Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs

Author(s): Phuong H.L. Tran, Beom-Jin Lee and Thao T.D. Tran*

Volume 27, Issue 12, 2021

Published on: 21 October, 2020

Page: [1498 - 1506] Pages: 9

DOI: 10.2174/1381612826666201021125844

Price: $65

Abstract

Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.

Keywords: Solid dispersion, fast-dissolving, controlled release, poorly water-soluble drugs, oral delivery, polymers.

[1]
Fine-Shamir N, Beig A, Miller JM, Dahan A. The solubility, permeability and the dose as key factors in formulation development for oral lipophilic drugs: Maximizing the bioavailability of carbamazepine with a cosolvent-based formulation. Int J Pharm 2020; 582: 119307.[http://dx.doi.org/10.1016/j.ijpharm.2020.119307] [PMID: 32276090]
[2]
Bergström CAS, Larsson P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int J Pharm 2018; 540(1-2): 185-93.[http://dx.doi.org/10.1016/j.ijpharm.2018.01.044] [PMID: 29421301]
[3]
Morgen M, Saxena A, Chen X-Q, et al. Lipophilic salts of poorly soluble compounds to enable high-dose lipidic SEDDS formulations in drug discovery. Eur J Pharm Biopharm 2017; 117: 212-23.[http://dx.doi.org/10.1016/j.ejpb.2017.04.021] [PMID: 28438550]
[4]
Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 2007; 59(7): 546-67.[http://dx.doi.org/10.1016/j.addr.2007.05.007] [PMID: 17604872]
[5]
Kuentz M, Imanidis G. In silico prediction of the solubility advantage for amorphous drugs - Are there property-based rules for drug discovery and early pharmaceutical development? Eur J Pharm Sci 2013; 48(3): 554-62.[http://dx.doi.org/10.1016/j.ejps.2012.11.015] [PMID: 23262058]
[6]
Bharate SS, Vishwakarma RA. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery. Bioorg Med Chem Lett 2015; 25(7): 1561-7.[http://dx.doi.org/10.1016/j.bmcl.2015.02.013] [PMID: 25740159]
[7]
Uchiyama H, Kadota K, Nakanishi A, Tandia M, Tozuka Y. A simple blending with α-glycosylated naringin produces enhanced solubility and absorption of pranlukast hemihydrate. Int J Pharm 2019; 567: 118490.[http://dx.doi.org/10.1016/j.ijpharm.2019.118490] [PMID: 31271814]
[8]
Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today 2012; 17(9-10): 486-95.[http://dx.doi.org/10.1016/j.drudis.2011.11.007] [PMID: 22138563]
[9]
Kumar R. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: A literature survey. J Drug Deliv Sci Technol 2019; 53: 101221.[http://dx.doi.org/10.1016/j.jddst.2019.101221]
[10]
Rao Q, Qiu Z, Huang D, et al. Enhancement of the apparent solubility and bioavailability of Tadalafil nanoparticles via antisolvent precipitation. Eur J Pharm Sci 2019; 128: 222-31.[http://dx.doi.org/10.1016/j.ejps.2018.12.005] [PMID: 30553058]
[11]
Morina D, Sessevmez M, Sinani G, Mülazımoğlu L, Cevher E. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. J Drug Deliv Sci Technol 2020; 57: 101742.[http://dx.doi.org/10.1016/j.jddst.2020.101742]
[12]
Abuzar SM, Hyun S-M, Kim J-H, et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm 2018; 538(1-2): 1-13.[http://dx.doi.org/10.1016/j.ijpharm.2017.12.041] [PMID: 29278733]
[13]
Shaker MA, Elbadawy HM, Shaker MA. Improved solubility, dissolution, and oral bioavailability for atorvastatin-Pluronic® solid dispersions. Int J Pharm 2020; 574: 118891.[http://dx.doi.org/10.1016/j.ijpharm.2019.118891] [PMID: 31786357]
[14]
Tran TTD, Tran PHL, Lee BJ. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009; 72(1): 83-90.[http://dx.doi.org/10.1016/j.ejpb.2008.12.009] [PMID: 19141319]
[15]
Tran TTD, Tran PHL, Choi HG, Han HK, Lee BJ. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 2010; 384(1-2): 60-6.[http://dx.doi.org/10.1016/j.ijpharm.2009.09.039] [PMID: 19782736]
[16]
Tannergren C, Karlsson E, Sigfridsson K, et al. Biopharmaceutic Profiling of Salts to Improve Absorption of Poorly Soluble Basic Drugs. J Pharm Sci 2016; 105(11): 3314-23.[http://dx.doi.org/10.1016/j.xphs.2016.07.016] [PMID: 27637320]
[17]
Miyasaka R, Kikukawa K, Sakuma S. Enhanced solubility and intestinal absorption of cisplatin by coating with nano-hydroxyapatite. J Drug Deliv Sci Technol 2016; 35: 294-302.[http://dx.doi.org/10.1016/j.jddst.2016.08.005]
[18]
Aboudiab B, Tehrani-Bagha AR, Patra D. Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants. Colloids Surf A Physicochem Eng Asp 2020; 592: 124602.[http://dx.doi.org/10.1016/j.colsurfa.2020.124602]
[19]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007; 4(6): 807-18.[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[20]
Bērziņš K, Kons A, Grante I, Dzabijeva D, Nakurte I, Actiņš A. Multi-technique approach for qualitative and quantitative characterization of furazidin degradation kinetics under alkaline conditions. J Pharm Biomed Anal 2016; 129: 433-40.[http://dx.doi.org/10.1016/j.jpba.2016.07.039] [PMID: 27479759]
[21]
Cascone S, De Santis F, Lamberti G. Mimicking the contractions of a human stomach and their effect on pharmaceuticals. J Drug Deliv Sci Technol 2017; 41: 454-61.[http://dx.doi.org/10.1016/j.jddst.2017.09.008]
[22]
Newby D, Freitas AA, Ghafourian T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur J Med Chem 2015; 90: 751-65.[http://dx.doi.org/10.1016/j.ejmech.2014.12.006] [PMID: 25528330]
[23]
Suwannateep N, Banlunara W, Wanichwecharungruang SP, Chiablaem K, Lirdprapamongkol K, Svasti J. Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release 2011; 151(2): 176-82.[http://dx.doi.org/10.1016/j.jconrel.2011.01.011] [PMID: 21241751]
[24]
Jakubek M, Kejík Z, Kaplánek R, et al. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother 2019; 118: 109278.[http://dx.doi.org/10.1016/j.biopha.2019.109278] [PMID: 31387004]
[25]
Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562: 187-202.[http://dx.doi.org/10.1016/j.ijpharm.2019.02.045] [PMID: 30851386]
[26]
Sharma M, Sharma R, Jain DK, Saraf A. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study. Int J Biol Macromol 2019; 135: 246-60.[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.162] [PMID: 31128197]
[27]
Ibrahim AH, Smått J-H, Govardhanam NP, et al. Formulation and optimization of drug-loaded mesoporous silica nanoparticle-based tablets to improve the dissolution rate of the poorly water-soluble drug silymarin. Eur J Pharm Sci 2020; 142: 105103.[http://dx.doi.org/10.1016/j.ejps.2019.105103] [PMID: 31648050]
[28]
Herbrink M, Groenland SL, Huitema ADR, et al. Solubility and bioavailability improvement of pazopanib hydrochloride. Int J Pharm 2018; 544(1): 181-90.[http://dx.doi.org/10.1016/j.ijpharm.2018.04.037] [PMID: 29680279]
[29]
Rodriguez-Aller M, Guillarme D, Veuthey J-L, Gurny R. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol 2015; 30: 342-51.[http://dx.doi.org/10.1016/j.jddst.2015.05.009]
[30]
Stegemann S, Leveiller F, Franchi D, de Jong H, Lindén H. When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 2007; 31(5): 249-61.[http://dx.doi.org/10.1016/j.ejps.2007.05.110] [PMID: 17616376]
[31]
Naqvi STR, Rasheed T, Hussain D. Najam ul Haq, M.; Majeed, S.; shafi, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J Mol Liq 2020; 297: 111919.[http://dx.doi.org/10.1016/j.molliq.2019.111919]
[32]
Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 2019; 570: 118642.[http://dx.doi.org/10.1016/j.ijpharm.2019.118642] [PMID: 31446024]
[33]
Eugenia Morales P, Cruz J, Martínez C, Videa M, María Martínez L. Nano and micro dispersions of two-phase amorphous-amorphous drug formulations as strategy to enhance solubility of pharmaceuticals. Materials Today: Proceedings 2019; 13: 390-6.
[34]
Dib N, Fernández L, Santo M, et al. Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N, N′-dioxide derivative with antitumor activity. Heliyon 2019; 5(4): e01528.[http://dx.doi.org/10.1016/j.heliyon.2019.e01528] [PMID: 31049437]
[35]
Göke K, Lorenz T, Repanas A, et al. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm 2018; 126: 40-56.[http://dx.doi.org/10.1016/j.ejpb.2017.05.008] [PMID: 28532676]
[36]
Ignatova M, Manolova N, Rashkov I, Markova N. Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester - “in” and “on” strategies for enhanced solubility. Int J Pharm 2018; 545(1-2): 342-56.[http://dx.doi.org/10.1016/j.ijpharm.2018.05.013] [PMID: 29738797]
[37]
Kola-Mustapha AT, Armitage D, Abioye AO. Development of aqueous ternary nanomatrix films: A novel ‘green’ strategy for the delivery of poorly soluble drugs. Int J Pharm 2016; 515(1-2): 616-31.[http://dx.doi.org/10.1016/j.ijpharm.2016.11.017] [PMID: 27825861]
[38]
Petersen AB, Konotop G, Hanafiah NHM, et al. Strategies for improving the solubility and metabolic stability of griseofulvin analogues. Eur J Med Chem 2016; 116: 210-5.[http://dx.doi.org/10.1016/j.ejmech.2016.03.071] [PMID: 27061984]
[39]
Davis M, Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Control Release 2018; 269: 110-27.[http://dx.doi.org/10.1016/j.jconrel.2017.11.005] [PMID: 29117503]
[40]
Tran PHL, Duan W, Lee BJ, Tran TTD. Current Designs of Polymer Blends in Solid Dispersions for Improving Drug Bioavailability. Curr Drug Metab 2018; 19(13): 1111-8.[http://dx.doi.org/10.2174/1389200219666180628171100] [PMID: 29956619]
[41]
Tran PHL, Duan W, Lee BJ, Tran TTD. Modulation of Drug Crystallization and Molecular Interactions by Additives in Solid Dispersions for Improving Drug Bioavailability. Curr Pharm Des 2019; 25(18): 2099-107.[http://dx.doi.org/10.2174/1381612825666190618102717] [PMID: 31244413]
[42]
De Mohac LM, Raimi-Abraham B, Caruana R, Gaetano G, Licciardi M. Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. J Drug Deliv Sci Technol 2020; 57: 101750.[http://dx.doi.org/10.1016/j.jddst.2020.101750]
[43]
Tran PHL, Tran TTD. Dosage form designs for the controlled drug release of solid dispersions. Int J Pharm 2020; 581: 119274.[http://dx.doi.org/10.1016/j.ijpharm.2020.119274] [PMID: 32234566]
[44]
Sarabu S, Kallakunta VR, Bandari S, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: Effect of drug physicochemical properties. Carbohydr Polym 2020; 233: 115828.[http://dx.doi.org/10.1016/j.carbpol.2020.115828] [PMID: 32059882]
[45]
Wang F, Xiao X, Yuan Y, Liu J, Liu Y, Yi X. Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles. Food Chem 2020; 308: 125569.[http://dx.doi.org/10.1016/j.foodchem.2019.125569] [PMID: 31644967]
[46]
Wannasarit S, Mahattanadul S, Issarachot O, Puttarak P, Wiwattanapatapee R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. Eur J Pharm Sci 2020; 143: 105204.[http://dx.doi.org/10.1016/j.ejps.2019.105204] [PMID: 31870812]
[47]
Mendonsa N, Almutairy B, Kallakunta VR, et al. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol 2020; 55: 101459.[http://dx.doi.org/10.1016/j.jddst.2019.101459] [PMID: 32863891]
[48]
Gala UH, Miller DA, Williams RO III. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188319.[http://dx.doi.org/10.1016/j.bbcan.2019.188319] [PMID: 31678141]
[49]
Ma X, Williams RO. Characterization of amorphous solid dispersions: An update. J Drug Deliv Sci Technol 2019; 50: 113-24.[http://dx.doi.org/10.1016/j.jddst.2019.01.017]
[50]
Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol 2017; 41: 68-77.[http://dx.doi.org/10.1016/j.jddst.2017.06.010]
[51]
Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 2014; 4(1): 18-25.[http://dx.doi.org/10.1016/j.apsb.2013.11.001] [PMID: 26579360]
[52]
Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 2013; 453(1): 253-84.[http://dx.doi.org/10.1016/j.ijpharm.2012.07.015] [PMID: 22820134]
[53]
Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85(3 Pt. B): 799-813.[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[54]
Gurunath S, Pradeep Kumar S, Basavaraj NK, Patil PA. Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. J Pharm Res 2013; 6(4): 476-80.[http://dx.doi.org/10.1016/j.jopr.2013.04.008]
[55]
Tran TTD, Tran PHL. Perspectives on Strategies Using Swellable Polymers in Solid Dispersions for Controlled Drug Release. Curr Pharm Des 2017; 23(11): 1639-48.[http://dx.doi.org/10.2174/1381612822666161021152932] [PMID: 27774901]
[56]
Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J 2015; 23(4): 352-65.[http://dx.doi.org/10.1016/j.jsps.2013.12.013] [PMID: 27134535]
[57]
Guo Y, Shalaev E, Smith S. Physical stability of pharmaceutical formulations: solid-state characterization of amorphous dispersions. Trends Analyt Chem 2013; 49: 137-44.[http://dx.doi.org/10.1016/j.trac.2013.06.002]
[58]
Brough C, Williams RO III. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 2013; 453(1): 157-66.[http://dx.doi.org/10.1016/j.ijpharm.2013.05.061] [PMID: 23751341]
[59]
Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 2016; 100: 27-50.[http://dx.doi.org/10.1016/j.addr.2015.12.010] [PMID: 26705850]
[60]
Démuth B, Nagy ZK, Balogh A, et al. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int J Pharm 2015; 486(1-2): 268-86.[http://dx.doi.org/10.1016/j.ijpharm.2015.03.053] [PMID: 25827903]
[61]
He Y, Ho C. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development. J Pharm Sci 2015; 104(10): 3237-58.[http://dx.doi.org/10.1002/jps.24541] [PMID: 26175316]
[62]
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019; 24(8): 1524-38.[http://dx.doi.org/10.1016/j.drudis.2019.05.006] [PMID: 31102733]
[63]
Alzhrani R, Alsaab HO, Petrovici A, et al. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today 2020; 25(4): 718-30.[http://dx.doi.org/10.1016/j.drudis.2019.11.006] [PMID: 31758914]
[64]
Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously Improving the Physicochemical Properties, Dissolution Performance, and Bioavailability of Apigenin and Daidzein by Co-Crystallization With Theophylline. J Pharm Sci 2019; 108(9): 2982-93.[http://dx.doi.org/10.1016/j.xphs.2019.04.017] [PMID: 31029571]
[65]
Li J, Yang Y, Ning E, Peng Y, Zhang J. Mechanisms of poor oral bioavailability of flavonoid Morin in rats: From physicochemical to biopharmaceutical evaluations. Eur J Pharm Sci 2019; 128: 290-8.[http://dx.doi.org/10.1016/j.ejps.2018.12.011] [PMID: 30557605]
[66]
Chaudhari KS, Akamanchi KG. Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz. Int J Pharm 2019; 560: 205-18.[http://dx.doi.org/10.1016/j.ijpharm.2019.01.065] [PMID: 30742985]
[67]
Fouad SA, Shamma RN, Basalious EB, El-Nabarawi MA, Tayel SA. Novel instantly-soluble transmucosal matrix (ISTM) using dual mechanism solubilizer for sublingual and nasal delivery of dapoxetine hydrochloride: In-vitro/in-vivo evaluation. Int J Pharm 2016; 505(1-2): 212-22.[http://dx.doi.org/10.1016/j.ijpharm.2016.04.006] [PMID: 27063851]
[68]
Chokshi A, Vangara K, Chilampalli S, Narayanan E, Potta T. Development of sublingual spray formulation containing ondansetron hydrochloride dihydrate. J Drug Deliv Sci Technol 2019; 53: 101160.[http://dx.doi.org/10.1016/j.jddst.2019.101160]
[69]
Zhao W, Fakhoury M, Baudouin V, et al. Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur J Clin Pharmacol 2013; 69(2): 189-95.[http://dx.doi.org/10.1007/s00228-012-1330-6] [PMID: 22706623]
[70]
Lee H-J, Kim J-Y, Park S-H, Rhee Y-S, Park C-W, Park E-S. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers. J Drug Deliv Sci Technol 2017; 37: 28-37.[http://dx.doi.org/10.1016/j.jddst.2016.11.001]
[71]
Park J-B, Park C, Piao ZZ, et al. pH-independent controlled release tablets containing nanonizing valsartan solid dispersions for less variable bioavailability in humans. J Drug Deliv Sci Technol 2018; 46: 365-77.[http://dx.doi.org/10.1016/j.jddst.2018.05.031]
[72]
Tran PHL, Tran TTD, Park JB, Lee BJ. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res 2011; 28(10): 2353-78.[http://dx.doi.org/10.1007/s11095-011-0449-y] [PMID: 21553168]
[73]
Zhang Q, Ren W, Dushkin AV, Su W. Preparation, characterization, in vitro and in vivo studies of olmesartan medoxomil in a ternary solid dispersion with N-methyl-D-glucamine and hydroxypropyl-β-cyclodextrin. J Drug Deliv Sci Technol 2020; 56: 101546.[http://dx.doi.org/10.1016/j.jddst.2020.101546]
[74]
Milovanovic S, Djuris J, Dapčević A, Medarevic D, Ibric S, Zizovic I. Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Polym Test 2019; 76: 54-64.[http://dx.doi.org/10.1016/j.polymertesting.2019.03.001]
[75]
Bouchal F, Skiba M, Chaffai N, Hallouard F, Fatmi S, Lahiani-Skiba M. Fast dissolving cyclodextrin complex of piroxicam in solid dispersion part I: influence of β-CD and HPβ-CD on the dissolution rate of piroxicam. Int J Pharm 2015; 478(2): 625-32.[http://dx.doi.org/10.1016/j.ijpharm.2014.12.019] [PMID: 25522828]
[76]
Pradhan R, Tran TH, Kim SY, et al. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique. Int J Pharm 2016; 502(1-2): 38-46.[http://dx.doi.org/10.1016/j.ijpharm.2016.02.020] [PMID: 26899979]
[77]
Alai MS, Lin WJ. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole. Colloids Surf B Biointerfaces 2013; 111: 453-9.[http://dx.doi.org/10.1016/j.colsurfb.2013.06.035] [PMID: 23867305]
[78]
Kristl A. Acido-basic properties of proton pump inhibitors in aqueous solutions. Drug Dev Ind Pharm 2009; 35(1): 114-7.[http://dx.doi.org/10.1080/03639040802220284] [PMID: 18720145]
[79]
Muraoka A, Tokumura T, Machida Y. Evaluation of the bioavailability of flurbiprofen and its β-cyclodextrin inclusion complex in four different doses upon oral administration to rats. Eur J Pharm Biopharm 2004; 58(3): 667-71.[http://dx.doi.org/10.1016/j.ejpb.2004.03.030] [PMID: 15451543]
[80]
Tran PHL, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release 2008; 129(1): 59-65.[http://dx.doi.org/10.1016/j.jconrel.2008.04.001] [PMID: 18501462]
[81]
Tran PHL, Tran TT-D, Lee KH, Kim DJ, Lee BJ. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv 2010; 7(5): 647-61.[http://dx.doi.org/10.1517/17425241003645910] [PMID: 20205605]
[82]
Parikh T, Serajuddin ATM. Development of Fast-Dissolving Amorphous Solid Dispersion of Itraconazole by Melt Extrusion of its Mixture with Weak Organic Carboxylic Acid and Polymer. Pharm Res 2018; 35(7): 127.[http://dx.doi.org/10.1007/s11095-018-2407-4] [PMID: 29696402]
[83]
Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van den Mooter G. Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and eudragit e100. Pharm Res 2010; 27(5): 775-85.[http://dx.doi.org/10.1007/s11095-010-0069-y] [PMID: 20195707]
[84]
Parikh T, Sandhu HK, Talele TT, Serajuddin ATM. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying. Pharm Res 2016; 33(6): 1456-71.[http://dx.doi.org/10.1007/s11095-016-1890-8] [PMID: 26951566]
[85]
Valleri M, Mura P, Maestrelli F, Cirri M, Ballerini R. Development and evaluation of glyburide fast dissolving tablets using solid dispersion technique. Drug Dev Ind Pharm 2004; 30(5): 525-34.[http://dx.doi.org/10.1081/DDC-120037483] [PMID: 15244088]
[86]
Cirri M, Maestrelli F, Corti G, Mura P, Valleri M. Fast-dissolving tablets of glyburide based on ternary solid dispersions with PEG 6000 and surfactants. Drug Deliv 2007; 14(4): 247-55.[http://dx.doi.org/10.1080/10717540601067802] [PMID: 17497357]
[87]
Cirri M, Righi MF, Maestrelli F, Mura P, Valleri M. Development of glyburide fast-dissolving tablets based on the combined use of cyclodextrins and polymers. Drug Dev Ind Pharm 2009; 35(1): 73-82.[http://dx.doi.org/10.1080/03639040802192798] [PMID: 18821153]
[88]
Patel DM, Patel SP, Patel CN. Formulation and evaluation of fast dissolving tablet containing domperidone ternary solid dispersion. Int J Pharm Investig 2014; 4(4): 174-82.[http://dx.doi.org/10.4103/2230-973X.143116] [PMID: 25426438]
[89]
Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh SW. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 2009; 20(5): 055104.[http://dx.doi.org/10.1088/0957-4484/20/5/055104] [PMID: 19417335]
[90]
Liang AC, Chen L-H. Fast-dissolving intraoral drug delivery systems. Expert Opin Ther Pat 2001; 11(6): 981-6.[http://dx.doi.org/10.1517/13543776.11.6.981]
[91]
Saigal N, Baboota S, Ahuja A, Ali J. Fast-dissolving intra-oral drug delivery systems. Expert Opin Ther Pat 2008; 18(7): 769-81.[http://dx.doi.org/10.1517/13543776.18.7.769]
[92]
Goddeeris C, Willems T, Van den Mooter G. Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781. Eur J Pharm Sci 2008; 34(4-5): 293-302.[http://dx.doi.org/10.1016/j.ejps.2008.05.005] [PMID: 18602800]
[93]
Laitinen R, Suihko E, Bjorkqvist M, et al. Perphenazine solid dispersions for orally fast-disintegrating tablets: physical stability and formulation. Drug Dev Ind Pharm 2010; 36(5): 601-13.[http://dx.doi.org/10.3109/03639040903386690] [PMID: 19954406]
[94]
Rahman Z, Zidan AS, Khan MA. Risperidone solid dispersion for orally disintegrating tablet: its formulation design and non-destructive methods of evaluation. Int J Pharm 2010; 400(1-2): 49-58.[http://dx.doi.org/10.1016/j.ijpharm.2010.08.025] [PMID: 20801200]
[95]
Pabari RM, Jamil A, Kelly JG, Ramtoola Z. Fast disintegrating crystalline solid dispersions of simvastatin for incorporation into orodispersible tablets. Int J Pharm Investig 2014; 4(2): 51-9.[http://dx.doi.org/10.4103/2230-973X.133029] [PMID: 25006549]
[96]
Gonnissen Y, Remon JP, Vervaet C. Development of directly compressible powders via co-spray drying. Eur J Pharm Biopharm 2007; 67(1): 220-6.[http://dx.doi.org/10.1016/j.ejpb.2006.12.021] [PMID: 17317123]
[97]
Song H, Moon C, Lee B-J, Oh E. Mesoporous Pravastatin Solid Dispersion Granules Incorporable Into Orally Disintegrating Tablets. J Pharm Sci 2018; 107(7): 1886-95.[http://dx.doi.org/10.1016/j.xphs.2018.03.003] [PMID: 29530714]
[98]
Tran PHL, Duan W, Lee B-J, Tran TTD. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566: 557-64.[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306]
[99]
Casian T, Borbás E, Ilyés K, et al. Electrospun amorphous solid dispersions of meloxicam: Influence of polymer type and downstream processing to orodispersible dosage forms. Int J Pharm 2019; 569: 118593.[http://dx.doi.org/10.1016/j.ijpharm.2019.118593] [PMID: 31398371]
[100]
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185: 12-21.[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[101]
Illangakoon UE, Gill H, Shearman GC, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm 2014; 477(1-2): 369-79.[http://dx.doi.org/10.1016/j.ijpharm.2014.10.036] [PMID: 25455779]
[102]
Sangnim T, Huanbutta K. Development and evaluation of taste-masked paracetamol chewable tablets using a polymer and/or wax dispersion technique. J Drug Deliv Sci Technol 2019; 54: 101361.[http://dx.doi.org/10.1016/j.jddst.2019.101361]
[103]
Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to “enabling formulations”. Eur J Pharm Sci 2013; 50(1): 8-16.[http://dx.doi.org/10.1016/j.ejps.2013.04.002] [PMID: 23583787]
[104]
Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci 2010; 99(12): 4940-54.[http://dx.doi.org/10.1002/jps.22217] [PMID: 20821390]
[105]
Cho JH, Kim Y-I, Kim D-W, et al. Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet. Eur J Pharm Sci 2014; 54: 1-7.[http://dx.doi.org/10.1016/j.ejps.2013.12.016] [PMID: 24388864]
[106]
Joe JH, Lee WM, Park Y-J, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm 2010; 395(1-2): 161-6.[http://dx.doi.org/10.1016/j.ijpharm.2010.05.023] [PMID: 20580799]
[107]
Park Y-J, Ryu D-S, Li DX, et al. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate. Arch Pharm Res 2009; 32(6): 893-8.[http://dx.doi.org/10.1007/s12272-009-1611-5] [PMID: 19557367]
[108]
Xu H, Liu L, Li X, Ma J, Liu R, Wang S. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J Pharm Sci 2019; 14(4): 445-54.[http://dx.doi.org/10.1016/j.ajps.2018.08.001] [PMID: 32104473]
[109]
Piao Z-Z, Choe J-S, Oh KT, Rhee Y-S, Lee B-J. Formulation and in vivo human bioavailability of dissolving tablets containing a self-nanoemulsifying itraconazole solid dispersion without precipitation in simulated gastrointestinal fluid. Eur J Pharm Sci 2014; 51: 67-74.[http://dx.doi.org/10.1016/j.ejps.2013.08.037] [PMID: 24012590]
[110]
Tran TTD, Tran PHL, Lim J, Park JB, Choi SK, Lee BJ. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv 2010; 1(1): 51-62.[http://dx.doi.org/10.4155/tde.10.3] [PMID: 22816119]
[111]
Cheng L, Li T, Dong L, et al. Design and Evaluation of Bilayer Pump Tablet of Flurbiprofen Solid Dispersion for Zero-Order Controlled Delivery. J Pharm Sci 2018; 107(5): 1434-42.[http://dx.doi.org/10.1016/j.xphs.2017.12.026] [PMID: 29291415]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy