Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Hypothetical Role of Growth Factors to Reduce Intervertebral Disc Degeneration Significantly through Trained Biological Transformations

Author(s): Cristian Muresanu*, Siva G. Somasundaram, Sergey V. Vissarionov, Liliya V. Gavryushova, Vladimir N. Nikolenko, Liudmila M. Mikhaleva, Cecil E. Kirkland and Gjumrakch Aliev*

Volume 27, Issue 19, 2021

Published on: 19 October, 2020

Page: [2221 - 2230] Pages: 10

DOI: 10.2174/1381612826666201019104201

Price: $65

Abstract

Background: Given the evidence of little or no therapeutic benefit of injection-based growth factor therapies, it has been proposed that a naturally triggered uninterrupted blood circulation of the growth factors would be superior.

Objective: We seek to stimulate discussions and more research about the possibility of using the already available growth factors found in the prostate gland and endometrium by starting novel educable physiology, known as biological transformations controlled by the mind.

Methods: We summarized the stretch-gated ion channel mechanism of the cell membrane and offer several practical methods that can be applied by anyone, in order to stimulate and enhance the blood circulation of the growth factors from the seminal fluid to sites throughout the body. This study describes, in detail, the practical application of our earlier published studies about biological transformations.

Results: A previously reported single-patient case study has been extended, adding more from his personal experiences to continually improve this novel physiological training and extending the ideas from our earlier findings in detail.

Conclusion: The biological transformation findings demonstrate the need for additional research to establish the benefits of these natural therapies to repair and rejuvenate tissues affected by various chronic diseases or aging processes.

Keywords: Biology, biological transformations, prostate gland, mitochondria, degenerative disc disease, growth factors, seminal secretions.

Next »
[1]
Masuda K, An HS. Prevention of disc degeneration with growth factors. Eur Spine J 2006; 15(3)(Suppl. 3): S422-32.
[http://dx.doi.org/10.1007/s00586-006-0149-1] [PMID: 16865380]
[2]
Masuda K. Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur Spine J 2008; 17(4)(Suppl. 4): 441-51.
[http://dx.doi.org/10.1007/s00586-008-0749-z] [PMID: 19005698]
[3]
Muresanu C, Somasundaram SG, Neganova ME, et al. Updated understanding of the degenerative disc diseases - causes versus effects - treatments, studies and hypothesis. Curr Genomics 2020; 464-77.
[http://dx.doi.org/10.2174/1389202921999200407082315] [PMID: 33093808]
[4]
Tolonen J, Grönblad M, Vanharanta H, et al. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor. Eur Spine J 2006; 15(5): 588-96.
[http://dx.doi.org/10.1007/s00586-005-0930-6] [PMID: 15980999]
[5]
Fernandez-Moure J, Moore CA, Kim K, et al. Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE Open Med 2018; 6: 2050312118761674.
[http://dx.doi.org/10.1177/2050312118761674] [PMID: 29568524]
[6]
Kennon JC, Awad ME, Chutkan N, DeVine J, Fulzele S. Current insights on use of growth factors as therapy for Intervertebral Disc Degeneration. Biomol Concepts 2018; 9(1): 43-52.
[http://dx.doi.org/10.1515/bmc-2018-0003] [PMID: 29779014]
[7]
Dinerstein C. Platelet-rich plasma is profitable, but how well does it work?. ACSH 2019. Available from: https://www.acsh.org/news/2019/02/12/platelet-rich-plasma-profitable-how-well-does-it-work-13806
[8]
Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev 2014; 29(4): CD010071.
[http://dx.doi.org/10.1002/14651858.CD010071.pub3] [PMID: 24782334]
[9]
Muresanu C, Somasundaram SG. Biological transformations controlled by the mind. Texas: AlphaGraphics Sugar Land 2013; 1.
[10]
Houda A, Mounir A, Ali S, Habib BA. Study of gonadic growth factors: Seminal transforming growth factor-β1, epidermal growth factor and insulin-like growth factor-I and their relationship with male infertility. ARSci 2014; 2(1): 16-23.
[http://dx.doi.org/10.4236/arsci.2014.21003]
[11]
Basciani S, Mariani S, Spera G, Gnessi L. Role of platelet-derived growth factors in the testis. Endocr Rev 2010; 31(6): 916-39.
[http://dx.doi.org/10.1210/er.2010-0004] [PMID: 20650860]
[12]
NCT02708537. Effect of plasma rich in growth factors on semen quality. Available from: https://clinicaltrials.gov/ct2/homehttps://clinicaltrials.gov/ct2/show/NCT02708537
[13]
Nocera M, Chu TM. Transforming growth factor beta as an immunosuppressive protein in human seminal plasma. Am J Reprod Immunol 1993; 30(1): 1-8.
[http://dx.doi.org/10.1111/j.1600-0897.1993.tb00594.x] [PMID: 8260018]
[14]
Nocera M, Chu TM. Characterization of latent transforming growth factor-beta from human seminal plasma. Am J Reprod Immunol 1995; 33(4): 282-91.
[http://dx.doi.org/10.1111/j.1600-0897.1995.tb00897.x] [PMID: 7546247]
[15]
Pöllänen P, von Euler M, Jahnukainen K, et al. Role of transforming growth factor beta in testicular immunosuppression. J Reprod Immunol 1993; 24(2): 123-37.
[http://dx.doi.org/10.1016/0165-0378(93)90015-A] [PMID: 7901411]
[16]
Noble NA, Harper JR, Border WA. In vivo interactions of TGF-beta and extracellular matrix. Prog Growth Factor Res 1992; 4(4): 369-82.
[http://dx.doi.org/10.1016/0955-2235(92)90017-C] [PMID: 1340215]
[17]
Yie SM, Lobb DK, Clark DA, Younglai EV. Identification of a transforming growth factor alpha-like molecule in human seminal plasma. Fertil Steril 1994; 61(1): 129-35.
[http://dx.doi.org/10.1016/S0015-0282(16)56465-6] [PMID: 8293827]
[18]
Chu TM, Nocera MA, Flanders KC, Kawinski E. Localization of seminal plasma transforming growth factor-beta1 on human spermatozoa: an immunocytochemical study. Fertil Steril 1996; 66(2): 327-30.
[http://dx.doi.org/10.1016/S0015-0282(16)58461-1] [PMID: 8690124]
[19]
Hirata Y, Uchihashi M, Hazama M, Fujita T. Epidermal growth factor in human seminal plasma. Horm Metab Res 1987; 19(1): 35-7.
[http://dx.doi.org/10.1055/s-2007-1011730] [PMID: 3493966]
[20]
Spaleková E, Makarevich AV, Lukáč N. Ram Sperm motility parameters under the influence of epidermal growth factor. Vet Med Int 2011; 2011: 642931.
[http://dx.doi.org/10.4061/2011/642931] [PMID: 21647340]
[21]
Macpherson ML, Simmen RCM, Simmen FA, et al. Insulin-like growth factor-I and insulin-like growth factor binding protein-2 and -5 in equine seminal plasma: association with sperm characteristics and fertility. Biol Reprod 2002; 67(2): 648-54.
[http://dx.doi.org/10.1095/biolreprod67.2.648] [PMID: 12135910]
[22]
Glander HJ, Kratzsch J, Weisbrich C, Birkenmeier G. Insulin-like growth factor-I and alpha 2-macroglobulin in seminal plasma correlate with semen quality. Hum Reprod 1996; 11(11): 2454-60.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a019136] [PMID: 8981132]
[23]
Ovesen P, Flyvbjerg A, Orskov H. Insulin-like growth factor I (IGF-I) and IGF binding proteins in seminal plasma before and after vasectomy in normal men. Fertil Steril 1995; 63(4): 913-8.
[http://dx.doi.org/10.1016/S0015-0282(16)57502-5] [PMID: 7534241]
[24]
Garbarino Azúa DJ, Saucedo L, Giordana S, et al. Fibroblast growth factor 2 (FGF2) is present in human spermatozoa and is related with sperm motility. The use of recombinant FGF2 to improve motile sperm recovery. Andrology 2017; 5(5): 990-8.
[http://dx.doi.org/10.1111/andr.12398] [PMID: 28732140]
[25]
Giudice LC. Growth factors and growth modulators in human uterine endometrium: their potential relevance to reproductive medicine. Fertil Steril 1994; 61(1): 1-17.
[http://dx.doi.org/10.1016/S0015-0282(16)56447-4] [PMID: 7507444]
[26]
Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative medicine. J Biol Eng 2014; 8: 20.
[http://dx.doi.org/10.1186/1754-1611-8-20] [PMID: 25097665]
[27]
Wang SL, Yu YL, Tang CL, Lv FZ. Effects of TGF-β1 and IL-1β on expression of ADAMTS enzymes and TIMP-3 in human intervertebral disc degeneration. Exp Ther Med 2013; 6(6): 1522-6.
[http://dx.doi.org/10.3892/etm.2013.1348] [PMID: 24250727]
[28]
Walsh AJ, Bradford DS, Lotz JC. In vivo growth factor treatment of degenerated intervertebral discs. Spine 2004; 29(2): 156-63.
[http://dx.doi.org/10.1097/01.BRS.0000107231.67854.9F] [PMID: 14722406]
[29]
Kim JS, Ellman MB, An HS, van Wijnen AJ, Borgia JA, Im HJ. Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis Rheum 2010; 62(12): 3706-15.
[http://dx.doi.org/10.1002/art.27733] [PMID: 20812336]
[30]
Pratsinis H, Kletsas D. Organotypic cultures of intervertebral disc cells: responses to growth factors and signaling pathways involved. BioMed Res Int 2015; 2015: 427138.
[http://dx.doi.org/10.1155/2015/427138] [PMID: 26583105]
[31]
Gruber HE, Norton HJ, Hanley EN Jr. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine 2000; 25(17): 2153-7.
[http://dx.doi.org/10.1097/00007632-200009010-00002] [PMID: 10973395]
[32]
Paglia DN, Singh H, Karukonda T, Drissi H, Moss IL. PDGF-BB delays degeneration of the intervertebral discs in a rabbit preclinical model. Spine 2016; 41(8): E449-58.
[http://dx.doi.org/10.1097/BRS.0000000000001336] [PMID: 27064336]
[33]
Presciutti SM, Karukonda T, Drissi H, Moss I. PDGF and its role in reversing intervertebral disc degeneration. Spine 2012; 12(9): S73-4.
[http://dx.doi.org/10.1016/j.spinee.2012.08.211]
[34]
Presciutti SM, Paglia DN, Karukonda T, et al. PDGF-BB inhibits intervertebral disc cell apoptosis in vitro. J Orthop Res 2014; 32(9): 1181-8.
[http://dx.doi.org/10.1002/jor.22638] [PMID: 24841673]
[35]
Qu Z, Huang XN, Ahmadi P, et al. Expression of basic fibroblast growth factor in synovial tissue from patients with rheumatoid arthritis and degenerative joint disease. Lab Invest 1995; 73(3): 339-46.
[PMID: 7564266]
[36]
Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 2013; 114(4): 735-42.
[http://dx.doi.org/10.1002/jcb.24418] [PMID: 23060229]
[37]
Tsai TT, Guttapalli A, Oguz E, et al. Fibroblast growth factor-2 maintains the differentiation potential of nucleus pulposus cells in vitro: implications for cell-based transplantation therapy. Spine 2007; 32(5): 495-502.
[http://dx.doi.org/10.1097/01.brs.0000257341.88880.f1] [PMID: 17334282]
[38]
Zhou X, Tao Y, Wang J, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors 2015; 33(1): 23-30.
[http://dx.doi.org/10.3109/08977194.2014.969420] [PMID: 25270389]
[39]
Li X, An HS, Ellman M, et al. Action of fibroblast growth factor-2 on the intervertebral disc. Arthritis Res Ther 2008; 10(2): R48.
[http://dx.doi.org/10.1186/ar2407] [PMID: 18435858]
[40]
Shu C, Smith SM, Little CB, Melrose J. Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages. Future Sci OA 2016; 2(4): FSO142.
[http://dx.doi.org/10.4155/fsoa-2016-0034] [PMID: 28116125]
[41]
Tolonen J, Grönblad M, Virri J, Seitsalo S, Rytömaa T, Karaharju E. Basic fibroblast growth factor immunoreactivity in blood vessels and cells of disc herniations. Spine 1995; 20(3): 271-6.
[http://dx.doi.org/10.1097/00007632-199502000-00003] [PMID: 7537390]
[42]
Ellman MB, An HS, Muddasani P, Im HJ. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 2008; 420(1): 82-9.
[http://dx.doi.org/10.1016/j.gene.2008.04.019] [PMID: 18565695]
[43]
Friedl A, Chang Z, Tierney A, Rapraeger AC. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol 1997; 150(4): 1443-55.
[PMID: 9094999]
[44]
Encyclopædia Britannica. The Editors of Encyclopædia Britannica Growth factor Available from: https://www.britannica.com/https://www.britannica.com/science/growth-factor
[45]
Nourse JL, Pathak MM. How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. Semin Cell Dev Biol 2017; 71: 3-12.
[http://dx.doi.org/10.1016/j.semcdb.2017.06.018] [PMID: 28676421]
[46]
Murthy SE, Dubin AE, Whitwam T, et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 2018; 7: e41844.
[http://dx.doi.org/10.7554/eLife.41844] [PMID: 30382938]
[47]
Bass RB, Strop P, Barclay M, Rees DC. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 2002; 298(5598): 1582-7.
[http://dx.doi.org/10.1126/science.1077945] [PMID: 12446901]
[48]
Goldstein AS. A symbiotic relationship between epithelial and stromal stem cells. Proc Natl Acad Sci USA 2013; 110(51): 20356-7.
[http://dx.doi.org/10.1073/pnas.1320032110] [PMID: 24284171]
[49]
Tchetgen MB, Song JT, Strawderman M, Jacobsen SJ, Oesterling JE. Ejaculation increases the serum prostate-specific antigen concentration. Urology 1996; 47(4): 511-6.
[http://dx.doi.org/10.1016/S0090-4295(99)80486-5] [PMID: 8638359]
[50]
Stenner J, Holthaus K, Mackenzie SH, Crawford ED. The effect of ejaculation on prostate-specific antigen in a prostate cancer-screening population. Urology 1998; 51(3): 455-9.
[http://dx.doi.org/10.1016/S0090-4295(97)00635-3] [PMID: 9510352]
[51]
Demir K, Tarhan F, Orçun A, Aslan H, Türk A. Effects of ejaculation on serum prostate-specific antigen levels. Turk J Urol 2014; 40(1): 40-5.
[http://dx.doi.org/10.5152/tud.2014.03704] [PMID: 26328144]
[52]
Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine 2004; 29(23): 2700-9.
[http://dx.doi.org/10.1097/01.brs.0000146499.97948.52] [PMID: 15564919]
[53]
Kokubo Y, Uchida K, Kobayashi S, et al. Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. Laboratory investigation. J Neurosurg Spine 2008; 9(3): 285-95.
[http://dx.doi.org/10.3171/SPI/2008/9/9/285] [PMID: 18928227]
[54]
Tomaszewski KA, Saganiak K, Gładysz T, Walocha JA. The biology behind the human intervertebral disc and its endplates. Folia Morphol (Warsz) 2015; 74(2): 157-68.
[http://dx.doi.org/10.5603/FM.2015.0026] [PMID: 26050801]
[55]
García-Cosamalón J, del Valle ME, Calavia MG, et al. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 2010; 217(1): 1-15.
[http://dx.doi.org/10.1111/j.1469-7580.2010.01227.x] [PMID: 20456524]
[56]
Oki S, Matsuda Y, Shibata T, Okumura H, Desaki J. Morphologic differences of the vascular buds in the vertebral endplate: scanning electron microscopic study. Spine 1996; 21(2): 174-7.
[http://dx.doi.org/10.1097/00007632-199601150-00003] [PMID: 8720400]
[57]
Saeednia S, Bahadoran H, Amidi F, et al. Nerve growth factor in human semen: Effect of nerve growth factor on the normozoospermic men during cryopreservation process. Iran J Basic Med Sci 2015; 18(3): 292-9.
[PMID: 25945243]
[58]
Heinrich G, Meyer TE. Nerve growth factor (NGF) is present in human placenta and semen, but undetectable in normal and Paget’s disease blood: measurements with an anti-mouse-NGF enzyme immunoassay using a recombinant human NGF reference. Biochem Biophys Res Commun 1988; 155(1): 482-6.
[http://dx.doi.org/10.1016/S0006-291X(88)81112-4] [PMID: 3046616]
[59]
Somasundaram SG, Muresanu C, Schield P, et al. A novel non-invasive effective method for potential treatment of degenerative disc disease - a hypothesis. Cent Nerv Syst Agents Med Chem 2018; 18(1): 1-7.
[PMID: 30332977]
[60]
Feng C, Liu H, Yang M, Zhang Y, Huang B, Zhou Y. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle 2016; 15(13): 1674-84.
[http://dx.doi.org/10.1080/15384101.2016.1152433] [PMID: 27192096]
[61]
Lasak AM, Jean-Michel M, Le PU, Durgam R, Harroche J. The role of pelvic floor muscle training in the conservative and surgical management of female stress urinary incontinence: Does the strength of the pelvic floor muscles matter? PM R 2018; 10(11): 1198-210.
[http://dx.doi.org/10.1016/j.pmrj.2018.03.023] [PMID: 29753829]
[62]
Radzimińska A, Weber-Rajek M, Strączyńska A, et al. The impact of pelvic floor muscle training on the myostatin concentration and severity of urinary incontinence in elderly women with stress urinary incontinence - a pilot study. Clin Interv Aging 2018; 13: 1893-8.
[http://dx.doi.org/10.2147/CIA.S177730] [PMID: 30323575]
[63]
García-Sánchez E, Rubio-Arias JA, Ávila-Gandía V, Ramos-Campo DJ, López-Román J. Effectiveness of pelvic floor muscle training in treating urinary incontinence in women: A current review. Actas Urol Esp 2016; 40(5): 271-8.
[http://dx.doi.org/10.1016/j.acuroe.2016.03.011] [PMID: 26614435]
[64]
Myers C, Smith M. Pelvic floor muscle training improves erectile dysfunction and premature ejaculation: a systematic review. Physiotherapy 2019; 105(2): 235-43.
[http://dx.doi.org/10.1016/j.physio.2019.01.002] [PMID: 30979506]
[65]
Pastore AL, Palleschi G, Fuschi A, et al. Pelvic floor muscle rehabilitation for patients with lifelong premature ejaculation: a novel therapeutic approach. Ther Adv Urol 2014; 6(3): 83-8.
[http://dx.doi.org/10.1177/1756287214523329] [PMID: 24883105]
[66]
La Pera G. Awareness and timing of pelvic floor muscle contraction, pelvic exercises and rehabilitation of pelvic floor in lifelong premature ejaculation: 5 years experience. Arch Ital Urol Androl 2014; 86(2): 123-5.
[http://dx.doi.org/10.4081/aiua.2014.2.123] [PMID: 25017593]
[67]
Australian Government Department of Health. What are the pelvic floor muscles? Available from: http://www.bladderbowel.gov.au/http://www.bladderbowel.gov.au/assets/doc/brochures/05PelvicFloorMen.html
[68]
Continence Foundation of Australia. Pelvic Floor Muscle Training for Women (Factsheet). Available from: https://www.continence.org.au/https://www.continence.org.au/data/files/-CALD/English/May_2016_Factsheets/06_Pelvic_Floor_Muscle_-Training_for_Women.pdf
[69]
Bower JE, Irwin MR. Mind-body therapies and control of inflammatory biology: A descriptive review. Brain Behav Immun 2016; 51: 1-11.
[http://dx.doi.org/10.1016/j.bbi.2015.06.012] [PMID: 26116436]
[70]
Upchurch DM, Gill M, Jiang L, Prelip M, Slusser W. Use of mind-body therapies among young adults aged 18-24 years: findings from the 2012 national health interview survey. J Adolesc Health 2018; 63(2): 227-32.
[http://dx.doi.org/10.1016/j.jadohealth.2018.03.014] [PMID: 29970333]
[71]
Esch T, Sonntag U, Esch SM, Thees S. Stress management and mind-body medicine: a randomized controlled longitudinal evaluation of students’ health and effects of a behavioral group intervention at a middle-size German university (SM-MESH). Forsch Komplement Med 2013; 20(2): 129-37.
[http://dx.doi.org/10.1159/000350671] [PMID: 23636032]
[72]
Morgan N, Irwin MR, Chung M, Wang C. The effects of mind-body therapies on the immune system: meta-analysis. PLoS One 2014; 9(7): e100903.
[http://dx.doi.org/10.1371/journal.pone.0100903] [PMID: 24988414]
[73]
Van Dam NT, van Vugt MK, Vago DR, et al. Mind the hype: a critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspect Psychol Sci 2018; 13(1): 36-61.
[http://dx.doi.org/10.1177/1745691617709589] [PMID: 29016274]
[74]
Kabat-Zinn J. Mindfulness-based interventions in context: Past, present, and future. Clin Psychol 2003; 10: 144-56.
[75]
Segal ZV, Williams JMG, Teasdale JD. Mindfulness-based cognitive therapy for depression: A new approach to preventing relapse. New York, NY: Guilford Press 2002.
[76]
Pascoe MC, Thompson DR, Ski CF. Yoga, mindfulness-based stress reduction and stress-related physiological measures: A meta-analysis. Psychoneuroendocrinology 2017; 86: 152-68.
[http://dx.doi.org/10.1016/j.psyneuen.2017.08.008] [PMID: 28963884]
[77]
O’Driscoll M, Byrne S, Mc Gillicuddy A, Lambert S, Sahm LJ. The effects of mindfulness-based interventions for health and social care undergraduate students - a systematic review of the literature. Psychol Health Med 2017; 22(7): 851-65.
[http://dx.doi.org/10.1080/13548506.2017.1280178] [PMID: 28103700]
[78]
Janssen M, Heerkens Y, Kuijer W, van der Heijden B, Engels J. Effects of Mindfulness-Based Stress Reduction on employees’ mental health: A systematic review. PLoS One 2018; 13(1): e0191332.
[http://dx.doi.org/10.1371/journal.pone.0191332] [PMID: 29364935]
[79]
Chiesa A, Serretti A. Mindfulness-based stress reduction for stress management in healthy people: a review and meta-analysis. J Altern Complement Med 2009; 15(5): 593-600.
[http://dx.doi.org/10.1089/acm.2008.0495] [PMID: 19432513]
[80]
Kuyken W, Warren FC, Taylor RS, et al. Efficacy of mindfulness-based cognitive therapy in prevention of depressive relapse an individual patient data meta-analysis from randomized trials. JAMA Psychiatry 2016; 73(6): 565-74.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.0076] [PMID: 27119968]
[81]
Creswell JD. Mindfulness interventions. Annu Rev Psychol 2017; 68: 491-516.
[http://dx.doi.org/10.1146/annurev-psych-042716-051139] [PMID: 27687118]
[82]
Shapiro SL, Schwartz GE, Bonner G. Effects of mindfulness-based stress reduction on medical and premedical students. J Behav Med 1998; 21(6): 581-99.
[http://dx.doi.org/10.1023/A:1018700829825] [PMID: 9891256]
[83]
Call D, Miron L, Orcutt H. Effectiveness of brief mindfulness techniques in reducing symptoms of anxiety and stress. Mindfulness 2014; 5: 658-68.
[http://dx.doi.org/10.1007/s12671-013-0218-6]
[84]
Erogul M, Singer G, McIntyre T, Stefanov DG. Abridged mindfulness intervention to support wellness in first-year medical students. Teach Learn Med 2014; 26(4): 350-6.
[http://dx.doi.org/10.1080/10401334.2014.945025] [PMID: 25318029]
[85]
Song Y, Lindquist R. Effects of mindfulness-based stress reduction on depression, anxiety, stress and mindfulness in Korean nursing students. Nurse Educ Today 2015; 35(1): 86-90.
[http://dx.doi.org/10.1016/j.nedt.2014.06.010] [PMID: 25066651]
[86]
Elwy AR, Groessl EJ, Eisen SV, et al. A systematic scoping review of yoga intervention components and study quality. Am J Prev Med 2014; 47(2): 220-32.
[http://dx.doi.org/10.1016/j.amepre.2014.03.012] [PMID: 24996759]
[87]
Ikai S, Suzuki T, Uchida H, et al. Effects of weekly one-hour Hatha yoga therapy on resilience and stress levels in patients with schizophrenia-spectrum disorders: an eight-week randomized controlled trial. J Altern Complement Med 2014; 20(11): 823-30.
[http://dx.doi.org/10.1089/acm.2014.0205] [PMID: 25364946]
[88]
Khattab K, Khattab AA, Ortak J, Richardt G, Bonnemeier H. Iyengar yoga increases cardiac parasympathetic nervous modulation among healthy yoga practitioners. Evid Based Complement Alternat Med 2007; 4(4): 511-7.
[http://dx.doi.org/10.1093/ecam/nem087] [PMID: 18227919]
[89]
Kiecolt-Glaser JK, Christian L, Preston H, et al. Stress, inflammation, and yoga practice. Psychosom Med 2010; 72(2): 113-21.
[http://dx.doi.org/10.1097/PSY.0b013e3181cb9377] [PMID: 20064902]
[90]
Naveen GH, Thirthalli J, Rao MG, Varambally S, Christopher R, Gangadhar BN. Positive therapeutic and neurotropic effects of yoga in depression: A comparative study. Indian J Psychiatry 2013; 55(Suppl. 3): S400-4.
[http://dx.doi.org/10.4103/0019-5545.116313] [PMID: 24049208]
[91]
Pullen PR, Nagamia SH, Mehta PK, et al. Effects of yoga on inflammation and exercise capacity in patients with chronic heart failure. J Card Fail 2008; 14(5): 407-13.
[http://dx.doi.org/10.1016/j.cardfail.2007.12.007] [PMID: 18514933]
[92]
Pullen PR, Thompson WR, Benardot D, et al. Benefits of yoga for African American heart failure patients. Med Sci Sports Exerc 2010; 42(4): 651-7.
[http://dx.doi.org/10.1249/MSS.0b013e3181bf24c4] [PMID: 19952833]
[93]
Tolahunase M, Sagar R, Dada R. Impact of yoga and meditation on cellular aging in apparently healthy individuals: A prospective, open-label single-arm exploratory study. Oxid Med Cell Longev 2017; 2017: 7928981.
[PMID: 28191278]
[94]
Cramer H, Anheyer D, Saha FJ, Dobos G. Yoga for posttraumatic stress disorder - a systematic review and meta-analysis. BMC Psychiatry 2018; 18(1): 72.
[http://dx.doi.org/10.1186/s12888-018-1650-x] [PMID: 29566652]
[95]
Fogel A. Body sense: The science and practice of embodied self-awareness (Norton Series on Interpersonal Neurobiology). (1st ed). W.W. Norton & Company 2013. Available from: https://www.psychologytoday.com/us/blog/body-sense/201004/-male-and-female-orgasm-not-so-different
[96]
Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature 2016; 529(7586): 307-15.
[http://dx.doi.org/10.1038/nature17039] [PMID: 26791721]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy