Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Chalcone Derivatives and their Activities against Drug-resistant Cancers: An Overview

Author(s): Jiaqi Xiao, Meixiang Gao, Qiang Diao* and Feng Gao*

Volume 21, Issue 5, 2021

Published on: 22 October, 2020

Page: [348 - 362] Pages: 15

DOI: 10.2174/1568026620666201022143236

Price: $65

Abstract

Drug resistance, including multidrug resistance resulting from different defensive mechanisms in cancer cells, is the leading cause of the failure of the cancer therapy, posing an urgent need to develop more effective anticancer agents. Chalcones, widely distributed in nature, could act on diverse enzymes and receptors in cancer cells. Accordingly, chalcone derivatives possess potent activity against various cancers, including drug-resistant, even multidrug-resistant cancer. This review outlines the recent development of chalcone derivatives with potential activity against drug-resistant cancers covering articles published between 2010 and 2020 so as to facilitate further rational design of more effective candidates.

Keywords: Chalcone, Drug resistance, Multi-drug resistance, Anticancer, Mechanism of action, Cytotoxic drug efflux.

Graphical Abstract

[1]
Wild, C.P.; Weiderpass, E.; Stewart, B.W. World cancer report: cancer research for cancer prevention 2020.Available from:, https://shop.iarc.fr/products/world-cancer-report-cancer-research-for-cancer-prevention-pdf
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
World Health Organization.Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. 2019.Available from:, https://www.who.int/cancer/PRGlobocanFinal.pdf
[4]
Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481.
[http://dx.doi.org/10.1016/j.suc.2020.01.002] [PMID: 32402294]
[5]
Zhang, T.; Yuan, Q.; Gu, Z.; Xue, C. Advances of proteomics technologies for multidrug-resistant mechanisms. Future Med. Chem., 2019, 11(19), 2573-2593.
[http://dx.doi.org/10.4155/fmc-2018-0507] [PMID: 31633396]
[6]
Kadkol, H.; Jain, V.; Patil, A.B. Multi-drug resistance in cancer therapy-An overview. J. Crit. Rev., 2019, 6(6), 1-6.
[http://dx.doi.org/10.22159/jcr.2019v6i6.35673]
[7]
Omran, Z.; Scaife, P.; Stewart, S.; Rauch, C. Physical and biological characteristics of multi drug resistance (MDR): An integral approach considering pH and drug resistance in cancer. Semin. Cancer Biol., 2017, 43, 42-48.
[http://dx.doi.org/10.1016/j.semcancer.2017.01.002] [PMID: 28077309]
[8]
Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother., 2018, 100, 335-348.
[http://dx.doi.org/10.1016/j.biopha.2018.02.038] [PMID: 29453043]
[9]
Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. Med. Chem, 2020, 187111980
[http://dx.doi.org//10.1016/j.ejmech.2019.111980] [PMID: 31877539]
[10]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[11]
Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev., 2020, 40(5), 2049-2084.
[http://dx.doi.org/10.1002/med.21698] [PMID: 32525247]
[12]
Alman, A.A.; Daniel, K.; Killedar, S.G. Chalcone-promising entity for anticancer activity: An overview. Int. J. Pharm. Sci. Res., 2020, 11(5), 2027-2041.
[13]
Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19)126589
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048] [PMID: 31427220]
[14]
Mahapatra, D.K.; Ghorai, S.; Bharti, S.K.; Patil, A.G.; Gayen, S. Current discovery progress of some emerging anti-infective chalcones: Highlights from 2016 to 2017. Curr. Drug Discov. Technol., 2020, 17(1), 30-44.
[http://dx.doi.org/10.2174/1570163815666180720170030] [PMID: 30033873]
[15]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[16]
Das, B.; Samanta, S. Chalcone as potent molecule: Anti-inflammatory, antiarthritic, antioxidant and antiulcer: A review. Int. J. Pharma. Res., 2015, 7(1), 1-8.
[17]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[18]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leishmaniases: a review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[19]
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. Med. Chem., 2020, 193112215
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[20]
Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Pharm., 2020, 353(4)e1900350
[http://dx.doi.org/10.1002/ardp.201900350] [PMID: 32003489]
[21]
Shukla, S.; Gahlot, P.; Khandekar, A.; Agrawal, A.; Pascricha, S. Exploring coumarin and chalcone analogues as potential antimycobacterial agents. Antiinfect. Agents, 2017, 15(2), 69-86.
[22]
Anagani, B.; Singh, J.; Bassin, J.P.; Besra, G.S.; Benham, C.; Reddy, T.R.K.; Cox, J.A.G.; Goyal, M. Identification and validation of the mode of action of the chalcone anti-mycobacterial compounds. Cell Surf., 2020, 6100041
[http://dx.doi.org/10.1016/j.tcsw.2020.100041] [PMID: 32743153]
[23]
Turkovic, N.; Ivkovic, B.; Kotur-Stevuljevic, J.; Tasic, M.; Marković, B.; Vujic, Z. Molecular docking, synthesis and anti-HIV-1 protease activity of novel chalcones. Curr. Pharm. Des., 2020, 26(8), 802-814.
[http://dx.doi.org/10.2174/1381612826666200203125557] [PMID: 32013827]
[24]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: Promising starting points for drug design. Molecules, 2017, 22(8)e1210
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[25]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[26]
Banoth, R.K.; Thatikonda, A. A review on natural chalcones an update. Int. J. Pharm. Sci. Res., 2020, 11(2), 546-555.
[27]
Mirzaei, H.; Keighobadi, M.; Emami, S. An overview of anticancer chalcones with apoptosis inducing activity. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2017, 26(146), 262-276.
[28]
Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 422-432.
[PMID: 22721390]
[29]
Liu, M.; El-Hossary, E.M.; Oelschlaeger, T.A.; Donia, M.S.; Quinn, R.J.; Abdelmohsen, U.R. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect. Dis., 2019, 19(7), e237-e245.
[http://dx.doi.org/10.1016/S1473-3099(18)30711-4] [PMID: 31031171]
[30]
Xu, D.; Xu, Z. Indole alkaloids with potential anticancer activity. Curr. Top. Med. Chem., 2020, 20(21), 1938-1949.
[http://dx.doi.org/10.2174/1568026620666200622150325] [PMID: 32568021]
[31]
Efferth, T.; Saeed, M.E.M.; Kadioglu, O. Seo, Ean-Jeong, Shirooie, S.; Mbaveng, A. T.; Nabavi, S. M.; Kuete, V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol. Adv., 2020, 38e107342
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.009]
[32]
Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambrožić, G.; Marković, D. Marine natural products with high anticancer activities. Curr. Med. Chem., 2020, 27(8), 1243-1307.
[http://dx.doi.org/10.2174/0929867327666200113154115] [PMID: 31931690]
[33]
Dutta, S.; Mahalanobish, S.; Saha, S.; Ghosh, S.; Sil, P.C. Natural products: An upcoming therapeutic approach to cancer. Food Chem. Toxicol., 2019, 128, 240-255.
[http://dx.doi.org/10.1016/j.fct.2019.04.012] [PMID: 30991130]
[34]
Bailon-Moscoso, N.; Cevallos-Solorzano, G.; Romero-Benavides, J.C.; Orellana, M.I.R. Natural compounds as modulators of cell cycle arrest: Application for anticancer chemotherapies. Curr. Genomics, 2017, 18(2), 106-131.
[http://dx.doi.org/10.2174/1389202917666160808125645] [PMID: 28367072]
[35]
Wu, W.; Ye, H.; Wan, L.; Han, X.; Wang, G.; Hu, J.; Tang, M.; Duan, X.; Fan, Y.; He, S.; Huang, L.; Pei, H.; Wang, X.; Li, X.; Xie, C.; Zhang, R.; Yuan, Z.; Mao, Y.; Wei, Y.; Chen, L. Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo. Carcinogen., 2013, 34(7), 1636-1643.
[http://dx.doi.org/10.1093/carcin/bgt087] [PMID: 23471882]
[36]
Kong, W. Li. C.; Qi, Q.; Shen, J.; Chang, K. Cardamonin induces G2/M arrest and apoptosis via activation of the JNK-FOXO3a pathway in breast cancer cells. Cell Biol. Int., 2020, 44(1), 177-188.
[http://dx.doi.org/10.1002/cbin.11217]
[37]
Huang, H.Y.; Niu, J.L.; Zhao, L.M.; Lu, Y.H. Reversal effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. Phytomed., 2011, 18(12), 1086-1092.
[http://dx.doi.org/10.1016/j.phymed.2011.04.001] [PMID: 21596545]
[38]
Ji, X.; Wei, X.; Qian, J.; Mo, X.; Kai, G.; An, F.; Lu, Y. 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone induced apoptosis and G1 cell cycle arrest through PI3K/AKT pathway in BEL-7402/5-FU cells. Food Chem. Toxicol., 2019, 131110533
[http://dx.doi.org/10.1016/j.fct.2019.05.041] [PMID: 31150783]
[39]
Huang, H.Y.; Niu, J.L.; Lu, Y.H. Multidrug resistance reversal effect of DMC derived from buds of Cleistocalyx operculatus in human hepatocellular tumor xenograft model. J. Sci. Food Agric., 2012, 92(1), 135-140.
[http://dx.doi.org/10.1002/jsfa.4551] [PMID: 21780130]
[40]
Hou, G.; Yuan, X.; Li, Y.; Hou, G.; Liu, X. Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway. Invest. New Drugs, 2020, 38(2), 329-339.
[http://dx.doi.org/10.1007/s10637-019-00781-9] [PMID: 31102118]
[41]
Tang, Y.; Li, X.; Liu, Z.; Simoneau, A.R.; Xie, J.; Zi, X. Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int. J. Cancer, 2010, 127(8), 1758-1768.
[http://dx.doi.org/10.1002/ijc.25210] [PMID: 20112340]
[42]
Abu, N.; Akhtar, M.N.; Yeap, S.K.; Lim, K.L.; Ho, W.Y.; Zulfadli, A.J.; Omar, A.R.; Sulaiman, M.R.; Abdullah, M.P.; Alitheen, N.B. Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro. PLoS One, 2014, 9(10)e105244
[http://dx.doi.org/10.1371/journal.pone.0105244] [PMID: 25286005]
[43]
Wang, K.; Zhang, W.; Wang, Z.; Gao, M.; Wang, X.; Han, W.; Zhang, N.; Xu, X. Flavokawain A inhibits prostate cancer cells by inducing cell cycle arrest and cell apoptosis and regulating the glutamine metabolism pathway. J. Pharm. Biomed. Anal., 2020, 186113288
[http://dx.doi.org/10.1016/j.jpba.2020.113288] [PMID: 32361091]
[44]
Liu, Z.; Xu, X.; Li, X.; Liu, S.; Simoneau, A.R.; He, F.; Wu, X.R.; Zi, X. Kava chalcone, flavokawain A, inhibits urothelial tumorigenesis in the UPII-SV40T transgenic mouse model. Cancer Prev. Res. (Phila.), 2013, 6(12), 1365-1375.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0219] [PMID: 24121102]
[45]
Narayanapillai, S.C.; Leitzman, P.; O’Sullivan, M.G.; Xing, C. Flavokawains a and B in kava, not dihydromethysticin, potentiate acetaminophen-induced hepatotoxicity in C57BL/6 mice. Chem. Res. Toxicol., 2014, 27(10), 1871-1876.
[http://dx.doi.org/10.1021/tx5003194] [PMID: 25185080]
[46]
Abu, N.; Mohamed, N.E.; Yeap, S.K.; Lim, K.L.; Akhtar, M.N.; Zulfadli, A.J.; Kee, B.B.; Abdullah, M.P.; Omar, A.R.; Alitheen, N.B. In vivo anti-tumor effects of flavokawain A in 4T1 breast cancer cell-challenged mice. Anticancer. Agents Med. Chem., 2015, 15(7), 905-915.
[http://dx.doi.org/10.2174/187152061507150713111557] [PMID: 26179368]
[47]
Abu, N.; Mohameda, N.E.; Tangarajoo, N.; Yeap, S.K.; Akhtar, M.N.; Abdullah, M.P.; Omar, A.R.; Alitheen, N.B. In vitro toxicity and in vivo immunomodulatory effects of flavokawain A and flavokawain B in balb/C mice. Nat. Prod. Commun., 2015, 10(7), 1199-1202.
[http://dx.doi.org/10.1177/1934578X1501000716] [PMID: 26411010]
[48]
Li, J.; Zheng, L.; Yan, M.; Wu, J.; Liu, Y.; Tian, X.; Jiang, W.; Zhang, L.; Wang, R. Activity and mechanism of flavokawain A in inhibiting P-glycoprotein expression in paclitaxel resistance of lung cancer. Oncol. Lett., 2020, 19(1), 379-387.
[PMID: 31897150]
[49]
Kuete, V.; Nkuete, A.H.L.; Mbaveng, A.T.; Wiench, B.; Wabo, H.K.; Tane, P.; Efferth, T. Cytotoxicity and modes of action of 4′-hydroxy-2′,6′-dimethoxychalcone and other flavonoids toward drug-sensitive and multidrug-resistant cancer cell lines. Phytomed., 2014, 21(12), 1651-1657.
[http://dx.doi.org/10.1016/j.phymed.2014.08.001] [PMID: 25442273]
[50]
Huang, Y.; Liu, C.; Zeng, W.C.; Xu, G.Y.; Wu, J.M.; Li, Z.W.; Huang, X.Y.; Lin, R.J.; Shi, X. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci. Rep., 2020, 40(1)BSR20192727
[http://dx.doi.org/10.1042/BSR20192727] [PMID: 31840737]
[51]
Lin, P.H.; Chiang, Y.F.; Shieh, T.M.; Chen, H.Y.; Shih, C.K.; Wang, T.H.; Wang, K.L.; Huang, T.C.; Hong, Y.H.; Li, S.C.; Hsia, S.M. Dietary compound isoliquiritigenin, an antioxidant from licorice, suppresses triple-negative breast tumor growth via apoptotic death program activation in cell and xenograft animal models. Antioxidants, 2020, 9(3)e228
[http://dx.doi.org/10.3390/antiox9030228] [PMID: 32164337]
[52]
Peng, F.; Xiong, L.; Xie, X.; Tang, H.; Huang, R.; Peng, C. Isoliquiritigenin derivative regulates miR-374a/BAX axis to suppress triple-negative breast cancer tumorigenesis and development. Front. Pharmacol., 2020, 11, 378.
[http://dx.doi.org/10.3389/fphar.2020.00378] [PMID: 32296334]
[53]
Li, C.; Zhou, X.; Sun, C.; Liu, X.; Shi, X.; Wu, S. Isoliquiritigenin inhibits the proliferation, apoptosis and migration of osteosarcoma cells. Oncol. Rep., 2019, 41(4), 2502-2510.
[http://dx.doi.org/10.3892/or.2019.6998] [PMID: 30720124]
[54]
Lin, L.C.; Wu, C.H.; Shieh, T.M.; Chen, H.Y.; Huang, T.C.; Hsia, S.M. The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling. J. Funct. Foods, 2017, 33, 332-344.
[http://dx.doi.org/10.1016/j.jff.2017.03.061]
[55]
Wang, Z.; Wang, N.; Liu, P.; Chen, Q.; Situ, H.; Xie, T.; Zhang, J.; Peng, C.; Lin, Y.; Chen, J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 2014, 5(16), 7013-7026.
[http://dx.doi.org/10.18632/oncotarget.2192] [PMID: 25026296]
[56]
Jung, S.K.; Lee, M.H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.; Chi, Y.I.; Kundu, J.K.; Lee, N.H.; Lee, C.C.; Cho, Y.Y.; Bode, A.M.; Lee, K.W.; Dong, Z. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem., 2014, 289(52), 35839-35848.
[http://dx.doi.org/10.1074/jbc.M114.585513] [PMID: 25368326]
[57]
Oh, H.N.; Lee, M.H.; Kim, E.; Kwak, A.W.; Seo, J.H.; Yoon, G.; Cho, S.S.; Choi, J.S.; Lee, S.M.; Seo, K.S.; Chae, J.I.; Shim, J.H. Dual inhibition of EGFR and MET by Echinatin retards cell growth and induces apoptosis of lung cancer cells sensitive or resistant to gefitinib. Phytother. Res., 2020, 34(2), 388-400.
[http://dx.doi.org/10.1002/ptr.6530] [PMID: 31698509]
[58]
Adem, F.A.; Kuete, V.; Mbaveng, A.T.; Heydenreich, M.; Ndakala, A.; Irungu, B.; Efferth, T.; Yenesew, A. Cytotoxic benzylbenzofuran derivatives from Dorstenia kameruniana. Fitoterapia, 2018, 128, 26-30.
[http://dx.doi.org/10.1016/j.fitote.2018.04.019] [PMID: 29715541]
[59]
Kuete, V.; Mbaveng, A.T.; Zeino, M.; Fozing, C.D.; Ngameni, B.; Kapche, G.D.W.F.; Ngadjui, B.T.; Efferth, T. Cytotoxicity of three naturally occurring flavonoid derived compounds (artocarpesin, cycloartocarpesin and isobavachalcone) towards multi-factorial drug-resistant cancer cells. Phytomed., 2015, 22(12), 1096-1102.
[http://dx.doi.org/10.1016/j.phymed.2015.07.006] [PMID: 26547532]
[60]
Cho, J.J.; Chae, J.I.; Yoon, G.; Kim, K.H.; Cho, J.H.; Cho, S.S.; Cho, Y.S.; Shim, J.H. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. Int. J. Oncol., 2014, 45(2), 667-674.
[http://dx.doi.org/10.3892/ijo.2014.2461] [PMID: 24858379]
[61]
Hao, W.; Yuan, X.; Yu, L.; Gao, C.; Sun, X.; Wang, D.; Zheng, Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci. Rep., 2015, 5, 10336.
[http://dx.doi.org/10.1038/srep10336] [PMID: 25981581]
[62]
Tsai, J.P.; Lee, C.H.; Ying, T.H.; Lin, C.L.; Lin, C.L.; Hsueh, J.T.; Hsieh, Y.H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget, 2015, 6(30), 28851-28866.
[http://dx.doi.org/10.18632/oncotarget.4767] [PMID: 26311737]
[63]
Kang, T.H.; Seo, J.H.; Oh, H.; Yoon, G.; Chae, J.I.; Shim, J.H. Licochalcone A suppresses specificity protein 1 as a novel target in human breast cancer cells. J. Cell. Biochem., 2017, 118(12), 4652-4663.
[http://dx.doi.org/10.1002/jcb.26131] [PMID: 28498645]
[64]
Qiu, C.; Zhang, T.; Zhang, W.; Zhou, L.; Yu, B.; Wang, W.; Yang, Z.; Liu, Z.; Zou, P.; Liang, G. Licochalcone A inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress. Int. J. Mol. Sci., 2017, 18(8)e1761
[http://dx.doi.org/10.3390/ijms18081761] [PMID: 28805696]
[65]
Arita, M.; Koike, J.; Yoshikawa, N.; Kondo, M.; Hemmi, H. Licochalcone A inhibits BDNF and TrkB gene expression and hypoxic growth of human tumor cell lines. Int. J. Mol. Sci., 2020, 21(2), 506.
[http://dx.doi.org/10.3390/ijms21020506] [PMID: 31941116]
[66]
Chang, W.; Chen, G.; Feng, Y.; Li, B.; Li, N.; Li, S.; Li, X.; Zhang, J.; Zhou, D. Licochalcone A reverses NNK-induced ectopic miRNA expression to elicit in vitro and in vivo chemopreventive effects. Phytomed., 2020, 76e153245
[http://dx.doi.org/10.1016/j.phymed.2020.153245]
[67]
Komoto, T.T.; Bernardes, T.M.; Mesquita, T.B.; Bortolotto, L.F.B.; Silva, G.; Bitencourt, T.A.; Baek, S.J.; Marins, M.; Fachin, A.L. Chalcones repressed the AURKA and MDR proteins involved in metastasis and multiple drug resistance in breast cancer cell lines. Molecules, 2018, 23(8)e2018
[http://dx.doi.org/10.3390/molecules23082018] [PMID: 30104527]
[68]
Hu, C.; Zuo, Y.; Liu, J.; Xu, H.; Liao, W.; Dang, Y.; Luo, C.; Tang, L.; Zhang, H. Licochalcone A suppresses the proliferation of sarcoma HT-1080 cells, as a selective R132C mutant IDH1 inhibitor. Bioorg. Med. Chem. Lett., 2020, 30(2)126825
[http://dx.doi.org/10.1016/j.bmcl.2019.126825] [PMID: 31836442]
[69]
Wu, C.P.; Lusvarghi, S.; Hsiao, S.H.; Liu, T.C.; Li, Y.Q.; Huang, Y.H.; Hung, T.H.; Ambudkar, S.V. Licochalcone A selectively resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. J. Nat. Prod., 2020, 83(5), 1461-1472.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01022] [PMID: 32347726]
[70]
Szliszka, E.; Jaworska, D.; Ksek, M.; Czuba, Z.P.; Król, W. Targeting death receptor TRAIL-R2 by chalcones for TRAIL-induced apoptosis in cancer cells. Int. J. Mol. Sci., 2012, 13(11), 15343-15359.
[http://dx.doi.org/10.3390/ijms131115343] [PMID: 23203129]
[71]
Kang, Y.; Park, M.A.; Heo, S.W.; Park, S.Y.; Kang, K.W.; Park, P.H.; Kim, J.A. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Subj., 2013, 1830(3), 2638-2648.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.005] [PMID: 23246576]
[72]
Kim, S.Y.; Lee, I.S.; Moon, A. 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. Chem. Biol. Interact., 2013, 203(3), 565-572.
[http://dx.doi.org/10.1016/j.cbi.2013.03.012] [PMID: 23562496]
[73]
Tan, K.W.; Cooney, J.; Jensen, D.; Li, Y.; Paxton, J.W.; Birch, N.P.; Scheepens, A. Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol. Nutr. Food Res., 2014, 58(11), 2099-2110.
[http://dx.doi.org/10.1002/mnfr.201400288] [PMID: 25044854]
[74]
Liu, M.; Yin, H.; Qian, X.; Dong, J.; Qian, Z.; Miao, J. Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules, 2016, 22(1)e36
[http://dx.doi.org/10.3390/molecules22010036] [PMID: 28036030]
[75]
Adem, F.A.; Kuete, V.; Mbaveng, A.T.; Heydenreich, M.; Koch, A.; Ndakala, A.; Irungu, B.; Yenesew, A.; Efferth, T. Cytotoxic flavonoids from two Lonchocarpus species. Nat. Prod. Res., 2019, 33(18), 2609-2617.
[http://dx.doi.org/10.1080/14786419.2018.1462179] [PMID: 29656660]
[76]
Kuete, V.; Mbaveng, A.T.; Zeino, M.; Ngameni, B.; Kapche, G.D.W.F.; Kouam, S.F.; Ngadjui, B.T.; Efferth, T. Cytotoxicity of two naturally occurring flavonoids (dorsmanin F and poinsettifolin B) towards multi-factorial drug-resistant cancer cells. Phytomed., 2015, 22(7-8), 737-743.
[http://dx.doi.org/10.1016/j.phymed.2015.04.007] [PMID: 26141760]
[77]
Wu, W.; Ma, B.; Ye, H.; Wang, T.; Wang, X.; Yang, J.; Wei, Y.; Zhu, J.; Chen, L. Millepachine, a potential topoisomerase II inhibitor induces apoptosis via activation of NF-κB pathway in ovarian cancer. Oncotarget, 2016, 7(32), 52281-52293.
[http://dx.doi.org/10.18632/oncotarget.10739] [PMID: 27447570]
[78]
Wu, W.; Liu, Y.; Ye, H.; Li, Z. Millepachine showed novel antitumor effects in cisplatin-resistant human ovarian cancer through inhibiting drug efflux function of ATP-binding cassette transporters. Phytother. Res., 2018, 32(12), 2428-2435.
[http://dx.doi.org/10.1002/ptr.6180] [PMID: 30123958]
[79]
Mehndiratta, S.; Sharma, S.; Kumar, S.; Nepai, K. Molecular hybrids with anticancer activity. Top. Anticancer Res., 2015, 4, 383-454.
[80]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev., 2020, 40(3), 931-971.
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[81]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[82]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[83]
Coman, F.M.; Mbaveng, A.T.; Leonte, D.; Bencze, L.C.; Vlase, L.; Imre, S.; Kuete, V.; Efferth, T.; Zaharia, V. Heterocycles 44. Synthesis, characterization and anticancer activity of new thiazole ortho-hydroxychalcones. Med. Chem. Res., 2018, 27, 1396-1407.
[http://dx.doi.org/10.1007/s00044-018-2156-2]
[84]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Srinivas, C.; Pushpavalli, S.N.C.V.L.; Pal, D.; Pal-Bhadra, M. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 2010, 5(11), 1937-1947.
[http://dx.doi.org/10.1002/cmdc.201000346] [PMID: 20836120]
[85]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org//10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[86]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183111691
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[87]
Han, Y.; Dong, W.; Guo, Q.; Li, X.; Huang, L. The importance of indole and azaindole scaffold in the development of antitumor agents. Eur. J. Med. Chem., 2020, 203112506
[http://dx.doi.org/10.1016/j.ejmech.2020.112506] [PMID: 32688198]
[88]
Jia, Y.; Wen, X.; Gong, Y.; Wang, X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur. J. Med. Chem., 2020, 200112359
[http://dx.doi.org/10.1016/j.ejmech.2020.112359] [PMID: 32531682]
[89]
Cong, H.; Zhao, X.; Castle, B.T.; Pomeroy, E.J.; Zhou, B.; Lee, J.; Wang, Y.; Bian, T.; Miao, Z.; Zhang, W.; Sham, Y.Y.; Odde, D.J.; Eckfeldt, C.E.; Xing, C.; Zhuang, C. An indole-chalcone inhibits multidrug-resistant cancer cell growth by targeting microtubules. Mol. Pharm., 2018, 15(9), 3892-3900.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00359] [PMID: 30048137]
[90]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00021] [PMID: 27149641]
[91]
Robinson, M.W.; Overmeyer, J.H.; Young, A.M.; Erhardt, P.W.; Maltese, W.A. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J. Med. Chem., 2012, 55(5), 1940-1956.
[http://dx.doi.org/10.1021/jm201006x] [PMID: 22335538]
[92]
Du, S.; Sarver, J.G.; Trabbic, C.J.; Erhardt, P.W.; Schroering, A.; Maltese, W.A. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother. Pharmacol., 2019, 83(2), 237-254.
[http://dx.doi.org/10.1007/s00280-018-3726-1] [PMID: 30426158]
[93]
Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg. Med. Chem., 2014, 22(7), 2060-2079.
[http://dx.doi.org/10.1016/j.bmc.2014.02.028] [PMID: 24629450]
[94]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[95]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[96]
Li, H.T.; Zhu, X. Quinoline-based compounds with potential activity against drug-resistant cancers Curr. Top. Med. Chem, 2020. (ePub ahead of print)
[http://dx.doi.org//10.2174/1568026620666200618113957] [PMID: 32552650]
[97]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[98]
Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202e127310
[http://dx.doi.org/10.1016/j.molstruc.2019.127310]
[99]
Podolski-Renić, A.; Bősze, S.; Dinić, J.; Kocsis, L.; Hudecz, F.; Csámpai, A.; Pešić, M. Ferrocene-cinchona hybrids with triazolyl-chalcone linkers act as pro-oxidants and sensitize human cancer cell lines to paclitaxel. Metallomics, 2017, 9(8), 1132-1141.
[http://dx.doi.org/10.1039/C7MT00183E] [PMID: 28737782]
[100]
Čižmáriková, M.; Takáč, P.; Spengler, G.; Kincses, A.; Nové, M.; Vilková, M.; Mojžiš, J. New chalcone derivative inhibits ABCB1 in multidrug resistant T-cell lymphoma and colon adenocarcinoma cells. Anticancer Res., 2019, 39(12), 6499-6505.
[http://dx.doi.org/10.21873/anticanres.13864] [PMID: 31810914]
[101]
Takac, P.; Kello, M.; Pilatova, M.B.; Kudlickova, Z.; Vilkova, M.; Slepcikova, P.; Petik, P.; Mojzis, J. New chalcone derivative exhibits antiproliferative potential by inducing G2/M cell cycle arrest, mitochondrial-mediated apoptosis and modulation of MAPK signalling pathway. Chem. Biol. Interact., 2018, 292, 37-49.
[http://dx.doi.org/10.1016/j.cbi.2018.07.005] [PMID: 29981726]
[102]
Lindamulage, I.K.; Vu, H.Y.; Karthikeyan, C.; Knockleby, J.; Lee, Y.F.; Trivedi, P.; Lee, H. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci. Rep., 2017, 7(1), 10298.
[http://dx.doi.org/10.1038/s41598-017-10972-0] [PMID: 28860494]
[103]
Huang, X.; Wang, M.; Wang, C.; Hu, W.; You, Q.; Ma, T.; Jia, Q.; Yu, C.; Liao, Z.; Wang, H. Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorg. Chem., 2020, 94103486
[http://dx.doi.org/10.1016/j.bioorg.2019.103486] [PMID: 31818482]
[104]
Pérès, B.; Nasr, R.; Zarioh, M.; Lecerf-Schmidt, F.; Di Pietro, A.; Baubichon-Cortay, H.; Boumendjel, A. Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity. Eur. J. Med. Chem., 2017, 130, 346-353.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.064] [PMID: 28273561]
[105]
Wang, R.; Chen, H.; Yan, W.; Zheng, M.; Zhang, T.; Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem., 2020, 190112109
[http://dx.doi.org//10.1016/j.ejmech.2020.112109] [PMID: 32032851]
[106]
Santos, M.M.; Bastos, P.; Catela, I.; Zalewska, K.; Branco, L.C. Recent advances of metallocenes for medicinal chemistry. Mini Rev. Med. Chem., 2017, 17(9), 771-784.
[http://dx.doi.org//10.2174/1389557516666161031141620] [PMID: 27804886]
[107]
Ong, Y.C.; Gasser, G. Organometallic compounds in drug discovery: Past, present and future Drug Discov. Today. Technol, 2020. (ePub ahead of print)
[http://dx.doi.org//10.1016/j.ddtec.2019.06.001]
[108]
Han, X.; Sun, J.; Wang, Y.; He, Z. Recent advances in platinum(IV) complex-based delivery systems to improve platinum (II) anticancer therapy. Med. Res. Rev., 2015, 35(6), 1268-1299.
[http://dx.doi.org/10.1002/med.21360] [PMID: 26280923]
[109]
Huang, X.; Hua, S.; Huang, R.; Liu, Z.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Dual-targeting antitumor hybrids derived from Pt(IV) species and millepachine analogues. Eur. J. Med. Chem., 2018, 148, 1-25.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.012] [PMID: 29448138]
[110]
Huang, X.; Huang, R.; Wang, Z.; Li, L.; Gou, S.; Liao, Z.; Wang, H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur. J. Med. Chem., 2018, 146, 435-450.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.075] [PMID: 29407969]
[111]
Cao, D.; Han, X.; Wang, G.; Yang, Z.; Peng, F.; Ma, L.; Zhang, R.; Ye, H.; Tang, M.; Wu, W.; Lei, K.; Wen, J.; Chen, J.; Qiu, J.; Liang, X.; Ran, Y.; Sang, Y.; Xiang, M.; Peng, A.; Chen, L. Synthesis and biological evaluation of novel pyranochalcone derivatives as a new class of microtubule stabilizing agents. Eur. J. Med. Chem., 2013, 62, 579-589.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.007] [PMID: 23425970]
[112]
Yang, J.; Yan, W.; Yu, Y.; Wang, Y.; Yang, T.; Xue, L.; Yuan, X.; Long, C.; Liu, Z.; Chen, X.; Hu, M.; Zheng, L.; Qiu, Q.; Pei, H.; Li, D.; Wang, F.; Bai, P.; Wen, J.; Ye, H.; Chen, L. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J. Biol. Chem., 2018, 293(24), 9461-9472.
[http://dx.doi.org/10.1074/jbc.RA117.001658] [PMID: 29691282]
[113]
Yang, Z.; Wu, W.; Wang, J.; Liu, L.; Li, L.; Yang, J.; Wang, G.; Cao, D.; Zhang, R.; Tang, M.; Wen, J.; Zhu, J.; Xiang, W.; Wang, F.; Ma, L.; Xiang, M.; You, J.; Chen, L. Synthesis and biological evaluation of novel millepachine derivatives as a new class of tubulin polymerization inhibitors. J. Med. Chem., 2014, 57(19), 7977-7989.
[http://dx.doi.org/10.1021/jm500849z] [PMID: 25208345]
[114]
Qi, Z.; Liu, M.; Liu, Y.; Zhang, M.; Yang, G. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells. PLoS One, 2014, 9(9)e106206
[http://dx.doi.org/10.1371/journal.pone.0106206] [PMID: 25180593]
[115]
Huang, X.; Huang, R.; Li, L.; Gou, S.; Wang, H. Synthesis and biological evaluation of novel chalcone derivatives as a new class of microtubule destabilizing agents. Eur. J. Med. Chem., 2017, 132, 11-25.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.031] [PMID: 28340411]
[116]
Jeong, J.H.; Oh, Y.J.; Kwon, T.K.; Seo, Y.H. Chalcone-templated Hsp90 inhibitors and their effects on gefitinib resistance in non-small cell lung cancer (NSCLC). Arch. Pharm. Res., 2017, 40(1), 96-105.
[http://dx.doi.org/10.1007/s12272-016-0848-z] [PMID: 27770383]
[117]
Jung, E.; Koh, D.; Lim, Y.; Shin, S.Y.; Lee, Y.H. Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells. BMB Rep., 2020, 53(2), 88-93.
[http://dx.doi.org/10.5483/BMBRep.2020.53.2.108] [PMID: 31401981]
[118]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.028] [PMID: 29627654]
[119]
Shin, S.Y.; Jung, H.; Ahn, S.; Hwang, D.; Yoon, H.; Hyun, J.; Yong, Y.; Cho, H.J.; Koh, D.; Lee, Y.H.; Lim, Y. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorg. Med. Chem., 2014, 22(6), 1809-1820.
[http://dx.doi.org/10.1016/j.bmc.2014.01.058] [PMID: 24565968]
[120]
Saito, Y.; Mizokami, A.; Tsurimoto, H.; Izumi, K.; Goto, M.; Nakagawa-Goto, K. 5′-Chloro-2,2′-dihydroxychalcone and related flavanoids as treatments for prostate cancer. Eur. J. Med. Chem., 2018, 157, 1143-1152.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.069] [PMID: 30189396]
[121]
Zhu, C.; Zuo, Y.; Wang, R.; Liang, B.; Yue, X.; Wen, G.; Shang, N.; Huang, L.; Chen, Y.; Du, J.; Bu, X. Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence. J. Med. Chem., 2014, 57(15), 6364-6382.
[http://dx.doi.org/10.1021/jm500024v] [PMID: 25061803]
[122]
Park, J.E.; Piao, M.J.; Kang, K.A.; Shilnikova, K.; Hyun, Y.J.; Oh, S.K.; Jeong, Y.J.; Chae, S.; Hyun, J.W. A benzylideneacetophenone derivative induces apoptosis of radiation-resistant human breast cancer cells via oxidative stress. Biomol. Ther. (Seoul), 2017, 25(4), 404-410.
[http://dx.doi.org//10.4062/biomolther.2017.010] [PMID: 28554201]
[123]
Karpaviciene, I.; Cikotiene, I.; Padrón, J.M. Synthesis and antiproliferative activity of α-branched α,β-unsaturated ketones. Eur. J. Med. Chem., 2013, 70, 568-578.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.041] [PMID: 24211632]
[124]
Riaz, S.; Iqbal, M.; Ullah, R.; Zahra, R.; Chotana, G.A.; Faisal, A.; Saleem, R.S.Z. Synthesis and evaluation of novel α-substituted chalcones with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg. Chem., 2019, 87, 123-135.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.014] [PMID: 30884306]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy