Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Recent Advancements in Nanotechnology for Oral Cancer: a Review

Author(s): Dipali R. Talele and Deepa H. Patel*

Volume 16, Issue 1, 2021

Published on: 21 October, 2020

Page: [45 - 53] Pages: 9

DOI: 10.2174/1574885515999201021165906

Price: $65

Abstract

Background: Oral cancer is the life threatening disease causing mortality. The majority of chemotherapeutic anticancer agents are toxic to healthy tissues, have poor bioavailability and affect the quality of life of the patients.

Objective: The main challenge in the treatment of oral cancer is the effective and safe delivery of chemotherapeutic anticancer drugs. This present review deals with the recent advancement in the nanotechnologies and its probable applications in the oral cancer treatment.

Methods: This review includes a gist of suitable literature.

Results: Nanotechnology brings novel methodologies or modifications in current anticancer therapies to improve individual wellbeing and survival.

Conclusion: Nanotechnology put forward the potential of increasing the efficacy of the therapy and targeted drug delivery, which in turn increase drug absorption and bioavailability at the site of tumour. Different nanocarriers include liposomes, polymeric nanoparticles, inorganic nanoparticles, combinational (polymeric- inorganic) nanoparticles, magnetic nanoparticles, nanolipids, hydrogels, dendrimers and polymeric micelles. This review confers development of new drug delivery approaches for effective therapeutic outcomes and abating the toxicity to healthy tissues.

Keywords: Nanoparticles, oral cancer, targeted delivery, drug delivery system, controlled drug delivery, liposomes.

Graphical Abstract

[1]
Eaton L. World cancer rates set to double by 2020. BMJ 2003; 326(7392): 728.
[http://dx.doi.org/10.1136/bmj.326.7392.728/a] [PMID: 12676827]
[2]
World Health Organization. 2020. Available from: https://www.who.int/cancer/prevention/diagnosis-screening/oral-cancer/en
[3]
American Society of Clinical Oncology (ASCO) 2005-2020 Available from: https://www.cancer.net/cancer-types/oral-and-oropharyngeal-cancer/risk-factors-and-prevention
[4]
FDA Approved Drugs in Oncology, CenterWatch Available from: https://www.centerwatch.com/druginformation/fda-approved-drugs/therapeutic-area/12/oncology
[5]
Furness S, Glenny AM, Worthington HV, et al. Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. Cochrane Database of Syst Rev 2010; (9): CD006386
[http://dx.doi.org/10.1002/14651858.CD006386.pub3]
[6]
Alok A, Panat S, Aggarwal A, Upadhyay N, Agarwal N, Kishore M. Nanotechnology: a boon in oral cancer diagnosis and therapeutics. SRM J Res Dental Sci 2013; 4(4): 154.
[http://dx.doi.org/10.4103/0976-433X.125591]
[7]
McNeil SE. Nanotechnology for the biologist. J Leukoc Biol 2005; 78(3): 585-94.
[http://dx.doi.org/10.1189/jlb.0205074] [PMID: 15923216]
[8]
Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 2006; 6(3): 307-18.
[http://dx.doi.org/10.1586/14737159.6.3.307] [PMID: 16706735]
[9]
Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58(14): 1456-9.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[10]
Savla R, Ivanova V, Minko T. Nanoparticles in the development of therapeutic cancer vaccines. Pharm Nanotechnol 2014; 2(1): 2-2.
[http://dx.doi.org/10.2174/2211738502666140220004628]
[11]
Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2011; 12(1): 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[12]
Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urologic Oncol 2008; 26(1): 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015]
[13]
Sing J. Tremendous potential for cancer treatment: Nanotechnology. Indian Pharmacist 2008; 8: 23-6.
[14]
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155(3): 344-57.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[15]
Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine 2014; 9: 3719-35.
[http://dx.doi.org/10.2147/IJN.S61670] [PMID: 25143724]
[16]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[17]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[18]
Brewer E, Coleman J, Lowman A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater 2011; 2011Article ID 408675
[http://dx.doi.org/10.1155/2011/408675]
[19]
Neha B, Ganesh B, Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. Intl J Pharma Life Sci 2013; 2(3): 107-32.
[http://dx.doi.org/10.3329/ijpls.v2i3.15457]
[20]
Tiyaboonchai W, Madhusudhan B. Fabrication and characterization of genistein encapsulated poly (D, L) lactic acid nanoparticles for pharmaceutical application. Curr Nanosci 2013; 9(2): 293-302.
[http://dx.doi.org/10.2174/1573413711309020021]
[21]
Kamimura M, Furukawa T, Akiyama SI, Nagasaki Y. Enhanced intracellular drug delivery of pH-sensitive doxorubicin/poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate) nanoparticles in multi-drug resistant human epidermoid KB carcinoma cells. Biomater Sci 2013; 1(4): 361-7.
[http://dx.doi.org/10.1039/c2bm00156j] [PMID: 32481901]
[22]
Ren F, Chen R, Wang Y, Sun Y, Jiang Y, Li G. Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res 2011; 28(4): 897-906.
[http://dx.doi.org/10.1007/s11095-010-0346-9] [PMID: 21184150]
[23]
Du F, Meng H, Xu K, et al. CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B Biointerfaces 2014; 113: 230-6.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.015] [PMID: 24096159]
[24]
Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002; 16(10): 1217-26.
[http://dx.doi.org/10.1096/fj.02-0088com] [PMID: 12153989]
[25]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003 ] [PMID: 22125349]
[26]
Endo K, Ueno T, Kondo S, et al. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci 2013; 104(3): 369-74.
[http://dx.doi.org/10.1111/cas.12079] [PMID: 23216802]
[27]
Boulikas T, Vougiouka M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. (review). Oncol Rep 2004; 11(3): 559-95.
[http://dx.doi.org/10.3892/or.11.3.559] [PMID: 14767508]
[28]
Uchino H, Matsumura Y, Negishi T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 2005; 93(6): 678-87.
[http://dx.doi.org/10.1038/sj.bjc.6602772] [PMID: 16222314]
[29]
Srivastava S, Gupta S, Mohammad S, Ahmad I. Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma. J Cancer Res Ther 2019; 15(3): 480-90.
[http://dx.doi.org/10.4103/jcrt.JCRT_263_18] [PMID: 31169208]
[30]
Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 2011; 153(3): 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[31]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[32]
Abbad S, Wang C, Waddad AY, Lv H, Zhou J. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate. Int J Nanomedicine 2015; 10: 305-20.
[PMID: 25609946]
[33]
Neophytou CM, Constantinou AI. Drug delivery innovations for enhancing the anticancer potential of vitamin E isoforms and their derivatives. BioMed Res Int 2015; 2015584862
[http://dx.doi.org/10.1155/2015/584862] [PMID: 26137487]
[34]
Subudhi MB, Jain A, Jain A, et al. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials (Basel) 2015; 8(3): 832-49.
[http://dx.doi.org/10.3390/ma8030832] [PMID: 28787974]
[35]
Yang SJ, Lin CF, Kuo ML, Tan CT. Photodynamic detection of oral cancers with high-performance chitosan-based nanoparticles. Biomacromolecules 2013; 14(9): 3183-91.
[http://dx.doi.org/10.1021/bm400820s] [PMID: 23909559]
[36]
Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 2013; 110: 313-20.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.039] [PMID: 23732810]
[37]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 2008; 75(4): 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[38]
Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 2004; 111(5): 679-92.
[http://dx.doi.org/10.1002/ijc.20333] [PMID: 15252836]
[39]
Chang KW, Hung PS, Lin IY, et al. Curcumin upregulates insulin-like growth factor binding protein-5 (IGFBP-5) and C/EBPalpha during oral cancer suppression. Int J Cancer 2010; 127(1): 9-20.
[http://dx.doi.org/10.1002/ijc.25220] [PMID: 20127863]
[40]
Mazzarino L, Travelet C, Ortega-Murillo S, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci 2012; 370(1): 58-66.
[http://dx.doi.org/10.1016/j.jcis.2011.12.063] [PMID: 22284577]
[41]
Mazzarino L, Loch-Neckel G, Bubniak Ldos S, et al. Curcumin-loaded chitosan-coated nanoparticles as a new approach for the local treatment of oral cavity cancer. J Nanosci Nanotechnol 2015; 15(1): 781-91.
[http://dx.doi.org/10.1166/jnn.2015.9189] [PMID: 26328442]
[42]
Jones M, Leroux J. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48(2): 101-11.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9 ] [PMID: 10469928]
[43]
Bromberg L. Polymeric micelles in oral chemotherapy. J Control Release 2008; 128(2): 99-112.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.018] [PMID: 18325619]
[44]
Shi L, Song XB, Wang Y, et al. Docetaxel-conjugated monomethoxy-poly (ethylene glycol)-b-poly (lactide)(mPEG-PLA) polymeric micelles to enhance the therapeutic efficacy in oral squamous cell carcinoma. RSC Advances 2016; 6(49): 42819-26.
[http://dx.doi.org/10.1039/C6RA03332F]
[45]
Hattori Y, Maitani Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J Control Release 2004; 97(1): 173-83.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.007] [PMID: 15147814]
[46]
Ramasamy T, Choi JY, Cho HJ, et al. Polypeptide-based micelles for delivery of irinotecan: physicochemical and in vivo characterization. Pharm Res 2015; 32(6): 1947-56.
[http://dx.doi.org/10.1007/s11095-014-1588-8] [PMID: 25471199]
[47]
Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol 2012; 10(1): 38.
[http://dx.doi.org/10.1186/1477-3155-10-38] [PMID: 22937885]
[48]
Jin BZ, Dong XQ, Xu X, Zhang FH. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol Lett 2018; 15(2): 2541-9.
[PMID: 29434971]
[49]
Konopka K, Fallah B, Monzon-Duller J, Overlid N, Düzgünes N. Serum-resistant gene transfer to oral cancer cells by Metafectene and GeneJammer: application to HSV-tk/ganciclovir-mediated cytotoxicity. Cell Mol Biol Lett 2005; 10(3): 455-70.
[PMID: 16217556]
[50]
Figueiró Longo JP, Muehlmann LA, Velloso NV, Simioni AR, Lozzi SP. Effects of photodynamic therapy mediated by liposomal aluminum-phthalocyanine chloride on chemically induced tongue tumors. Chemotherapy 2012; 1(103): 2.
[51]
Velloso NV, Muehlmann LA, Longo JP, et al. Aluminum-phthalocyanine chloride-based photodynamic therapy inhibits PI3K/Akt/Mtor pathway in oral squamous cell carcinoma cells in vitro. Chemotherapy 2012; 1(107): 5.
[52]
Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2012; 2(5): 439-49.
[http://dx.doi.org/10.1016/j.apsb.2012.07.004]
[53]
Hu J, Zhang NA, Wang R, Huang F, Li G. Paclitaxel induces apoptosis and reduces proliferation by targeting epidermal growth factor receptor signaling pathway in oral cavity squamous cell carcinoma. Oncol Lett 2015; 10(4): 2378-84.
[http://dx.doi.org/10.3892/ol.2015.3499] [PMID: 26622855]
[54]
Li W, Tao C, Wang J, Le Y, Zhang J. MMP-responsive in situ forming hydrogel loaded with doxorubicin-encapsulated biodegradable micelles for local chemotherapy of oral squamous cell carcinoma. RSC Advances 2019; 9(54): 31264-73.
[http://dx.doi.org/10.1039/C9RA04343H]
[55]
Dalwadi C, Patel G. Thermosensitive nanohydrogel of 5-fluorouracil for head and neck cancer: preparation, characterization and cytotoxicity assay. Intl J Nanomedicine 2018; 13((T-NANO 2014 Abstracts)): 31-3.
[56]
Nastruzzi C, Ed. Lipospheres in drug targets and delivery: approaches, methods, and applications. CRC Press 2004.
[http://dx.doi.org/10.1201/9780203505281]
[57]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[58]
Bharadwaj R, Sahu BP, Haloi J, et al. Combinatorial therapeutic approach for treatment of oral squamous cell carcinoma. Artif Cells Nanomed Biotechnol 2019; 47(1): 572-85.
[http://dx.doi.org/10.1080/21691401.2019.1573176 ] [PMID: 30831033]
[59]
Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 2005; 102(38): 13604-9.
[http://dx.doi.org/10.1073/pnas.0506390102] [PMID: 16157892]
[60]
Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 2008; 105(32): 11105-9.
[http://dx.doi.org/10.1073/pnas.0804226105] [PMID: 18678913]
[61]
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond) 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[62]
Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[63]
Iida S, Shimada J, Sakagami H. Cytotoxicity induced by docetaxel in human oral squamous cell carcinoma cell lines. In Vivo 2013; 27(3): 321-2.
[64]
Liu D, Liu Z, Wang L, Zhang C, Zhang N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces 2011; 85(2): 262-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[65]
Zhang T, Chen J, Zhang Y, Shen Q, Pan W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci 2011; 43(3): 174-9.
[http://dx.doi.org/10.1016/j.ejps.2011.04.005] [PMID: 21530654]
[66]
Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2012; 9(5): 585-98.
[http://dx.doi.org/10.1517/17425247.2012.668523 ] [PMID: 22512597]
[67]
Srivastava S, Mohammad S, Gupta S, et al. Chemoprotective effect of nanocurcumin on 5-fluorouracil-induced-toxicity toward oral cancer treatment. Natl J Maxillofac Surg 2018; 9(2): 160-6.
[http://dx.doi.org/10.4103/njms.NJMS_27_18] [PMID: 30546230]
[68]
Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int J Nanomedicine 2015; 10: 1569-84.
[PMID: 25759580]
[69]
Haley B, Frenkel E. Dendrimers-delivered short hairpin RNA targeting hTERT inhibits oral cancer cell growth in vitro and in vivo. Biochemical pharmacology 2008; 82(1): 17-23.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015]
[70]
Liu X, Huang H, Wang J, et al. Dendrimers-delivered short hairpin RNA targeting hTERT inhibits oral cancer cell growth in vitro and in vivo. Biochem Pharmacol 2011; 82(1): 17-23.
[http://dx.doi.org/10.1016/j.bcp.2011.03.017] [PMID: 21453684]
[71]
Subramani K, Ahmed W. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano letters 2012; 5(5): 829-34.
[http://dx.doi.org/10.1016/B978-1-4557-7862-1.00019-5]
[72]
El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005; 5(5): 829-34.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[73]
Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 2004; 11(6): 349-63.
[http://dx.doi.org/10.1016/j.ultsonch.2004.03.004] [PMID: 15302020]
[74]
Moosavi Nejad S, Takahashi H, Hosseini H, et al. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason Sonochem 2016; 32: 95-101.
[http://dx.doi.org/10.1016/j.ultsonch.2016.02.026] [PMID: 27150750]
[75]
Shchipunov YA, Burtseva YV, Karpenko TY, Shevchenko NM, Zvyagintseva TN. Highly efficient immobilization of endo-1, 3-β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J Mol Catal, B Enzym 2006; 40(1-2): 16-23.
[http://dx.doi.org/10.1016/j.molcatb.2006.02.002]
[76]
Shi XL, Li Y, Zhao LM, Su LW, Ding G. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf B Biointerfaces 2019; 173: 599-606.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.076] [PMID: 30352381]
[77]
Wang D, Xu X, Zhang K, et al. Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. Int J Nanomedicine 2017; 13: 187-98.
[http://dx.doi.org/10.2147/IJN.S150610] [PMID: 29343957]
[78]
Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 2014; 292(9): 2025-52.
[http://dx.doi.org/10.1007/s00396-014-3357-y]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy