Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Butyrate: A Review on Beneficial Pharmacological and Therapeutic Effect

Author(s): Dhirendra Singh and Sumeet Gupta*

Volume 17, Issue 5, 2021

Published on: 29 October, 2020

Page: [470 - 482] Pages: 13

DOI: 10.2174/1573401316999201029210912

Price: $65

Abstract

Background: Short-chain fatty acids (SCFAs), generally acetate, propionate along with butyrate, are aliphatic organic acids formed in the gut mucosa through bacterial fermentation of mostly undigested nutritional carbohydrates, again to a minor degree by natural and dietary proteins, such as mucous and shed epithelial cells.

Methods : Many sources were used to collect information about Butyrate, such as Pub med, Google Scholar, Pubmed, Scopus and other reliable sources.

Endogenous butyrate formation, absorption, and transportation by colon cells have now been well acknowledged. Butyrate exerts its action features by way of appearing as a histone deacetylase inhibitor, even signaling through a few protein receptors. Lately, butyrate has received special consideration for its favorable result on intestinal equilibrium and also energy metabolism. There is a growing interest in butyrate as its impact on epigenetic mechanisms will result in much more certain and also efficacious healing techniques for the prevention and therapy of various diseases that range from genetic conditions to other body disorders.

Conclusion: With this assessment, we compile the existing information on the attributes of butyrate, particularly its potential effects and also mechanisms involved in cancer, inflammation, diabetes mellitus, neurological and cardiovascular disorder.

Keywords: Anti-osteoporotic, diabetes, hepatoprotective, histone deacetylase inhibitor, inflammation, cardiovascular disorder.

Graphical Abstract

[1]
Canani RB, Costanzo MD, Leone L, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 2011; 24(2): 198-205.
[http://dx.doi.org/10.1017/S0954422411000102] [PMID: 22008232]
[2]
Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009; 139(9): 1619-25.
[http://dx.doi.org/10.3945/jn.109.104638] [PMID: 19625695]
[3]
Elamin EE, Masclee AA, Dekker J, Pieters HJ, Jonkers DM. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr 2013; 143(12): 1872-81.
[http://dx.doi.org/10.3945/jn.113.179549] [PMID: 24132573]
[4]
Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014; 2014: 162021.
[http://dx.doi.org/10.1155/2014/162021] [PMID: 25214711]
[5]
Khan S, Maremanda KP, Jena G. Butyrate, a short-chain fatty acid and histone deacetylases inhibitor: nutritional, physiological, and pharmacological aspects in diabetes. In: Preedy VR, Patel VB, Eds. Handbook of Nutrition, Diet, and Epigenetics. Switzerland: Springer International Publishing AG 2017; pp. 1-15.
[6]
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2012; 1(4): 192-8.
[http://dx.doi.org/10.1089/biores.2012.0223] [PMID: 23514803]
[7]
Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13(5): 517-26.
[http://dx.doi.org/10.1016/j.cmet.2011.02.018]
[8]
Saldanha SN, Kala R, Tollefsbol TO. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res 2014; 324(1): 40-53.
[http://dx.doi.org/10.1016/j.yexcr.2014.01.024] [PMID: 24518414]
[9]
McKay JA, Mathers JC. Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf) 2011; 202(2): 103-18.
[http://dx.doi.org/10.1111/j.1748-1716.2011.02278.x] [PMID: 21401888]
[10]
Keenan MJ, Zhou J, McCutcheon KL, et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 2006; 14(9): 1523-34.
[http://dx.doi.org/10.1038/oby.2006.176] [PMID: 17030963]
[11]
Zhou J, Martin RJ, Tulley RT, et al. Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss. J Agric Food Chem 2009; 57(19): 8844-51.
[http://dx.doi.org/10.1021/jf901548e] [PMID: 19739641]
[12]
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312-9.
[http://dx.doi.org/10.1074/jbc.M211609200] [PMID: 12496283]
[13]
Wang J, Han M, Zhang G, Qiao S, Li D, Ma X. The signal pathway of antibiotic alternatives on intestinal microbiota and immune function. Curr Protein Pept Sci 2016; 17(8): 785-96.
[http://dx.doi.org/10.2174/1389203717666160526123351] [PMID: 27226197]
[14]
Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28(1): 237-64.
[http://dx.doi.org/10.1128/CMR.00014-14] [PMID: 25567229]
[15]
Wilson M. The human microbiota: an historical perspective. In: The human microbiota and chronic disease: dysbiosis as a cause of human pathology. Hoboken, NJ: Academic Press 2016; pp. 3-36.
[http://dx.doi.org/10.1002/9781118982907.ch1]
[16]
Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017; 19(1): 29-41.
[http://dx.doi.org/10.1111/1462-2920.13589] [PMID: 27928878]
[17]
Trachsel J, Bayles DO, Looft T, Levine UY, Allen HK. Function and phylogeny of bacterial butyryl coenzyme A: acetate transferases and their diversity in the proximal colon of swine. Appl Environ Microbiol 2016; 82(22): 6788-98.
[http://dx.doi.org/10.1128/AEM.02307-16] [PMID: 27613689]
[18]
Moens F, Weckx S, De Vuyst L. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. Int J Food Microbiol 2016; 231: 76-85.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.05.015] [PMID: 27233082]
[19]
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 2016; 7: 979.
[http://dx.doi.org/10.3389/fmicb.2016.00979] [PMID: 27446020]
[20]
Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 2015; 39(9): 1331-8.
[http://dx.doi.org/10.1038/ijo.2015.84] [PMID: 25971927]
[21]
Kumar A, Alrefai WA, Borthakur A, Dudeja PK. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2015; 309(7): G602-7.
[http://dx.doi.org/10.1152/ajpgi.00186.2015] [PMID: 26272259]
[22]
Counillon L, Bouret Y, Marchiq I, Pouysségur J. Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism. Biochim Biophys Acta 2016; 1863: 2465-80.
[http://dx.doi.org/10.1016/j.bbamcr.2016.02.018] [PMID: 26944480]
[23]
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121: 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[24]
Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010; 23(2): 366-84.
[http://dx.doi.org/10.1017/S0954422410000247] [PMID: 20937167]
[25]
Wang H, Yang C, Doherty JR, Roush WR, Cleveland JL, Bannister TD. Synthesis and structure-activity relationships of pteridine dione and trione monocarboxylate transporter 1 inhibitors. J Med Chem 2014; 57(17): 7317-24.
[http://dx.doi.org/10.1021/jm500640x] [PMID: 25068893]
[26]
Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 2013; 13(6): 869-74.
[http://dx.doi.org/10.1016/j.coph.2013.08.006] [PMID: 23978504]
[27]
Cresci GA, Thangaraju M, Mellinger JD, Liu K, Ganapathy V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J Gastrointest Surg 2010; 14(3): 449-61.
[http://dx.doi.org/10.1007/s11605-009-1045-x] [PMID: 20033346]
[28]
Schug ZT, Vande Voorde J, Gottlieb E. The metabolic fate of acetate in cancer. Nat Rev Cancer 2016; 16(11): 708-17.
[http://dx.doi.org/10.1038/nrc.2016.87] [PMID: 27562461]
[29]
Singh V, Yang J, Chen TE, et al. Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol 2014; 12(1): 27-31.
[http://dx.doi.org/10.1016/j.cgh.2013.10.020] [PMID: 24184676]
[30]
Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015; 6: 6734.
[http://dx.doi.org/10.1038/ncomms7734] [PMID: 25828455]
[31]
Kim CH, Park J, Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 2014; 14(6): 277-88.
[http://dx.doi.org/10.4110/in.2014.14.6.277] [PMID: 25550694]
[32]
Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 2010; 23(1): 135-45.
[http://dx.doi.org/10.1017/S0954422410000089] [PMID: 20482937]
[33]
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481-9.
[http://dx.doi.org/10.1074/jbc.M301403200] [PMID: 12711604]
[34]
Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 2015; 7(4): 2839-49.
[http://dx.doi.org/10.3390/nu7042839] [PMID: 25875123]
[35]
Wang W, Yang Q, Sun Z, Chen X, Yang C, Ma X. Advance of interactions between exogenous natural bioactive peptides and intestinal barrier and immune responses. Curr Protein Pept Sci 2015; 16(7): 574-5.
[http://dx.doi.org/10.2174/138920371607150810124927] [PMID: 26283417]
[36]
Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein- coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 2011; 108(19): 8030-5.
[http://dx.doi.org/10.1073/pnas.1016088108] [PMID: 21518883]
[37]
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40(1): 128-39.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[38]
Fu SP, Wang JF, Xue WJ, et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation 2015; 12: 9.
[http://dx.doi.org/10.1186/s12974-014-0230-3] [PMID: 25595674]
[39]
Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013; 145(2): 396-406.e1, 10.
[http://dx.doi.org/10.1053/j.gastro.2013.04.056] [PMID: 23665276]
[40]
D’Souza WN, Douangpanya J, Mu S, et al. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One 2017; 12(7): e0180190.
[http://dx.doi.org/10.1371/journal.pone.0180190] [PMID: 28727837]
[41]
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325(5942): 834-40.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[42]
Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012; 9(10): 577-89.
[http://dx.doi.org/10.1038/nrgastro.2012.156] [PMID: 22945443]
[43]
Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003; 133(7)(Suppl.): 2485S-93S.
[http://dx.doi.org/10.1093/jn/133.7.2485S] [PMID: 12840228]
[44]
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48(4): 612-26.
[http://dx.doi.org/10.1016/j.molcel.2012.08.033] [PMID: 23063526]
[45]
Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015; 8(1): 80-93.
[http://dx.doi.org/10.1038/mi.2014.44] [PMID: 24917457]
[46]
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: A Cancer Journal for Clinicians 2013; 63: 11-30.
[47]
Cigudosa JC, Parsa NZ, Louie DC, et al. Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas. Genes Chromosomes Cancer 1999; 25(2): 123-33.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199906)25:2<123::AID-GCC8>3.0.CO;2-4] [PMID: 10337996]
[48]
Seto M, Honma K, Nakagawa M. Diversity of genome profiles in malignant lymphoma. Cancer Sci 2010; 101(3): 573-8.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01452.x] [PMID: 20070305]
[49]
Shi LZ, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208(7): 1367-76.
[http://dx.doi.org/10.1084/jem.20110278] [PMID: 21708926]
[50]
Bai Y, Ahmad D, Wang T, Cui G, Li W. Research advances in the use of histone deacetylase inhibitors for epigenetic targeting of cancer. Curr Top Med Chem 2019; 19(12): 995-1004.
[http://dx.doi.org/10.2174/1568026619666190125145110] [PMID: 30686256]
[51]
Zhao L-M, Zhang J-H. Histone deacetylase inhibitors in tumor immunotherapy. Curr Med Chem 2019; 26(17): 2990-3008.
[http://dx.doi.org/10.2174/0929867324666170801102124] [PMID: 28762309]
[52]
Shi Y, Duru O, Zou Z, Kerr D. Cancer immune evasion in gastrointestinal cancer: can this be overcome by combination of histone deacetylase and immune checkpoint inhibitors. In: Frontiers in Clinical Drug Research-Anti-Cancer Agents. UAE: Bentham Science Publishers 2019; 5: pp. 50-84.
[53]
Scheppach W, Weiler F. The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 2004; 7(5): 563-7.
[http://dx.doi.org/10.1097/00075197-200409000-00009] [PMID: 15295277]
[54]
Wang HG, Huang XD, Shen P, Li LR, Xue HT, Ji GZ. Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med 2013; 31(4): 967-74.
[http://dx.doi.org/10.3892/ijmm.2013.1285] [PMID: 23440283]
[55]
Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-κ B activation and cellular proteasome activity. J Biol Chem 2001; 276(48): 44641-6.
[http://dx.doi.org/10.1074/jbc.M105170200] [PMID: 11572859]
[56]
Wang D, Wang Z, Tian B, Li X, Li S, Tian Y. Two hour exposure to sodium butyrate sensitizes bladder cancer to anticancer drugs. Int J Urol 2008; 15(5): 435-41.
[http://dx.doi.org/10.1111/j.1442-2042.2008.02025.x] [PMID: 18452462]
[57]
Gao SM, Chen CQ, Wang LY, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol 2013; 41(3): 261-70.e4.
[http://dx.doi.org/10.1016/j.exphem.2012.10.012] [PMID: 23111066]
[58]
McKinsey TA. The biology and therapeutic implications of HDACs in the heart. Handb Exp Pharmacol 2011; 206: 57-78.
[http://dx.doi.org/10.1007/978-3-642-21631-2_4] [PMID: 21879446]
[59]
Ferguson BS, Harrison BC, Jeong MY, et al. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2013; 110(24): 9806-11.
[http://dx.doi.org/10.1073/pnas.1301509110] [PMID: 23720316]
[60]
Bush EW, McKinsey TA. Targeting histone deacetylases for heart failure. Expert Opin Ther Targets 2009; 13(7): 767-84.
[http://dx.doi.org/10.1517/14728220902939161] [PMID: 19466913]
[61]
Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp 2006; 274: 3-12.
[http://dx.doi.org/10.1002/0470029331.ch2] [PMID: 17019803]
[62]
Patel SN, Fatima N, Ali R, Hussain T. Emerging role of angiotensin AT2 receptor in anti-inflammation: an update. Curr Pharm Des 2020; 26(4): 492-500.
[http://dx.doi.org/10.2174/1381612826666200115092015] [PMID: 31939729]
[63]
Zhang L, Deng M, Lu A, et al. Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism. J Cell Mol Med 2019; 23(12): 8139-50.
[http://dx.doi.org/10.1111/jcmm.14684] [PMID: 31565858]
[64]
Lim SH, Song K-S, Lee J. Butyrate and propionate, short chain fatty acids, attenuate myocardial damages by inhibition of apoptosis in a rat model of ischemia-reperfusion. J Korean Soc Appl Biol Chem 2010; 53(5): 570-7.
[http://dx.doi.org/10.3839/jksabc.2010.088]
[65]
Patel BM. Sodium butyrate controls cardiac hypertrophy in experimental models of rats. Cardiovasc Toxicol 2018; 18(1): 1-8.
[http://dx.doi.org/10.1007/s12012-017-9406-2] [PMID: 28389765]
[66]
Hu Xiaorong, Zhang Kai, Xu Changwu. Anti inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Experi   therapeutic medi 2014; 8: 229-32.
[67]
Subramanian U, Kumar P, Mani I, et al. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics 2016; 48(7): 477-90.
[http://dx.doi.org/10.1152/physiolgenomics.00073.2015] [PMID: 27199456]
[68]
Wang F, Jin Z, Shen K, et al. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation. Am J Emerg Med 2017; 35(3): 402-9.
[http://dx.doi.org/10.1016/j.ajem.2016.11.022] [PMID: 27884587]
[69]
Nascimento Menezes PM, Valença Pereira EC, Gomes da Cruz Silva ME, et al. Cannabis and cannabinoids on treatment of inflammation: a patent review. Recent Pat Biotechnol 2019; 13(4): 256-67.
[http://dx.doi.org/10.2174/1872208313666190618124345] [PMID: 31237222]
[70]
Zhu J, Zhang J, Wang Y, et al. Su, Zhongjian Zhang. The effect of interleukin 38 on inflammation-induced corneal neo vascularization. Curr Mol Med 2019; 19(8)
[http://dx.doi.org/10.2174/1566524019666190627122655] [PMID: 31244436]
[71]
Sun X, Chen L, He Z. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease. Curr Drug Metab 2019; 20(4): 301-4.
[http://dx.doi.org/10.2174/1389200220666190227224748] [PMID: 30827233]
[72]
Liu C, Li J, Shi W, et al. Progranulin regulates inflammation and tumor. Antiinflamm Antiallergy Agents Med Chem 2020; 19(2): 88-102.
[http://dx.doi.org/10.2174/1871523018666190724124214] [PMID: 31339079]
[73]
Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol 2014; 14(10): 667-85.
[http://dx.doi.org/10.1038/nri3738] [PMID: 25234148]
[74]
Aguilar EC, Leonel AJ, Teixeira LG, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 2014; 24(6): 606-13.
[http://dx.doi.org/10.1016/j.numecd.2014.01.002] [PMID: 24602606]
[75]
Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 2011; 22(9): 849-55.
[http://dx.doi.org/10.1016/j.jnutbio.2010.07.009] [PMID: 21167700]
[76]
Venkatraman A, Ramakrishna BS, Shaji RV, Kumar NS, Pulimood A, Patra S. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-kappaB. Am J Physiol Gastrointest Liver Physiol 2003; 285(1): G177-84.
[http://dx.doi.org/10.1152/ajpgi.00307.2002] [PMID: 12637250]
[77]
Russo I, Luciani A, De Cicco P, Troncone E, Ciacci C. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS One 2012; 7(3): e32841.
[http://dx.doi.org/10.1371/journal.pone.0032841] [PMID: 22412931]
[78]
Mattace Raso G, Simeoli R, Russo R, et al. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS One 2013; 8(7): e68626.
[http://dx.doi.org/10.1371/journal.pone.0068626] [PMID: 23861927]
[79]
Dubuquoy L, Rousseaux C, Thuru X, et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 2006; 55(9): 1341-9.
[http://dx.doi.org/10.1136/gut.2006.093484] [PMID: 16905700]
[80]
Schwab M, Reynders V, Loitsch S, Steinhilber D, Stein J, Schröder O. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF-κB signalling. Mol Immunol 2007; 44(15): 3625-32.
[http://dx.doi.org/10.1016/j.molimm.2007.04.010] [PMID: 17521736]
[81]
Liu T, Li J, Liu Y, et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 2012; 35(5): 1676-84.
[http://dx.doi.org/10.1007/s10753-012-9484-z] [PMID: 22669487]
[82]
Zhang Y, Luo G, Yu X. Cellular communication in bone homeostasis and the related anti-osteoporotic drug development. Curr Med Chem 2020; 27(7): 1151-69.
[http://dx.doi.org/10.2174/0929867325666180801145614]
[83]
Zhao Q, Ji K, Wang T, Li G, Lu W, Ji J. Effect of the histone deacetylases inhibitors on the differentiation of stem cells in bone damage repairing and regeneration. Curr Stem Cell Res Ther 2020; 15(1): 24-31.
[http://dx.doi.org/10.2174/1574888X14666190905155516] [PMID: 31486757]
[84]
Perego S, Sansoni V, Banfi G, Lombardi G. Sodium butyrate has anti-proliferative, pro-differentiating, and immunomodulatory effects in osteosarcoma cells and counteracts the TNFα-induced low-grade inflammation. Int J Immunopathol Pharmacol 2018; 32: 394632017752240.
[http://dx.doi.org/10.1177/0394632017752240] [PMID: 29363375]
[85]
Kim DS, Kwon JE, Lee SH, et al. Attenuation of Rheumatoid Inflammation by Sodium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells. Front Immunol 2018; 9: 1525.
[http://dx.doi.org/10.3389/fimmu.2018.01525] [PMID: 30034392]
[86]
Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 2018; 9(1): 55.
[http://dx.doi.org/10.1038/s41467-017-02490-4] [PMID: 29302038]
[87]
Chang MC, Chen YJ, Lian YC, et al. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, rankl expression, and regulated osteoprotegerin expression/secretion in MG-63 osteoblastic cells. Int J Mol Sci 2018; 19(12): E4071.
[http://dx.doi.org/10.3390/ijms19124071] [PMID: 30562925]
[88]
Jorgačević B, Vučević D, Samardžić J, et al. The effect of CB1 antagonism on hepatic oxidative/nitrosative stress and inflammation in nonalcoholic fatty liver disease. Curr Med Chem 2021; 28(1): 169-80.
[http://dx.doi.org/10.2174/0929867327666200303122734] [PMID: 32124686]
[89]
Yang F, Wang LK, Li X, Wang LW, Han XQ, Gong ZJ. Sodium butyrate protects against toxin-induced acute liver failure in rats. Hepatobiliary Pancreat Dis Int 2014; 13(3): 309-15.
[http://dx.doi.org/10.1016/S1499-3872(14)60044-8] [PMID: 24919615]
[90]
Liu B, Qian J, Wang Q, Wang F, Ma Z, Qiao Y. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion. PLoS One 2014; 9(8): e106184.
[http://dx.doi.org/10.1371/journal.pone.0106184] [PMID: 25171217]
[91]
Zhou D, Chen YW, Zhao ZH, et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med 2018; 50(12): 1-12.
[http://dx.doi.org/10.1038/s12276-018-0183-1] [PMID: 30510243]
[92]
Jin CJ, Sellmann C, Engstler AJ, Ziegenhardt D, Bergheim I. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br J Nutr 2015; 114(11): 1745-55.
[http://dx.doi.org/10.1017/S0007114515003621] [PMID: 26450277]
[93]
Pirozzi C, Lama A, Annunziata C, et al. Butyrate prevents valproate-induced liver injury: in vitro and in vivo evidence. FASEB J 2020; 34(1): 676-90.
[http://dx.doi.org/10.1096/fj.201900927RR] [PMID: 31914696]
[94]
Donde H, Ghare S, Joshi-Barve S, et al. Tributyrin inhibits ethanol-induced epigenetic repression of CPT-1A and attenuates hepatic steatosis and injury. Cell Mol Gastroenterol Hepatol 2020; 9(4): 569-85.
[http://dx.doi.org/10.1016/j.jcmgh.2019.10.005] [PMID: 31654770]
[95]
Sousa M, Bruges-Armas J. Monogenic diabetes: genetics and relevance on diabetes mellitus personalized medicine. Curr Diabetes Rev 2020; 16(8): 807-19.
[http://dx.doi.org/10.2174/1573399816666191230114] [PMID: 31886753]
[96]
Moser O, Eckstein ML, West DJ, Goswam IN, Sourij H, Hofmann P. Type 1 diabetes and physical exercise: moving (forward) as an adjuvant therapy. Curr Pharma Des 2020; 26(9): 946-57.
[http://dx.doi.org/10.2174/1381612826666200108113002] [PMID: 31912769]
[97]
Sørgjerd EP. Type 1 Diabetes-related autoantibodies in different forms of diabetes. Curr Diabetes Rev 2019; 15(3): 199-204.
[http://dx.doi.org/10.2174/1573399814666180730105351] [PMID: 30058495]
[98]
Didangelos T, Kantartzis K. Diabetes and heart failure: is it hyperglycemia or hyperinsulinemia? Curr Vasc Pharmacol 2020; 18(2): 148-57.
[http://dx.doi.org/10.2174/1570161117666190408164326] [PMID: 30963973]
[99]
Vlachou E, Ntikoudi A, Govina O, et al. Effects of probiotics on diabetic nephropathy: a systematic review. Curr Clin Pharmacol 2020; 15(3): 234-42.
[http://dx.doi.org/10.2174/1574884715666200303112753] [PMID: 32124701]
[100]
Aramata S, Han SI, Yasuda K, Kataoka K. Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochim Biophys Acta 2005; 1730(1): 41-6.
[http://dx.doi.org/10.1016/j.bbaexp.2005.05.009] [PMID: 15993959]
[101]
Trasler JM. Epigenetics in spermatogenesis. Mol Cell Endocrinol 2009; 306(1-2): 33-6.
[http://dx.doi.org/10.1016/j.mce.2008.12.018] [PMID: 19481683]
[102]
Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457-63.
[http://dx.doi.org/10.1038/nature02625] [PMID: 15164071]
[103]
Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 2003; 983: 84-100.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb05964.x] [PMID: 12724214]
[104]
Khan S, Jena GB. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chem Biol Interact 2014; 213: 1-12.
[http://dx.doi.org/10.1016/j.cbi.2014.02.001] [PMID: 24530320]
[105]
Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol 2014; 73: 127-39.
[http://dx.doi.org/10.1016/j.fct.2014.08.010] [PMID: 25158305]
[106]
Li N, Hatch M, Wasserfall CH, et al. Butyrate and type 1 diabetes mellitus: can we fix the intestinal leak? J Pediatr Gastroenterol Nutr 2010; 51(4): 414-7.
[http://dx.doi.org/10.1097/MPG.0b013e3181dd913a] [PMID: 20706153]
[107]
de Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 2013; 62(4): 1238-44.
[http://dx.doi.org/10.2337/db12-0526] [PMID: 23274889]
[108]
Li HP, Chen X, Li MQ. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity. Int J Clin Exp Pathol 2013; 6(8): 1574-84.
[PMID: 23923076]
[109]
Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 2005; 21(5): 416-33.
[http://dx.doi.org/10.1002/dmrr.559] [PMID: 15906405]
[110]
Iyer A, Fairlie DP, Brown L. Lysine acetylation in obesity, diabetes and metabolic disease. Immunol Cell Biol 2012; 90(1): 39-46.
[http://dx.doi.org/10.1038/icb.2011.99] [PMID: 22083525]
[111]
Pereira L M S, Gomes S T M, Ishak R, Vallinoto A C R. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8: 605.
[112]
Lawless MW, Norris S, O’Byrne KJ, Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2009; 13(5): 826-52.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00571.x] [PMID: 19175682]
[113]
Walsh JJ, Myette-Côté É, Neudorf H, Little JP. Potential therapeutic effects of exogenous ketone supplementation for type 2 diabetes: a review. Curr Pharm Des 2020; 26(9): 958-69.
[http://dx.doi.org/10.2174/1381612826666200203120540] [PMID: 32013822]
[114]
Jakobsdottir G, Xu J, Molin G, Ahrné S, Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 2013; 8(11): e80476.
[http://dx.doi.org/10.1371/journal.pone.0080476] [PMID: 24236183]
[115]
Anderson JW, Zeigler JA, Deakins DA, et al. Metabolic effects of high-carbohydrate, high-fiber diets for insulin-dependent diabetic individuals. Am J Clin Nutr 1991; 54(5): 936-43.
[http://dx.doi.org/10.1093/ajcn/54.5.936] [PMID: 1659172]
[116]
Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58(7): 1509-17.
[http://dx.doi.org/10.2337/db08-1637] [PMID: 19366864]
[117]
Vinolo MA, Rodrigues HG, Festuccia WT, et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 2012; 303(2): E272-82.
[http://dx.doi.org/10.1152/ajpendo.00053.2012] [PMID: 22621868]
[118]
Haumaitre C, Lenoir O, Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 2008; 28(20): 6373-83.
[http://dx.doi.org/10.1128/MCB.00413-08] [PMID: 18710955]
[119]
Lundh M, Christensen DP, Rasmussen DN, et al. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 2010; 53(12): 2569-78.
[http://dx.doi.org/10.1007/s00125-010-1892-8] [PMID: 20878317]
[120]
Henagan TM, Stefanska B, Fang Z, et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 2015; 172(11): 2782-98.
[http://dx.doi.org/10.1111/bph.13058] [PMID: 25559882]
[121]
Mihaylova MM, Shaw RJ. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol Metab 2013; 24(1): 48-57.
[http://dx.doi.org/10.1016/j.tem.2012.09.003] [PMID: 23062770]
[122]
Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 2016; 17(5): 505-13.
[http://dx.doi.org/10.1038/ni.3400] [PMID: 26998764]
[123]
Mathewson ND, Jenq R, Mathew AV, et al. Brain arrhythmias induced by amyloid beta and inflammation: involvement in Alzheimer’s disease and other inflammation-related pathologies. Curr Alzhe Res 2016; 16(12): 1108.
[http://dx.doi.org/10.1038/ni.3400] [PMID: 26998764]
[124]
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr Pharm Des 2019; 25(19): 2178-91.
[http://dx.doi.org/10.2174/1381612825666190717110932] [PMID: 31333112]
[125]
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in neurodegenerative diseases: the role of histone deacetylases. CNS Neurol Disord Drug Targets 2019; 18(1): 11-8.
[http://dx.doi.org/10.2174/1871527317666181004155136] [PMID: 30289079]
[126]
Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 2009; 32(11): 591-601.
[http://dx.doi.org/10.1016/j.tins.2009.06.002] [PMID: 19775759]
[127]
Kim JY, Shen S, Dietz K, et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010; 13(2): 180-9.
[http://dx.doi.org/10.1038/nn.2471] [PMID: 20037577]
[128]
Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001; 413(6857): 739-43.
[http://dx.doi.org/10.1038/35099568] [PMID: 11607033]
[129]
Yeh HH, Young D, Gelovani JG, et al. Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res 2013; 1504: 16-24.
[http://dx.doi.org/10.1016/j.brainres.2013.02.012] [PMID: 23419892]
[130]
Narayan PJ, Lill C, Faull R, Curtis MA, Dragunow M. Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol Dis 2015; 74: 281-94.
[http://dx.doi.org/10.1016/j.nbd.2014.11.023] [PMID: 25484284]
[131]
Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A, Frechilla D, Del Río J, García-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 2009; 34(7): 1721-32.
[http://dx.doi.org/10.1038/npp.2008.229] [PMID: 19145227]
[132]
Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003; 23(28): 9418-27.
[http://dx.doi.org/10.1523/JNEUROSCI.23-28-09418.2003] [PMID: 14561870]
[133]
Sharma S, Taliyan R, Singh S. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav Brain Res 2015; 291: 306-14.
[http://dx.doi.org/10.1016/j.bbr.2015.05.052] [PMID: 26048426]
[134]
St Laurent R, O’Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 2013; 246: 382-90.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.037] [PMID: 23623990]
[135]
Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 2011; 26(1): 187-97.
[http://dx.doi.org/10.3233/JAD-2011-110080] [PMID: 21593570]
[136]
Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR. Oxidative stress in hemodialysis patients: a review of the literature. Oxid Med Cell Longev 2017; 2017: 3081856.
[http://dx.doi.org/10.1155/2017/3081856] [PMID: 29138677]
[137]
Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002; 62(5): 1524-38.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00600.x] [PMID: 12371953]
[138]
Zheng Y, Zhang Z, Zhang N. Protective effects of butyrate on renal ischemia-reperfusion injury in rats. Urol Int 2019; 102(3): 348-55.
[http://dx.doi.org/10.1159/000497476] [PMID: 30844816]
[139]
Felizardo RJF, de Almeida DC, Pereira RL, et al. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J 2019; 33(11): 11894-908.
[http://dx.doi.org/10.1096/fj.201901080R] [PMID: 31366236]
[140]
Machado RA, Constantino LdeS, Tomasi CD, et al. Sodium butyrate decreases the activation of NF-κB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol Dial Transplant 2012; 27(8): 3136-40.
[http://dx.doi.org/10.1093/ndt/gfr807] [PMID: 22273669]
[141]
Sun X, Zhang B, Hong X, Zhang X, Kong X. Histone deacetylase inhibitor, sodium butyrate, attenuates gentamicin-induced nephrotoxicity by increasing prohibitin protein expression in rats. Eur J Pharmacol 2013; 707(1-3): 147-54.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.018] [PMID: 23528351]
[142]
Saleh H, Mohamed B, Marie MAS. Sodium butyrate attenuates nephrotoxicity induced by tamoxifen in rats. J Applied Pharma Sci 2016; 6(06): 066-72.
[143]
Du Y, Tang G, Yuan W. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells. Int J Mol Med 2020; 45(1): 210-22.
[http://dx.doi.org/10.3892/ijmm.2019.4397] [PMID: 31746362]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy