pharmacogenetics and epigenetic points and views. Expert Rev Clin Pharmacol 2020; 13(2): 147-56.
[http://dx.doi.org/10.1080/17512433.2020.1702877] [PMID: 31847609]
[12]
Kestilä M, Lenkkeri U, Männikkö M, et al. Positionally cloned gene for a novel glomerular protein-nephrin-is mutated in congenital nephrotic syndrome. Mol Cell 1998; 1(4): 575-82.
[http://dx.doi.org/10.1016/S1097-2765(00)80057-X] [PMID: 9660941]
[13]
Preston R, Stuart HM, Lennon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019; 34(2): 195-210.
[http://dx.doi.org/10.1007/s00467-017-3838-6] [PMID: 29181713]
[14]
Bierzynska A, McCarthy HJ, Soderquest K, et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 2017; 91(4): 937-47.
[http://dx.doi.org/10.1016/j.kint.2016.10.013] [PMID: 28117080]
[15]
Arora V, Anand K, Chander Verma I. Genetic Testing in Pediatric Kidney Disease. Indian J Pediatr 2020; 87(9): 706-15.
[http://dx.doi.org/10.1007/s12098-020-03198-y] [PMID: 32056192]
[16]
Saleem MA. Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol 2019; 15(12): 750-65.
[http://dx.doi.org/10.1038/s41581-019-0217-5] [PMID: 31654044]
[17]
Lee JM, Kronbichler A, Shin JI, Oh J. Current understandings in treating children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2020 In press
[http://dx.doi.org/10.1007/s00467-020-04476-9] [PMID: 32086590]
[18]
Tullus K, Webb H, Bagga A. Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health 2018; 2(12): 880-90.
[http://dx.doi.org/10.1016/S2352-4642(18)30283-9] [PMID: 30342869]
[19]
Trebble PJ, Woolven JM, Saunders KA, et al. A ligand-specific kinetic switch regulates glucocorticoid receptor trafficking and function. J Cell Sci 2013; 126(Pt. 14): 3159-69.
[http://dx.doi.org/10.1242/jcs.124784] [PMID: 23687373]
[20]
Hurley DM, Accili D, Stratakis CA, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 1991; 87(2): 680-6.
[http://dx.doi.org/10.1172/JCI115046] [PMID: 1704018]
[21]
Cuzzoni E, De Iudicibus S, Franca R, et al. Glucocorticoid pharmacogenetics in pediatric idiopathic nephrotic syndrome. Pharmacogenomics 2015; 16(14): 1631-48.
[http://dx.doi.org/10.2217/pgs.15.101] [PMID: 26419298]
[22]
Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 2010; 75(1): 1-12.
[http://dx.doi.org/10.1016/j.steroids.2009.09.002] [PMID: 19818358]
[23]
Zalewski G, Wasilewska A, Zoch-Zwierz W, Chyczewski L. Response to prednisone in relation to NR3C1 intron B polymorphisms in childhood nephrotic syndrome. Pediatr Nephrol 2008; 23(7): 1073-8.
[http://dx.doi.org/10.1007/s00467-008-0772-7] [PMID: 18343955]
[24]
Cho HY, Choi HJ, Lee SH, et al. Polymorphisms of the NR3C1 gene in Korean children with nephrotic syndrome. Korean J Pediatr 2009; 52: 46-53.
[http://dx.doi.org/10.3345/kjp.2009.52.11.1260]
[25]
Teeninga N, Kist-van Holthe JE, van den Akker EL, et al. Genetic and in vivo determinants of glucocorticoid sensitivity in relation to clinical outcome of childhood nephrotic syndrome. Kidney Int 2014; 85(6): 1444-53.
[http://dx.doi.org/10.1038/ki.2013.531] [PMID: 24429396]
[26]
Liu J, Wan Z, Song Q, et al. NR3C1 gene polymorphisms are associated with steroid resistance in patients with primary nephrotic syndrome. Pharmacogenomics 2018; 19(1): 45-60.
[http://dx.doi.org/10.2217/pgs-2017-0084] [PMID: 29207898]
[27]
Ouyang J, Jiang T, Tan M, Cui Y, Li X. Abnormal expression and distribution of heat shock protein 90: potential etiologic immunoendocrine mechanism of glucocorticoid resistance in idiopathic nephrotic syndrome. Clin Vaccine Immunol 2006; 13(4): 496-500.
[http://dx.doi.org/10.1128/CVI.13.4.496-500.2006] [PMID: 16603618]
[28]
Zou YF, Xu JH, Gu YY, et al. Single nucleotide polymorphisms of HSP90AA1 gene influence response of SLE patients to glucocorticoids treatment. Springerplus 2016; 5: 222.
[http://dx.doi.org/10.1186/s40064-016-1911-4] [PMID: 27026916]
[29]
Hawkins GA, Lazarus R, Smith RS, et al. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J Allergy Clin Immunol 2009; 123: 1376-83.
[30]
Maltese P, Palma L, Sfara C, et al. Glucocorticoid resistance in Crohn’s disease and ulcerative colitis: an association study investigating GR and FKBP5 gene polymorphisms. Pharmacogenomics J 2012; 12(5): 432-8.
[http://dx.doi.org/10.1038/tpj.2011.26] [PMID: 21788965]
[31]
Du N, Yang F, Li L, et al. Association of single-nucleotide polymorphism in the FKBP5 gene with response to steroids in pediatric patients with primary nephrotic syndrome. Clin Nephrol 2017; 88(12): 338-43.
[http://dx.doi.org/10.5414/CN109126] [PMID: 28992850]
[32]
Choi HJ, Cho HY, Ro H, et al. Polymorphisms of the MDR1 and MIF genes in children with nephrotic syndrome. Pediatr Nephrol 2011; 26(11): 1981-8.
[http://dx.doi.org/10.1007/s00467-011-1903-0] [PMID: 21553324]
[33]
Jafar T, Prasad N, Agarwal V, et al. MDR-1 gene polymorphisms in steroid-responsive versus steroid-resistant nephrotic syndrome in children. Nephrol Dial Transplant 2011; 26(12): 3968-74.
[http://dx.doi.org/10.1093/ndt/gfr150] [PMID: 21460357]
[34]
Chiou YH, Wang LY, Wang TH, Huang SP. Genetic polymorphisms influence the steroid treatment of children with idiopathic nephrotic syndrome. Pediatr Nephrol 2012; 27(9): 1511-7.
[http://dx.doi.org/10.1007/s00467-012-2182-0] [PMID: 22610055]
[35]
Safan MA, Elhelbawy NG, Midan DA, Khader HF. ABCB1 polymorphisms and steroid treatment in children with idiopathic nephrotic syndrome. Br J Biomed Sci 2017; 74(1): 36-41.
[http://dx.doi.org/10.1080/09674845.2016.1220707] [PMID: 27719329]
[36]
Cizmarikova M, Podracka L, Klimcakova L, et al. MDR1 polymorphisms and idiopathic nephrotic syndrome in Slovak children: preliminary results. Med Sci Monit 2015; 21: 59-68.
[http://dx.doi.org/10.12659/MSM.891366] [PMID: 25559283]
[37]
Youssef DM, Attia TA, El-Shal AS, Abduelometty FA. Multi-drug resistance-1 gene polymorphisms in nephrotic syndrome: impact on susceptibility and response to steroids. Gene 2013; 530(2): 201-7.
[http://dx.doi.org/10.1016/j.gene.2013.08.045] [PMID: 23994685]
[38]
Pemberton LF, Paschal BM. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 2005; 6(3): 187-98.
[http://dx.doi.org/10.1111/j.1600-0854.2005.00270.x] [PMID: 15702987]
[39]
Tao T, Lan J, Lukacs GL, Haché RJ, Kaplan F. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol 2006; 35(6): 668-80.
[http://dx.doi.org/10.1165/rcmb.2006-0073OC] [PMID: 16809634]
[40]
Raby BA, Van Steen K, Lasky-Su J, Tantisira K, Kaplan F, Weiss ST. Importin-13 genetic variation is associated with improved airway responsiveness in childhood asthma. Respir Res 2009; 10: 67.
[http://dx.doi.org/10.1186/1465-9921-10-67] [PMID: 19619331]
[41]
Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med 2011; 365(13): 1173-83.
[http://dx.doi.org/10.1056/NEJMoa0911353] [PMID: 21991891]
[42]
Cheong HI, Kang HG, Schlondorff J. GLCCI1 single nucleotide polymorphisms in pediatric nephrotic syndrome. Pediatr Nephrol 2012; 27(9): 1595-9.
[http://dx.doi.org/10.1007/s00467-012-2197-6] [PMID: 22660954]
[43]
Büscher AK, Weber S. Educational paper: the podocytopathies. Eur J Pediatr 2012; 171(8): 1151-60.
[http://dx.doi.org/10.1007/s00431-011-1668-2] [PMID: 22237399]
[44]
Lovric S, Ashraf S, Tan W, Hildebrandt F. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2016; 31(11): 1802-13.
[http://dx.doi.org/10.1093/ndt/gfv355] [PMID: 26507970]
[45]
Trautmann A, Lipska-Ziętkiewicz BS, Schaefer F. Exploring the Clinical and Genetic Spectrum of Steroid Resistant Nephrotic Syndrome: The PodoNet Registry. Front Pediatr 2018; 6: 200.
[http://dx.doi.org/10.3389/fped.2018.00200] [PMID: 30065916]
[46]
Zhao F, Zhu JY, Richman A, et al. Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. J Am Soc Nephrol 2019; 30(5): 840-53.
[http://dx.doi.org/10.1681/ASN.2018080786] [PMID: 30910934]
[47]
Hermle T, Schneider R, Schapiro D, et al. GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. J Am Soc Nephrol 2018; 29(8): 2123-38.
[http://dx.doi.org/10.1681/ASN.2017121312] [PMID: 29959197]
[48]
Li J, Wang L, Wan L, et al. Mutational spectrum and novel candidate genes in Chinese children with sporadic steroid-resistant nephrotic syndrome. Pediatr Res 2019; 85(6): 816-21.
[http://dx.doi.org/10.1038/s41390-019-0321-z] [PMID: 30712057]
[49]
Solanki AK, Widmeier E, Arif E, et al. Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int 2019; 96(4): 883-9.
[http://dx.doi.org/10.1016/j.kint.2019.06.016] [PMID: 31472902]
[50]
Thongboonkerd V. Biomarker discovery in glomerular diseases using urinary proteomics. Proteomics Clin Appl 2008; 2(10-11): 1413-21.
[http://dx.doi.org/10.1002/prca.200800036] [PMID: 21136790]
[51]
Suresh CP, Saha A, Kaur M, et al. Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin Exp Nephrol 2016; 20(2): 273-83.
[http://dx.doi.org/10.1007/s10157-015-1162-7] [PMID: 26351173]
[52]
Nickavar A, Safaeian B, Sadeghi-Bojd S. Lahouti Harah dashti A. Urine Neutrophil Gelatinase Associated Lipocalin to Creatinine Ratio: A Novel Index for Steroid Response in Idiopathic Nephrotic Syndrome. Indian J Pediatr 2016; 83(1): 18-21.
[http://dx.doi.org/10.1007/s12098-015-1809-0] [PMID: 26096867]
[53]
Gopal N, Koner BC, Bhattacharjee A, Bhat V. Assay of urinary protein-bound sialic acid can differentiate steroidsensitive nephrotic syndrome from steroid-resistant cases. Saudi J Kidney Dis Transpl 2016; 27(1): 37-40.
[http://dx.doi.org/10.4103/1319-2442.174066] [PMID: 26787564]
[54]
Bennett MR, Pordal A, Haffner C, Pleasant L, Ma Q, Devarajan P. Urinary Vitamin D-Binding Protein as a Biomarker of Steroid-Resistant Nephrotic Syndrome. Biomark Insights 2016; 11: 1-6.
[http://dx.doi.org/10.4137/BMI.S31633] [PMID: 26792978]
[55]
Bennett MR, Pleasant L, Haffner C, et al. A Novel Biomarker Panel to Identify Steroid Resistance in Childhood Idiopathic Nephrotic Syndrome. Biomark Insights 2017; 121177271917695832
[http://dx.doi.org/10.1177/1177271917695832] [PMID: 28469399]
[56]
Gopal N, Koner BC, Bhattacharjee A, Bhat V, Murugaiyan SB, Muddegowda PH. Assay of urinary protein carbonyl content can predict the steroid dependence and resistance in children with idiopathic nephrotic syndrome. Saudi J Kidney Dis Transpl 2017; 28(2): 268-72.
[http://dx.doi.org/10.4103/1319-2442.202764] [PMID: 28352006]
[57]
Badr HS, El-Hawy MA, Helwa MA. P-Glycoprotein Activity in Steroid-Responsive vs. Steroid-Resistant Nephrotic Syndrome. Indian J Pediatr 2016; 83(11): 1222-6.
[http://dx.doi.org/10.1007/s12098-016-2142-y] [PMID: 27193461]
[58]
Watany MM, El-Horany HE. Nephronectin (NPNT) and the prediction of nephrotic syndrome response to steroid treatment. Eur J Hum Genet 2018; 26(9): 1354-60.
[http://dx.doi.org/10.1038/s41431-018-0182-7] [PMID: 29891875]
[59]
Ezzat GM, Ali AB, Mohamed NA, Hetta HF. Association of endothelin receptor type A rs5333 gene polymorphism with steroid response in Egyptian children with idiopathic nephrotic syndrome. Pharmacogenomics 2019; 20(3): 133-41.
[http://dx.doi.org/10.2217/pgs-2018-0175] [PMID: 30672385]
[60]
Cuzzoni E, Franca R, De Iudicibus S, et al. MIF plasma level as a possible tool to predict steroid responsiveness in children with idiopathic nephrotic syndrome. Eur J Clin Pharmacol 2019; 75(12): 1675-83.
[http://dx.doi.org/10.1007/s00228-019-02749-3] [PMID: 31463578]
[61]
Gooding JR, Agrawal S, McRitchie S, et al. Midwest Pediatric Nephrology Consortium Predicting and Defining Steroid Resistance in Pediatric Nephrotic Syndrome Using Plasma Metabolomics. Kidney Int Rep 2019; 5(1): 81-93.
[http://dx.doi.org/10.1016/j.ekir.2019.09.010] [PMID: 31922063]
[62]
Wang W, Xia Y, Mao J, et al. Treatment of tacrolimus or cyclosporine A in children with idiopathic nephrotic syndrome. Pediatr Nephrol 2012; 27(11): 2073-9.
[http://dx.doi.org/10.1007/s00467-012-2228-3] [PMID: 22714672]
[63]
Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 1992; 357(6380): 695-7.
[http://dx.doi.org/10.1038/357695a0] [PMID: 1377362]
[64]
Klaassen I, Özgören B, Sadowski CE, et al. Response to cyclosporine in steroid-resistant nephrotic syndrome: discontinuation is possible. Pediatr Nephrol 2015; 30(9): 1477-83.
[http://dx.doi.org/10.1007/s00467-015-3109-3] [PMID: 25903641]
[65]
Gulati A, Sinha A, Gupta A, et al. Treatment with tacrolimus and prednisolone is preferable to intravenous cyclophosphamide as the initial therapy for children with steroid-resistant nephrotic syndrome. Kidney Int 2012; 82(10): 1130-5.
[http://dx.doi.org/10.1038/ki.2012.238] [PMID: 22763815]
[66]
de Mello VR, Rodrigues MT, Mastrocinque TH, et al. Mycophenolate mofetil in children with steroid/cyclophosphamide-resistant nephrotic syndrome. Pediatr Nephrol 2010; 25(3): 453-60.
[http://dx.doi.org/10.1007/s00467-009-1356-x] [PMID: 19937060]
[67]
Liu ID, Willis NS, Craig JC, Hodson EM. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst Rev 2019; 2019(11)
[http://dx.doi.org/10.1002/14651858.CD003594.pub6]
[68]
Liu F, Mao JH. Calcineurin inhibitors and nephrotoxicity in children. World J Pediatr 2018; 14(2): 121-6.
[http://dx.doi.org/10.1007/s12519-018-0125-y] [PMID: 29532435]
[69]
Sinha A, Sharma A, Mehta A, et al. Calcineurin inhibitor induced nephrotoxicity in steroid resistant nephrotic syndrome. Indian J Nephrol 2013; 23(1): 41-6.
[http://dx.doi.org/10.4103/0971-4065.107197] [PMID: 23580804]
[70]
Delbet JD, Aoun B, Buob D, Degheili J, Brocheriou I, Ulinski T. Infrequent tacrolimus-induced nephrotoxicity in French patients with steroid-dependent nephrotic syndrome. Pediatr Nephrol 2019; 34(12): 2605-8.
[http://dx.doi.org/10.1007/s00467-019-04343-2] [PMID: 31515630]
[71]
Sun JY, Hu YH, Guo HL, et al. Diltiazem used as a tacrolimus-sparing agent for treatment of pediatric patients with refractory nephrotic syndrome: a case report and retrospective analysis. Eur J Clin Pharmacol 2019; 75(4): 591-3.
[http://dx.doi.org/10.1007/s00228-018-2604-4] [PMID: 30483827]
[72]
Mekahli D, Liutkus A, Ranchin B, et al. Long-term outcome of idiopathic steroid-resistant nephrotic syndrome: a multicenter study. Pediatr Nephrol 2009; 24(8): 1525-32.
[http://dx.doi.org/10.1007/s00467-009-1138-5] [PMID: 19280229]
[73]
Choudhry S, Bagga A, Hari P, Sharma S, Kalaivani M, Dinda A. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis 2009; 53(5): 760-9.
[http://dx.doi.org/10.1053/j.ajkd.2008.11.033] [PMID: 19268410]
[74]
Guo HL, Xu J, Sun JY, et al. Tacrolimus treatment in childhood refractory nephrotic syndrome: A retrospective study on efficacy, therapeutic drug monitoring, and contributing factors to variable blood tacrolimus levels. Int Immunopharmacol 2020; 81106290
[http://dx.doi.org/10.1016/j.intimp.2020.106290] [PMID: 32058933]
[75]
Querfeld U, Weber LT. Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr Nephrol 2018; 33(12): 2253-65.
[http://dx.doi.org/10.1007/s00467-018-3970-y] [PMID: 29750317]
[76]
Sinha A, Gupta A, Kalaivani M, Hari P, Dinda AK, Bagga A. Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Kidney Int 2017; 92(1): 248-57.
[http://dx.doi.org/10.1016/j.kint.2017.01.019] [PMID: 28318625]
[77]
Tang S, Ho YW, Leung CY, Lai KN. Mycophenolate mofetil in the treatment of steroid-resistant primary focal segmental glomerulosclerosis. J Nephrol 2005; 18(4): 429-32.
[PMID: 16245248]
[78]
Gipson DS, Trachtman H, Kaskel FJ, et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int 2011; 80(8): 868-78.
[http://dx.doi.org/10.1038/ki.2011.195] [PMID: 21734640]
[79]
Kamei K, Ishikura K, Sako M, Ito S, Nozu K, Iijima K. Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr Nephrol 2020; 35(1): 17-24.
[http://dx.doi.org/10.1007/s00467-018-4166-1] [PMID: 30564879]
[80]
Zachwieja J, Silska-Dittmar M, Żurowska A, et al. Multicenter analysis of the efficacy and safety of a non-standard immunosuppressive therapy with rituximab in children with steroid-resistant nephrotic syndrome. Clin Exp Pharmacol Physiol 2019; 46(4): 313-21.
[PMID: 30346047]
[81]
Jellouli M, Charfi R, Maalej B, Mahfoud A, Trabelsi S, Gargah T. Rituximab in The Management of Pediatric Steroid-Resistant Nephrotic Syndrome: A Systematic Review. J Pediatr 2018; 197: 191-7.
[82]
Fujinaga S, Nishino T, Umeda C, Tomii Y, Watanabe Y, Sakuraya K. Long-term outcomes after early treatment with rituximab for Japanese children with cyclosporine- and steroid-resistant nephrotic syndrome. Pediatr Nephrol 2019; 34(2): 353-7.
[http://dx.doi.org/10.1007/s00467-018-4145-6] [PMID: 30426219]
[83]
Magnasco A, Ravani P, Edefonti A, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol 2012; 23(6): 1117-24.
[http://dx.doi.org/10.1681/ASN.2011080775] [PMID: 22581994]
[84]
Fornoni A, Sageshima J, Wei C, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; 3(85)85ra46
[http://dx.doi.org/10.1126/scitranslmed.3002231] [PMID: 21632984]
[85]
Vivarelli M, Colucci M, Bonanni A, et al. Ofatumumab in two pediatric nephrotic syndrome patients allergic to rituximab. Pediatr Nephrol 2017; 32(1): 181-4.
[http://dx.doi.org/10.1007/s00467-016-3498-y] [PMID: 27687621]
[86]
Basu B. Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med 2014; 370(13): 1268-70.
[http://dx.doi.org/10.1056/NEJMc1308488] [PMID: 24670185]
[87]
Gil-Candel M, Gascón-Cánovas JJ, Urbieta-Sanz E, Rentero-Redondo L, Onteniente-Candela M, Iniesta-Navalón C. Comparison of drug survival between infliximab and adalimumab in inflammatory bowel disease. Int J Clin Pharm 2020; 42(2): 500-7.
[http://dx.doi.org/10.1007/s11096-020-00978-6] [PMID: 32006141]
[88]
Peyser A, Machardy N, Tarapore F, et al. Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS: III. Report of the FONT study group. BMC Nephrol 2010; 11: 2.
[http://dx.doi.org/10.1186/1471-2369-11-2] [PMID: 20113498]
[89]
Kopač M, Meglič A, Rus RR. Partial remission of resistant nephrotic syndrome after oral galactose therapy. Ther Apher Dial 2011; 15(3): 269-72.
[http://dx.doi.org/10.1111/j.1744-9987.2011.00949.x] [PMID: 21624074]
[90]
De Smet E, Rioux JP, Ammann H, Déziel C, Quérin S. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant 2009; 24(9): 2938-40.
[http://dx.doi.org/10.1093/ndt/gfp278] [PMID: 19509024]
[91]
Trachtman H, Vento S, Herreshoff E, et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol 2015; 16: 111.
[http://dx.doi.org/10.1186/s12882-015-0094-5] [PMID: 26198842]
[92]
Sgambat K, Banks M, Moudgil A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol 2013; 28(11): 2131-5.
[http://dx.doi.org/10.1007/s00467-013-2539-z] [PMID: 23793883]
[93]
Hladunewich MA, Cattran D, Beck LH, et al. A pilot study to determine the dose and effectiveness of adrenocorticotrophic hormone (H.P. Acthar® Gel) in nephrotic syndrome due to idiopathic membranous nephropathy. Nephrol Dial Transplant 2014; 29(8): 1570-7.
[http://dx.doi.org/10.1093/ndt/gfu069] [PMID: 24714414]
[94]
Berg AL, Arnadottir M. ACTH-induced improvement in the nephrotic syndrome in patients with a variety of diagnoses. Nephrol Dial Transplant 2004; 19(5): 1305-7.
[http://dx.doi.org/10.1093/ndt/gfh110] [PMID: 15102969]
[95]
Lieberman KV, Pavlova-Wolf A. Adrenocorticotropic hormone therapy for the treatment of idiopathic nephrotic syndrome in children and young adults: a systematic review of early clinical studies with contemporary relevance. J Nephrol 2017; 30(1): 35-44.
[http://dx.doi.org/10.1007/s40620-016-0308-3] [PMID: 27084801]
[96]
Hogan J, Bomback AS, Mehta K, et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol 2013; 8(12): 2072-81.
[http://dx.doi.org/10.2215/CJN.02840313] [PMID: 24009220]
[97]
Yi Z, Li Z, Wu XC, He QN, Dang XQ, He XJ. Effect of fosinopril in children with steroid-resistant idiopathic nephrotic syndrome. Pediatr Nephrol 2006; 21(7): 967-72.
[http://dx.doi.org/10.1007/s00467-006-0096-4] [PMID: 16773409]
[98]
Bagga A, Mudigoudar BD, Hari P, Vasudev V. Enalapril dosage in steroid-resistant nephrotic syndrome. Pediatr Nephrol 2004; 19(1): 45-50.
[http://dx.doi.org/10.1007/s00467-003-1314-y] [PMID: 14648339]
[99]
Ashraf S, Gee HY, Woerner S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 2013; 123(12): 5179-89.
[http://dx.doi.org/10.1172/JCI69000] [PMID: 24270420]
[100]
Heeringa SF, Chernin G, Chaki M, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 2011; 121(5): 2013-24.
[http://dx.doi.org/10.1172/JCI45693] [PMID: 21540551]
[101]
Amsellem S, Gburek J, Hamard G, et al. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 2010; 21(11): 1859-67.
[http://dx.doi.org/10.1681/ASN.2010050492] [PMID: 20798259]
[102]
Gee HY, Saisawat P, Ashraf S, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013; 123(8): 3243-53.
[http://dx.doi.org/10.1172/JCI69134] [PMID: 23867502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy