Mini-Review Article

抗抑郁药帕罗西汀的合成新进展

卷 28, 期 15, 2021

发表于: 26 October, 2020

页: [2960 - 2973] 页: 14

弟呕挨: 10.2174/0929867327666201026144848

价格: $65

摘要

帕罗西汀是一种有效的血清素再摄取抑制剂,广泛用于治疗抑郁症和其他神经系统疾病。 帕罗西汀的合成以及制备具有特定取代模式的衍生物的可能性,使其可用作生物探针,这是一个有吸引力的话题,尤其是对从事神经科学研究的药物化学家而言。 考虑到过去十年在帕罗西汀全合成方面开展的大量工作,本综述总结了该领域最重要的贡献,根据用作起始材料的试剂进行组织。 大多数方法允许分 4-9 个步骤制备帕罗西汀,总产率为 9-66%。 尽管在这一领域取得了进展,但仍有改进的空间,寻找新的环保和可持续的合成替代品。

关键词: _阿罗西汀、合成方法、N-取代哌啶酮、4-氟苯甲醛、取代吡啶、α

[1]
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[2]
Practice guideline for the treatment of patients with major depressive disorder (revision). Am. J. Psychiatry, 2000, 157(4)(Suppl.), 1-45.
[PMID: 10767867]
[3]
Al-Harbi, K.S. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer. Adherence, 2012, 6, 369-388.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[4]
Steiner, J.P.; Bachani, M.; Wolfson-Stofko, B.; Lee, M.H.; Wang, T.; Li, G.; Li, W.; Strayer, D.; Haughey, N.J.; Nath, A. Interaction of paroxetine with mitochondrial proteins mediates neuroprotection. Neurotherapeutics, 2015, 12(1), 200-216.
[http://dx.doi.org/10.1007/s13311-014-0315-9] [PMID: 25404050]
[5]
Davis, B.A.; Nagarajan, A.; Forrest, L.R.; Singh, S.K. Mechanism of paroxetine (paxil) inhibition of the serotonin transporter. Sci. Rep., 2016, 6, 23789.
[http://dx.doi.org/10.1038/srep23789] [PMID: 27032980]
[6]
Sangkuhl, K.; Klein, T.E.; Altman, R.B. Selective serotonin reuptake inhibitors pathway. Pharmacogenet. Genomics, 2009, 19(11), 907-909.
[http://dx.doi.org/10.1097/FPC.0b013e32833132cb] [PMID: 19741567]
[7]
Han, J.; Wang, L.U.; Bian, H.; Zhou, X.; Ruan, C. Effects of paroxetine on spatial memory function and protein kinase C expression in a rat model of depression. Exp. Ther. Med., 2015, 10(4), 1489-1492.
[http://dx.doi.org/10.3892/etm.2015.2663] [PMID: 26622512]
[8]
Sugi, K.; Itaya, N.; Katsura, T.; Igi, M.; Yamazaki, S.; Ishibashi, T.; Yamaoka, T.; Kawada, Y.; Tagami, Y.; Otsuki, M.; Ohshima, T. Improved synthesis of paroxetine hydrochloride propan-2-ol solvate through one of metabolites in humans, and characterization of the solvate crystals. Chem. Pharm. Bull. (Tokyo), 2000, 48(4), 529-536.
[http://dx.doi.org/10.1248/cpb.48.529] [PMID: 10783073]
[9]
Buxton, P.C.; Lynch, I.R.; Roe, J.M. Solid-state forms of paroxetine hydrochloride. Int. J. Pharm., 1988, 42(1-3), 135-143.
[http://dx.doi.org/10.1016/0378-5173(88)90169-X]
[10]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[11]
Jornil, J.; Jensen, K.G.; Larsen, F.; Linnet, K. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab. Dispos., 2010, 38(3), 376-385.
[http://dx.doi.org/10.1124/dmd.109.030551] [PMID: 20007670]
[12]
Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; Skaar, T.C.; Scott, S.A.; Stingl, J.C.; Klein, T.E.; Caudle, K.E.; Gaedigk, A. LLerena, A.; Skaar, T.C.; Scott, S.A.; Stingl, J.C.; Klein, T.E.; Caudle, K.E.; Gaedigk, A. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther., 2015, 98(2), 127-134.
[http://dx.doi.org/10.1002/cpt.147] [PMID: 25974703]
[13]
De Risi, C.; Fanton, G.; Pollini, G.P.; Trapella, C.; Valente, F.; Zanirato, V. Recent advances in the stereoselective synthesis of trans-3,4-disubstituted-piperidines: applications to (−)-paroxetine. Tetrahed. Asymm., 2008, 19(2), 131-155.
[http://dx.doi.org/10.1016/j.tetasy.2008.01.004]
[14]
Chaubey, N.R.; Ghosh, S.K. An enantiodivergent and formal synthesis of paroxetine enantiomers by asymmetric desymmetrization of 3-(4-fluorophenyl)glutaric anhydride with a chiral SuperQuat oxazolidin-2-one. Tetrahed. Asymm., 2012, 23(15-16), 1206-1212.
[http://dx.doi.org/10.1016/j.tetasy.2012.08.001]
[15]
Yu, M.S.; Lantos, I.; Peng, Z.Q.; Yu, J.; Cacchio, T. Asymmetric synthesis of (−)-paroxetine using PLE hydrolysis. Tetrahedron Lett., 2000, 41(30), 5647-5651.
[http://dx.doi.org/10.1016/S0040-4039(00)00942-4]
[16]
Gangula, S.; Kolla, N.K.; Elati, C.; Dongamanti, A.; Bandichhor, R. Improved process for paroxetine hydrochloride substantially free from potential impurities. Synth. Commun., 2012, 42(22), 3344-3360.
[http://dx.doi.org/10.1080/00397911.2011.582216]
[17]
Despiau, C.F.; Dominey, A.P.; Harrowven, D.C.; Linclau, B. Total synthesis of (±)-paroxetine by diastereoconvergent cobalt-catalysed arylation. Eur. J. Org. Chem., 2014, 2014(20), 4335-4341.
[http://dx.doi.org/10.1002/ejoc.201402108] [PMID: 25505371]
[18]
Ding, J.; Rybak, T.; Hall, D.G. Synthesis of chiral heterocycles by ligand-controlled regiodivergent and enantiospecific Suzuki Miyaura cross-coupling. Nat. Commun., 2014, 5, 5474.
[http://dx.doi.org/10.1038/ncomms6474] [PMID: 25403650]
[19]
Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Enantioselective synthesis of chiral piperidines via the stepwise dearomatization/borylation of pyridines. J. Am. Chem. Soc., 2016, 138(13), 4338-4341.
[http://dx.doi.org/10.1021/jacs.6b01375] [PMID: 26967578]
[20]
Somaiah, S.; Sashikanth, S.; Raju, V.; Reddy, K.V. An efficient and stereoselective synthesis of (3S,4R)-(−)-trans-4-(4′-fluorophenyl)-3-hydroxymethyl-N-methylpiperidine. Tetrahed. Asymm., 2011, 22(1), 1-3.
[http://dx.doi.org/10.1016/j.tetasy.2010.12.020]
[21]
Faruk, E.A.; Martin, R.T. Process for preparing aryl-piperidine carbinols and novel intermediates used in the process. US Patent 4, 902,801, Ferburary 20, 1990.
[22]
Jensen, K.L.; Poulsen, P.H.; Donslund, B.S.; Morana, F.; Jørgensen, K.A. Asymmetric synthesis of γ-nitroesters by an organocatalytic one-pot strategy. Org. Lett., 2012, 14(6), 1516-1519.
[http://dx.doi.org/10.1021/ol3002514] [PMID: 22376002]
[23]
White, N.A.; Ozboya, K.E.; Flanigan, D.M.; Rovis, T. Rapid Construction of (-)-paroxetine and (-)-femoxetine via n-heterocyclic carbene catalyzed homoenolate addition to nitroalkenes. Asian J. Org. Chem., 2014, 3(4), 442-444.
[http://dx.doi.org/10.1002/ajoc.201402031] [PMID: 25485210]
[24]
Zhang, Y.; Liao, Y.; Liu, X.; Yao, Q.; Zhou, Y.; Lin, L.; Feng, X. Catalytic michael/ring-closure reaction of α,β-unsaturated pyrazoleamides with amidomalonates: asymmetric synthesis of (-)-paroxetine. Chemistry, 2016, 22(42), 15119-15124.
[http://dx.doi.org/10.1002/chem.201603056] [PMID: 27576747]
[25]
Kim, M.H.; Park, Y.; Jeong, B.S.; Park, H.G.; Jew, S.S. Synthesis of (-)-paroxetine via enantioselective phase-transfer catalytic monoalkylation of malonamide ester. Org. Lett., 2010, 12(12), 2826-2829.
[http://dx.doi.org/10.1021/ol100928v] [PMID: 20499863]
[26]
Devalankar, D.A.; Karabal, P.U.; Sudalai, A. Optically pure γ-butyrolactones and epoxy esters via two stereocentered HKR of 3-substituted epoxy esters: a formal synthesis of (-)-paroxetine, Ro 67-8867 and (+)-eldanolide. Org. Biomol. Chem., 2013, 11(8), 1280-1285.
[http://dx.doi.org/10.1039/c3ob27321k] [PMID: 23334653]
[27]
Tokunaga, M.; Larrow, J.F.; Kakiuchi, F.; Jacobsen, E.N. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science, 1997, 277(5328), 936-938.
[http://dx.doi.org/10.1126/science.277.5328.936] [PMID: 9252321]
[28]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[29]
Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm cell driven microrobots-emerging opportunities and challenges for biologically inspired robotic design. Micromachines (Basel), 2020, 11(4), 448-465.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[30]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy