Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Terminalia catappa Fruit Extract Reverses Streptozotocin-Induced Diabetic Retinopathy in Rats

Author(s): Tapan Behl*, Thirumurthy Velpandian and Anita Kotwani

Volume 21, Issue 6, 2021

Published on: 29 October, 2020

Page: [1053 - 1065] Pages: 13

DOI: 10.2174/1871530320666201029142113

Price: $65

Abstract

Objective and Background: Diabetic retinopathy is amongst the most common microvascular complications associated with diabetes. Controlling blood glucose level alone cannot manage diabetes associated complications. Thus, mechanisms that additionally prevent diabetes associated complications are the need of the hour, driving the researchers towards herbal therapies. Terminalia catappa is renowned for its anti-inflammatory, antioxidant, anti-hyperglycemic and anti-angiogenic activity. The current study explores the effect of Terminalia catappa fruit extract on streptozotocin-induced diabetic retinopathy in rats.

Methods: Streptozotocin-induced chronic diabetic rat model was utilized in the study. The hydroalcoholic fruit extract of T. catappa in 20mg/kg, 30mg/kg and 40mg/kg dose and standard anti-diabetic drug, glibenclamide (10mg/kg) was given orally. Retinopathy was evaluated by monitoring lenticular, fundus images and measuring arteriole and venule tortuosity index. Oxidative, angiogenic and inflammatory biomarkers were assessed at the 12th week in the retinal homogenate. Histopathological changes in the retina were also examined. Data was analyzed using one-way Repeated Measure ANOVA followed by the Mann-Whitney test.

Results: The hydro-alcoholic fruit extract of T. catappa significantly decreased blood glucose (p<0.001) in a dose-dependent manner in diabetic rats. Cataract lens was observed in all experimental groups and became clear (grade 0) with 40mg/kg and with 40mg/kg along with glibenclamide at the eighth and sixth week, respectively. The hydro-alcoholic fruit extract in all three doses significantly reduced (p<0.01) arteriole and venule tortuosity in diabetic rats. T. catappa in all three doses in diabetic rats showed a modulatory effect in oxidative, angiogenic and inflammatory biomarkers.

Conclusion: T. catappa reverses diabetes-induced retinopathy by anti-hyperglycemic, anti-oxidant, anti-angiogenic and anti-inflammatory actions, and thus has a potential to be used in diabetes-induced retinopathy.

Keywords: Diabetes, diabetic retinopathy, Terminalia catappa, angiogenesis, inflammation, oxidative stress.

Graphical Abstract

[1]
Tarr, J.M.; Kaul, K.; Chopra, M.; Kohner, E.M.; Chibber, R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol., 2013, 2013, 343560.
[http://dx.doi.org/10.1155/2013/343560] [PMID: 24563789]
[2]
Semeraro, F.; Cancarini, A.; dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic retinopathy: vascular and inflammatory disease. J. Diabetes Res., 2015, 2015, 582060.
[http://dx.doi.org/10.1155/2015/582060] [PMID: 26137497]
[3]
Simó, R.; Hernández, C. Advances in the medical treatment of diabetic retinopathy. Diabetes Care, 2009, 32(8), 1556-1562.
[http://dx.doi.org/10.2337/dc09-0565] [PMID: 19638526]
[4]
Behl, T. Anti-hyperglycemic effect of terminalia catappa fruit extract in streptozotocin-induced diabetic rats. Int. J. Pharm. Pharm. Sci., 2017, 9(4), 212-217.
[http://dx.doi.org/10.22159/ijpps.2017v9i4.17593]
[5]
Koffi, N.G.; Yvette, F.N.; Noel, Z.G. Effect of aqueous extract of Terminalia catappa leaves on the glycaemia of rabbits. J. Appl. Pharm. Sci., 2011, 1(8), 59.
[6]
Nair, R.; Chanda, S. Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract. Indian J. Pharm. Sci., 2008, 70(3), 390-393.
[http://dx.doi.org/10.4103/0250-474X.43012] [PMID: 20046756]
[7]
Fan, Y.M.; Xu, L.Z.; Gao, J.; Wang, Y.; Tang, X.H.; Zhao, X.N.; Zhang, Z.X. Phytochemical and antiinflammatory studies on Terminalia catappa. Fitoterapia, 2004, 75(3-4), 253-260.
[http://dx.doi.org/10.1016/j.fitote.2003.11.007] [PMID: 15158981]
[8]
Annegowda, H.V.; Mordi, M.N.; Ramanathan, S.; Mansor, S.M. Analgesic and antioxidant properties of ethanolic extract of Terminalia catappa L. leaves. Int. J. Pharmacol., 2010, 6(6), 910-915.
[http://dx.doi.org/10.3923/ijp.2010.910.915]
[9]
Khan, A.A.; Kumar, V.; Singh, B.K.; Singh, R. Evaluation of wound healing property of Terminalia catappa on excision wound models in Wistar rats. Drug Res. (Stuttg.), 2014, 64(5), 225-228.
[PMID: 24132703]
[10]
Gao, J.; Tang, X.; Dou, H.; Fan, Y.; Zhao, X.; Xu, Q. Hepatoprotective activity of Terminalia catappa L. leaves and its two triterpenoids. J. Pharm. Pharmacol., 2004, 56(11), 1449-1455.
[http://dx.doi.org/10.1211/0022357044733] [PMID: 15525453]
[11]
Pandya, N.B.; Tigari, P.; Dupadahalli, K.; Kamurthy, H.; Nadendla, R.R. Antitumor and antioxidant status of Terminalia catappa against Ehrlich ascites carcinoma in Swiss albino mice. Indian J. Pharmacol., 2013, 45(5), 464-469.
[http://dx.doi.org/10.4103/0253-7613.117754] [PMID: 24130380]
[12]
Satardekar, K.V.; Deodhar, M. Anti-Ageing Ability of Terminalia Species with Special Reference to Hyaluronidase, Elastase Inhibition and Collagen Synthesis In vitro. Int. J. Pharmaco. and Phytochem. Res., 2010, 2(3), 30-34.
[13]
Anand, A.V.; Divya, N.; Kotti, P.P. An updated review of Terminalia catappa. Pharmacogn. Rev., 2015, 9(18), 93-98.
[http://dx.doi.org/10.4103/0973-7847.162103] [PMID: 26392705]
[14]
Gupta, S.K.; Kumar, B.; Nag, T.C.; Agrawal, S.S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J. Ocul. Pharmacol. Ther., 2011, 27(2), 123-130.
[http://dx.doi.org/10.1089/jop.2010.0123] [PMID: 21314438]
[15]
Kohzaki, K.; Vingrys, A.J.; Bui, B.V. Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest. Ophthalmol. Vis. Sci., 2008, 49(8), 3595-3604.
[http://dx.doi.org/10.1167/iovs.08-1679] [PMID: 18421077]
[16]
Nagappa, A.N.; Thakurdesai, P.A.; Venkat Rao, N.; Singh, J. Antidiabetic activity of Terminalia catappa Linn fruits. J. Ethnopharmacol., 2003, 88(1), 45-50.
[http://dx.doi.org/10.1016/S0378-8741(03)00208-3] [PMID: 12902049]
[17]
Selvamani, P.; Latha, S.; Elayaraja, K.; Babu, P.S.; Gupta, J.K.; Pal, T.K.; Ghosh, L.K.; Sen, D.J. Antidiabetic activity of the ethanol extract of Capparis sepiaria L leaves. Indian J. Pharm. Sci., 2008, 70(3), 378-380.
[http://dx.doi.org/10.4103/0250-474X.43008] [PMID: 20046752]
[18]
Velísek, L.; Velísková, J.; Chudomel, O.; Poon, K.L.; Robeson, K.; Marshall, B.; Sharma, A.; Moshé, S.L. Metabolic environment in substantia nigra reticulata is critical for the expression and control of hypoglycemia-induced seizures. J. Neurosci., 2008, 28(38), 9349-9362.
[http://dx.doi.org/10.1523/JNEUROSCI.3195-08.2008] [PMID: 18799669]
[19]
Blakytny, R.; Harding, J.J. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem. J., 1992, 288(Pt 1), 303-307.
[http://dx.doi.org/10.1042/bj2880303] [PMID: 1445275]
[20]
Liu, K.; Akula, J.D.; Falk, C.; Hansen, R.M.; Fulton, A.B. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci., 2006, 47(6), 2639-2647.
[http://dx.doi.org/10.1167/iovs.06-0016] [PMID: 16723481]
[21]
Rangasamy, S.; McGuire, P.G.; Das, A. Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr. J. Ophthalmol., 2012, 19(1), 52-59.
[http://dx.doi.org/10.4103/0974-9233.92116] [PMID: 22346115]
[22]
Abcouwer, S.F. Angiogenic factors and cytokines in diabetic retinopathy. J. Clin. Cell. Immunol., 2013, (11)(Suppl. 1), 1.
[PMID: 24319628]
[23]
Khorsand, M.; Akmali, M.; Sharzad, S.; Beheshtitabar, M. Melatonin reduces cataract formation and aldose reductase activity in lenses of streptozotocin-induced diabetic rat. Iran. J. Med. Sci., 2016, 41(4), 305-313.
[PMID: 27365552]
[24]
Veeresham, C.; Swetha, E.; Rao, A.R.; Asres, K. In vitro and in vivo aldose reductase inhibitory activity of standardized extracts and the major constituent of Andrographis paniculata. Phytother. Res., 2013, 27(3), 412-416.
[http://dx.doi.org/10.1002/ptr.4722] [PMID: 22628202]
[25]
Muthenna, P.; Akileshwari, C.; Reddy, G.B. Ellagic acid, a new antiglycating agent: its inhibition of Nϵ-(carboxymethyl)lysine. Biochem. J., 2012, 442(1), 221-230.
[http://dx.doi.org/10.1042/BJ20110846] [PMID: 22060242]
[26]
Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M.G.; Branski, L.K.; Herndon, D.N.; Wang, R.; Szabó, C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21972-21977.
[http://dx.doi.org/10.1073/pnas.0908047106] [PMID: 19955410]
[27]
Baron-Menguy, C.; Bocquet, A.; Guihot, A.L.; Chappard, D.; Amiot, M.J.; Andriantsitohaina, R.; Loufrani, L.; Henrion, D. Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J., 2007, 21(13), 3511-3521.
[http://dx.doi.org/10.1096/fj.06-7782com] [PMID: 17595348]
[28]
Patil, K.K.; Meshram, R.J.; Dhole, N.A.; Gacche, R.N. Role of dietary flavonoids in amelioration of sugar induced cataractogenesis. Arch. Biochem. Biophys., 2016, 593, 1-11.
[http://dx.doi.org/10.1016/j.abb.2016.01.015] [PMID: 26829674]
[29]
Usharani, P.; Fatima, N.; Muralidhar, N. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab. Syndr. Obes., 2013, 6, 275-284.
[PMID: 23935377]
[30]
Celik, S.; Akkaya, H. Total antioxidant capacity, catalase and superoxide dismutase on rats before and after diabetes. J. Anim. Vet. Adv., 2009, 8(8), 1503-1508.
[31]
Shin, E.S.; Sorenson, C.M.; Sheibani, N. Diabetes and retinal vascular dysfunction. J. Ophthalmic Vis. Res., 2014, 9(3), 362-373.
[http://dx.doi.org/10.4103/2008-322x.143378] [PMID: 25667739]
[32]
Kowluru, R.A.; Odenbach, S. Role of interleukin-1β in the pathogenesis of diabetic retinopathy. Br. J. Ophthalmol., 2004, 88(10), 1343-1347.
[http://dx.doi.org/10.1136/bjo.2003.038133] [PMID: 15377563]
[33]
Das Evcimen, N.; King, G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol. Res., 2007, 55(6), 498-510.
[http://dx.doi.org/10.1016/j.phrs.2007.04.016] [PMID: 17574431]
[34]
Velayutham, R.; Sankaradoss, N.; Ahamed, K.F. Protective effect of tannins from Ficus racemosa in hypercholesterolemia and diabetes induced vascular tissue damage in rats. Asian Pac. J. Trop. Med., 2012, 5(5), 367-373.
[http://dx.doi.org/10.1016/S1995-7645(12)60061-3] [PMID: 22546653]
[35]
Elhussainy, E.M.; Elzawawy, N.A.; Shorbagy, S.H. A novel tannic acid from ganoderma lucidum fruiting bodies extract ameliorates early diabetic nephropathy in streptozotocin induced diabetic rats. Int. J. Pharm. Sci. Res., 2016, 7(1), 62.
[36]
Amadio, M.; Bucolo, C.; Leggio, G.M.; Drago, F.; Govoni, S.; Pascale, A. The PKCbeta/HuR/VEGF pathway in diabetic retinopathy. Biochem. Pharmacol., 2010, 80(8), 1230-1237.
[http://dx.doi.org/10.1016/j.bcp.2010.06.033] [PMID: 20599775]
[37]
Kumar Gupta, S.; Kumar, B.; Srinivasan, B.P.; Nag, T.C.; Srivastava, S.; Saxena, R.; Aggarwal, A. Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J. Ocul. Pharmacol. Ther., 2013, 29(4), 419-426.
[http://dx.doi.org/10.1089/jop.2012.0089] [PMID: 23215831]
[38]
Meier, K; Twitchell, D; Murray, B; O’Neill, K Tannic acid derivatives display anti-angiogenic properties in human breast cancer cells by interfering with CXCR4/SDF-1 interactions.
[39]
Law, P.C.; Auyeung, K.K.; Chan, L.Y.; Ko, J.K. Astragalus saponins downregulate vascular endothelial growth factor under cobalt chloride-stimulated hypoxia in colon cancer cells. BMC Complement. Altern. Med., 2012, 12(1), 160.
[http://dx.doi.org/10.1186/1472-6882-12-160] [PMID: 22992293]
[40]
Chu, X.; Wang, H.; Jiang, Y.M.; Zhang, Y.Y.; Bao, Y.F.; Zhang, X.; Zhang, J.P.; Guo, H.; Yang, F.; Luan, Y.C.; Dong, Y.S. Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro. J. Pharmacol. Sci., 2016, 130(1), 15-23.
[http://dx.doi.org/10.1016/j.jphs.2015.12.002] [PMID: 26810570]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy