Review Article

伊立替康或奥沙利铂:哪个是伴侣的第一步?

卷 28, 期 16, 2021

发表于: 16 October, 2020

页: [3158 - 3172] 页: 15

弟呕挨: 10.2174/0929867327666201016124950

价格: $65

摘要

目的:本综述的目的是讨论 RAS、BRAF 和微卫星不稳定性 (MSI) 突变模式与化疗药物疗效 [伊立替康 (IRI) 与奥沙利铂 (OXA)] 之间的潜在联系,以及这如何潜在地影响化疗骨干的选择。 方法:在对研究文献进行审查后,选择在核心期刊上发表的所有相关文章进行研究。纳入标准考虑了有关感兴趣主题的相关临床和临床前研究(OXA 和 IRI 与 KRAS/BRAF 突变和 MSI 的关系)。 结果:KRAS突变抑制切除修复交叉互补组1(ERCC1)表达,使肿瘤细胞对OXA更敏感。 OPUS、COIN 和 PRIME 试验的结果支持 BRAF 突变群体由于患者数量少而没有确凿的数据。增强的 IRI 对 MSI 细胞系的细胞毒性是由于一些错配修复 (MMR) 成分参与了各种 DNA 修复过程,以及它们在维持 IRI 和 G2/M 细胞停滞的促凋亡作用中的作用。 结论:OXA和IRI是mCRC治疗不可缺少的药物,其选择必须与靶向药物一样谨慎。我们建议考虑已知基因组改变与 OXA 和 IRI 活性之间的相互作用,以个性化 mCRC 患者的化疗。

关键词: 奥沙利铂、伊立替康、结直肠癌、化疗、分子靶点、KRAS、BRAF、MSI。

[1]
NIH. Cancer Stat Facts, S.E.E.R. Available at: https://seer.cancer.gov/statfacts/html/colorect.html (Accessed:January 20, 2020).
[2]
Simmonds, P.C. Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis. BMJ, 2000, 321(7260), 531-535.
[http://dx.doi.org/10.1136/bmj.321.7260.531] [PMID: 10968812]
[3]
Punt, C.J.A. New options and old dilemmas in the treatment of patients with advanced colorectal cancer. Ann. Oncol., 2004, 15(10), 1453-1459.
[http://dx.doi.org/10.1093/annonc/mdh383] [PMID: 15367403]
[4]
Emmanouilides, C.; Sfakiotaki, G.; Androulakis, N.; Kalbakis, K.; Christophylakis, C.; Kalykaki, A.; Vamvakas, L.; Kotsakis, A.; Agelaki, S.; Diamandidou, E.; Touroutoglou, N.; Chatzidakis, A.; Georgoulias, V.; Mavroudis, D.; Souglakos, J. Front-line bevacizumab in combination with oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX) in patients with metastatic colorectal cancer: a multicenter phase II study. BMC Cancer, 2007, 7, 91.
[http://dx.doi.org/10.1186/1471-2407-7-91] [PMID: 17537235]
[5]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860] [PMID: 20921465]
[6]
Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Cassidy, J. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol., 2008, 26(12), 2013-2019.
[http://dx.doi.org/10.1200/JCO.2007.14.9930] [PMID: 18421054]
[7]
Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Lerchenmüller, C.; Kahl, C.; Seipelt, G.; Kullmann, F.; Stauch, M.; Scheithauer, W.; Hielscher, J.; Scholz, M.; Müller, S.; Link, H.; Niederle, N.; Rost, A.; Höffkes, H.G.; Moehler, M.; Lindig, R.U. Modest, D.P.; Rossius, L.; Kirchner, T.; Jung, A.; Stintzing, S. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomized, open-label, phase 3 trial. Lancet Oncol., 2014, 15(10), 1065-1075.
[http://dx.doi.org/10.1016/S1470-2045(14)70330-4] [PMID: 25088940]
[8]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[9]
Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; Punt, C.J.; Strickland, A.H.; Wilson, G.; Ciuleanu, T.E.; Roman, L.; Van Cutsem, E.; Tzekova, V.; Collins, S.; Oliner, K.S.; Rong, A.; Gansert, J. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol., 2010, 28(31), 4706-4713.
[http://dx.doi.org/10.1200/JCO.2009.27.6055] [PMID: 20921462]
[10]
André, T.; Louvet, C.; Maindrault-Goebel, F.; Couteau, C.; Mabro, M.; Lotz, J.P.; Gilles-Amar, V.; Krulik, M.; Carola, E.; Izrael, V.; de Gramont, A. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur. J. Cancer, 1999, 35(9), 1343-1347.
[http://dx.doi.org/10.1016/S0959-8049(99)00150-1] [PMID: 10658525]
[11]
Maindrault-Goebel, F.; Louvet, C.; André, T.; Carola, E.; Lotz, J.P.; Molitor, J.L.; Garcia, M.L.; Gilles-Amar, V.; Izrael, V.; Krulik, M.; de Gramont, A. Oxaliplatin added to the simplified bimonthly leucovorin and 5-fluorouracil regimen as second-line therapy for metastatic colorectal cancer (FOLFOX6). GERCOR. Eur. J. Cancer, 1999, 35(9), 1338-1342.
[http://dx.doi.org/10.1016/S0959-8049(99)00149-5] [PMID: 10658524]
[12]
Tournigand, C.; André, T.; Achille, E.; Lledo, G.; Flesh, M.; Mery-Mignard, D.; Quinaux, E.; Couteau, C.; Buyse, M.; Ganem, G.; Landi, B.; Colin, P.; Louvet, C.; de Gramont, A.; Louvet, C.; de Gramont, A. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J. Clin. Oncol., 2004, 22(2), 229-237.
[http://dx.doi.org/10.1200/JCO.2004.05.113] [PMID: 14657227]
[13]
Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Saltz, L. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(12), 2006-2012.
[http://dx.doi.org/10.1200/JCO.2007.14.9898] [PMID: 18421053]
[14]
Cassidy, J.; Tabernero, J.; Twelves, C.; Brunet, R.; Butts, C.; Conroy, T.; Debraud, F.; Figer, A.; Grossmann, J.; Sawada, N.; Schöffski, P.; Sobrero, A.; Van Cutsem, E.; Díaz-Rubio, E. XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J. Clin. Oncol., 2004, 22(11), 2084-2091.
[http://dx.doi.org/10.1200/JCO.2004.11.069] [PMID: 15169795]
[15]
Porschen, R.; Arkenau, H-T.; Kubicka, S.; Greil, R.; Seufferlein, T.; Freier, W.; Kretzschmar, A.; Graeven, U.; Grothey, A.; Hinke, A.; Schmiegel, W.; Schmoll, H.J. Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO colorectal study group. J. Clin. Oncol., 2007, 25(27), 4217-4223.
[http://dx.doi.org/10.1200/JCO.2006.09.2684] [PMID: 17548840]
[16]
Jäger, E.; Heike, M.; Bernhard, H.; Klein, O.; Bernhard, G.; Lautz, D.; Michaelis, J.; Büschenfelde, K.H.M.; Knuth, A. Weekly high-dose leucovorin versus low-dose leucovorin combined with fluorouracil in advanced colorectal cancer: results of a randomized multicenter trial. Study group for palliative treatment of metastatic colorectal cancer study protocol 1. J. Clin. Oncol., 1996, 14(8), 2274-2279.
[http://dx.doi.org/10.1200/JCO.1996.14.8.2274] [PMID: 8708717]
[17]
Petrelli, N.; Herrera, L.; Rustum, Y.; Burke, P.; Creaven, P.; Stulc, J.; Emrich, L.J.; Mittelman, A. A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J. Clin. Oncol., 1987, 5(10), 1559-1565.
[http://dx.doi.org/10.1200/JCO.1987.5.10.1559] [PMID: 2443619]
[18]
Wolmark, N.; Rockette, H.; Fisher, B.; Wickerham, D.L.; Redmond, C.; Fisher, E.R.; Jones, J.; Mamounas, E.P.; Ore, L.; Petrelli, N.J. The benefit of leucovorin-modulated fluorouracil as postoperative adjuvant therapy for primary colon cancer: results from National surgical adjuvant breast and bowel project protocol C-03. J. Clin. Oncol., 1993, 11(10), 1879-1887.
[http://dx.doi.org/10.1200/JCO.1993.11.10.1879] [PMID: 8410113]
[19]
Falcone, A.; Ricci, S.; Brunetti, I.; Pfanner, E.; Allegrini, G.; Barbara, C.; Crinò, L.; Benedetti, G.; Evangelista, W.; Fanchini, L.; Cortesi, E.; Picone, V.; Vitello, S.; Chiara, S.; Granetto, C.; Porcile, G.; Fioretto, L.; Orlandini, C.; Andreuccetti, M.; Masi, G. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J. Clin. Oncol., 2007, 25(13), 1670-1676.
[http://dx.doi.org/10.1200/JCO.2006.09.0928] [PMID: 17470860]
[20]
Souglakos, J.; Androulakis, N.; Syrigos, K.; Polyzos, A.; Ziras, N.; Athanasiadis, A.; Kakolyris, S.; Tsousis, S.; Kouroussis, Ch.; Vamvakas, L.; Kalykaki, A.; Samonis, G.; Mavroudis, D.; Georgoulias, V. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br. J. Cancer, 2006, 94(6), 798-805.
[http://dx.doi.org/10.1038/sj.bjc.6603011] [PMID: 16508637]
[21]
Kirstein, M.M.; Lange, A.; Prenzler, A.; Manns, M.P.; Kubicka, S.; Vogel, A. Targeted therapies in metastatic colorectal cancer: a systematic review and assessment of currently available data. Oncologist, 2014, 19(11), 1156-1168.
[http://dx.doi.org/10.1634/theoncologist.2014-0032] [PMID: 25326159]
[22]
Formica, V.; Roselli, M. Targeted therapy in first line treatment of RAS wild type colorectal cancer. World J. Gastroenterol., 2015, 21(10), 2871-2874.
[http://dx.doi.org/10.3748/wjg.v21.i10.2871] [PMID: 25780283]
[23]
Schwartzberg, L.S.; Rivera, F.; Karthaus, M.; Fasola, G.; Canon, J.L.; Hecht, J.R.; Yu, H.; Oliner, K.S.; Go, W.Y. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J. Clin. Oncol., 2014, 32(21), 2240-2247.
[http://dx.doi.org/10.1200/JCO.2013.53.2473] [PMID: 24687833]
[24]
Venook, A.P.; Niedzwiecki, D.; Lenz, H.J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O’Neil, B.H.; Atkins, J.N.; Berry, S.; Polite, B.N.; O’Reilly, E.M.; Goldberg, R.M.; Hochster, H.S.; Schilsky, R.L.; Bertagnolli, M.M.; El-Khoueiry, A.B.; Watson, P.; Benson, A.B., III; Mulkerin, D.L.; Mayer, R.J.; Blanke, C. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA, 2017, 317(23), 2392-2401.
[http://dx.doi.org/10.1001/jama.2017.7105] [PMID: 28632865]
[25]
Pietrantonio, F.; Cremolini, C.; Petrelli, F.; Di Bartolomeo, M.; Loupakis, F.; Maggi, C.; Antoniotti, C.; de Braud, F.; Falcone, A.; Iacovelli, R. First-line anti-EGFR monoclonal antibodies in panRAS wild-type metastatic colorectal cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2015, 96(1), 156-166.
[http://dx.doi.org/10.1016/j.critrevonc.2015.05.016] [PMID: 26088456]
[26]
Saris, C.P.; van de Vaart, P.J.; Rietbroek, R.C.; Blommaert, F.A. In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis, 1996, 17(12), 2763-2769.
[http://dx.doi.org/10.1093/carcin/17.12.2763] [PMID: 9006117]
[27]
Faivre, S.; Chan, D.; Salinas, R.; Woynarowska, B.; Woynarowski, J.M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem. Pharmacol., 2003, 66(2), 225-237.
[http://dx.doi.org/10.1016/S0006-2952(03)00260-0] [PMID: 12826265]
[28]
Woynarowski, J.M.; Faivre, S.; Herzig, M.C.; Arnett, B.; Chapman, W.G.; Trevino, A.V.; Raymond, E.; Chaney, S.G.; Vaisman, A.; Varchenko, M.; Juniewicz, P.E. Oxaliplatin-induced damage of cellular DNA. Mol. Pharmacol., 2000, 58(5), 920-927.
[http://dx.doi.org/10.1124/mol.58.5.920] [PMID: 11040038]
[29]
Woynarowski, J.M.; Chapman, W.G.; Napier, C.; Herzig, M.C.; Juniewicz, P. Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA. Mol. Pharmacol., 1998, 54(5), 770-777.
[http://dx.doi.org/10.1124/mol.54.5.770] [PMID: 9804612]
[30]
Luo, F.R.; Yen, T.Y.; Wyrick, S.D.; Chaney, S.G. High-performance liquid chromatographic separation of the biotransformation products of oxaliplatin. J. Chromatogr. B Biomed. Sci. Appl., 1999, 724(2), 345-356.
[http://dx.doi.org/10.1016/S0378-4347(98)00565-9] [PMID: 10219677]
[31]
Luo, F.R.; Wyrick, S.D.; Chaney, S.G. Biotransformations of oxaliplatin in rat blood in vitro. J. Biochem. Mol. Toxicol., 1999, 13(3-4), 159-169.
[http://dx.doi.org/10.1002/(SICI)1099-0461(1999)13:3/4<159::AID-JBT6 >3.0.CO;2-C] [PMID: 10098901]
[32]
Fizazi, K.; Doubre, H.; Le Chevalier, T.; Riviere, A.; Viala, J.; Daniel, C.; Robert, L.; Barthélemy, P.; Fandi, A.; Ruffié, P. Combination of raltitrexed and oxaliplatin is an active regimen in malignant mesothelioma: results of a phase II study. J. Clin. Oncol., 2003, 21(2), 349-354.
[http://dx.doi.org/10.1200/JCO.2003.05.123] [PMID: 12525529]
[33]
Rixe, O.; Ortuzar, W.; Alvarez, M.; Parker, R.; Reed, E.; Paull, K.; Fojo, T. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug Screen panel. Biochem. Pharmacol., 1996, 52(12), 1855-1865.
[http://dx.doi.org/10.1016/S0006-2952(97)81490-6] [PMID: 8951344]
[34]
Schmidt, W.; Chaney, S.G. Role of carrier ligand in platinum resistance of human carcinoma cell lines. Cancer Res., 1993, 53(4), 799-805.
[PMID: 8428361]
[35]
Chaney, S.G.; Campbell, S.L.; Bassett, E.; Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol., 2005, 53(1), 3-11.
[http://dx.doi.org/10.1016/j.critrevonc.2004.08.008] [PMID: 15607931]
[36]
Kraker, A.; Steinkampf, R.W.; Moore, C.W. Transport of Cis-Pt and Cis-Pt analogs in sensitive and resistant murine leukemia cell lines. Proc. Am. Assoc. Cancer Res., 1986, 27, 286.
[37]
Fukuda, M.; Ohe, Y.; Kanzawa, F.; Oka, M.; Hara, K.; Saijo, N. Evaluation of novel platinum complexes, inhibitors of topoisomerase I and II in non-small cell lung cancer (NSCLC) sublines resistant to cisplatin. Anticancer Res., 1995, 15(2), 393-398.
[PMID: 7763011]
[38]
Cvitkovic, E. Ongoing and unsaid on oxaliplatin: the hope. Br. J. Cancer, 1998, 77(Suppl. 4), 8-11.
[http://dx.doi.org/10.1038/bjc.1998.429]] [PMID: 9647613]
[39]
Llory, J.F.; Soulie´, P.; Cvitkovic, E.; Misset, J.L. Feasibility of high-dose platinum delivery with combined carboplatin and oxaliplatin. J. Natl. Cancer Inst., 1994, 86(14), 1098-1099.
[http://dx.doi.org/10.1093/jnci/86.14.1098]] [PMID: 8043147]
[40]
Soulié, P.; Bensmaïne, A.; Garrino, C.; Chollet, P.; Brain, E.; Fereres, M.; Jasmin, C.; Musset, M.; Misset, J.L.; Cvitkovic, E. Oxaliplatin/cisplatin (L-OHP/CDDP) combination in heavily pretreated ovarian cancer. Eur. J. Cancer, 1997, 33(9), 1400-1406.
[http://dx.doi.org/10.1016/S0959-8049(97)00122-6] [PMID: 9337681]
[41]
Pendyala, L.; Kidani, Y.; Perez, R.; Wilkes, J.; Bernacki, R.J.; Creaven, P.J. Cytotoxicity, cellular accumulation and DNA binding of oxaliplatin isomers. Cancer Lett., 1995, 97(2), 177-184.
[http://dx.doi.org/10.1016/0304-3835(95)03974-2] [PMID: 7497460]
[42]
Pendyala, L.; Creaven, P.J. In vitro cytotoxicity, protein binding, red blood cell partitioning, and biotransformation of oxaliplatin. Cancer Res., 1993, 53(24), 5970-5976.
[PMID: 8261411]
[43]
Holmes, J.; Stanko, J.; Varchenko, M.; Ding, H.; Madden, V.J.; Bagnell, C.R.; Wyrick, S.D.; Chaney, S.G. Comparative neurotoxicity of oxaliplatin, cisplatin, and ormaplatin in a Wistar rat model. Toxicol. Sci., 1998, 46(2), 342-351.
[http://dx.doi.org/10.1006/toxs.1998.2558]] [PMID: 10048138]
[44]
Raymond, E.; Lawrence, R.; Izbicka, E.; Faivre, S.; Von Hoff, D.D. Activity of oxaliplatin against human tumor colony-forming units. Clin. Cancer Res., 1998, 4(4), 1021-1029.
[PMID: 9563898]
[45]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Lim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloid leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[46]
Hatfield, M.J.; Umans, R.A.; Hyatt, J.L.; Edwards, C.C.; Wierdl, M.; Tsurkan, L.; Taylor, M.R.; Potter, P.M. Carboxylesterases: general detoxifying enzymes. Chem. Biol. Interact., 2016, 259(Pt B), 327-331.
[http://dx.doi.org/10.1016/j.cbi.2016.02.011] [PMID: 26892220]
[47]
Hsiang, Y.H.; Liu, L.F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res., 1988, 48(7), 1722-1726.
[PMID: 2832051]
[48]
Shao, R.G.; Cao, C.X.; Zhang, H.; Kohn, K.W.; Wold, M.S.; Pommier, Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J., 1999, 18(5), 1397-1406.
[http://dx.doi.org/10.1093/emboj/18.5.1397] [PMID: 10064605]
[49]
Mathijssen, R.H.; van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res., 2001, 7(8), 2182-2194.
[PMID: 11489791]
[50]
Sparreboom, A.; Fujita, K.; Zamboni, W.C. Topoisomerase I-Targeting Drugs. In: Cancer Chemotherapy and Biotherapy: Principles and Practice; 5th ed; Chabner, B.A.; Longo, D.L., Eds.; Lippincott Williams & Wilkins: Philadelphia. , 2010; pp. 342-355.
[51]
Rivory, L.P.; Robert, J. Molecular, cellular, and clinical aspects of the pharmacology of 20(S)camptothecin and its derivatives. Pharmacol. Ther., 1995, 68(2), 269-296.
[http://dx.doi.org/10.1016/0163-7258(95)02009-8] [PMID: 8719971]
[52]
Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[53]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[PMID: 2997227]
[54]
Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res., 1989, 49(18), 5077-5082.
[PMID: 2548710]
[55]
Gupta, E.; Lestingi, T.M.; Mick, R.; Ramirez, J.; Vokes, E.E.; Ratain, M.J. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res., 1994, 54(14), 3723-3725.
[PMID: 8033091]
[56]
Gupta, E.; Mick, R.; Ramirez, J.; Wang, X.; Lestingi, T.M.; Vokes, E.E.; Ratain, M.J. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J. Clin. Oncol., 1997, 15(4), 1502-1510.
[http://dx.doi.org/10.1200/JCO.1997.15.4.1502] [PMID: 9193346]
[57]
Guillemette, C.; Lévesque, É.; Rouleau, M. Pharmacogenomics of human uridine diphospho-glucuronosyl-transferases and clinical implications. Clin. Pharmacol. Ther., 2014, 96(3), 324-339.
[http://dx.doi.org/10.1038/clpt.2014.126] [PMID: 24922307]
[58]
Bosma, P.J.; Chowdhury, J.R.; Bakker, C.; Gantla, S.; de Boer, A.; Oostra, B.A.; Lindhout, D.; Tytgat, G.N.; Jansen, P.L.; Oude Elferink, R.P. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N. Engl. J. Med., 1995, 333(18), 1171-1175.
[http://dx.doi.org/10.1056/NEJM199511023331802] [PMID: 7565971]
[59]
Beutler, E.; Gelbart, T.; Demina, A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8170-8174.
[http://dx.doi.org/10.1073/pnas.95.14.8170] [PMID: 9653159]
[60]
Akaba, K.; Kimura, T.; Sasaki, A.; Tanabe, S.; Wakabayashi, T.; Hiroi, M.; Yasumura, S.; Maki, K.; Aikawa, S.; Hayasaka, K. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese. J. Hum. Genet., 1999, 44(1), 22-25.
[http://dx.doi.org/10.1007/s100380050100] [PMID: 9929972]
[61]
Ando, Y.; Saka, H.; Ando, M.; Sawa, T.; Muro, K.; Ueoka, H.; Yokoyama, A.; Saitoh, S.; Shimokata, K.; Hasegawa, Y. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res., 2000, 60(24), 6921-6926.
[PMID: 11156391]
[62]
Han, J.Y.; Lim, H.S.; Shin, E.S.; Yoo, Y.K.; Park, Y.H.; Lee, J.E.; Jang, I.J.; Lee, D.H.; Lee, J.S. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol., 2006, 24(15), 2237-2244.
[http://dx.doi.org/10.1200/JCO.2005.03.0239] [PMID: 16636344]
[63]
Innocenti, F.; Undevia, S.D.; Iyer, L.; Chen, P.X.; Das, S.; Kocherginsky, M.; Karrison, T.; Janisch, L.; Ramírez, J.; Rudin, C.M.; Vokes, E.E.; Ratain, M.J. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol., 2004, 22(8), 1382-1388.
[http://dx.doi.org/10.1200/JCO.2004.07.173] [PMID: 15007088]
[64]
Minami, H.; Sai, K.; Saeki, M.; Saito, Y.; Ozawa, S.; Suzuki, K.; Kaniwa, N.; Sawada, J.; Hamaguchi, T.; Yamamoto, N.; Shirao, K.; Yamada, Y.; Ohmatsu, H.; Kubota, K.; Yoshida, T.; Ohtsu, A.; Saijo, N. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet. Genomics, 2007, 17(7), 497-504.
[http://dx.doi.org/10.1097/FPC.0b013e328014341f] [PMID: 17558305]
[65]
Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; Aranda, E.; Nordlinger, B.; Cisar, L.; Labianca, R.; Cunningham, D.; Van Cutsem, E.; Bosman, F. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol., 2010, 28(3), 466-474.
[http://dx.doi.org/10.1200/JCO.2009.23.3452] [PMID: 20008640]
[66]
Van Cutsem, E.; Köhne, C.H.; Láng, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; Schlichting, M.; Zubel, A.; Celik, I.; Rougier, P.; Ciardiello, F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol., 2011, 29(15), 2011-2019.
[http://dx.doi.org/10.1200/JCO.2010.33.5091] [PMID: 21502544]
[67]
Baselga, J.; Rosen, N. Determinants of RASistance to anti-epidermal growth factor receptor agents. J. Clin. Oncol., 2008, 26(10), 1582-1584.
[http://dx.doi.org/10.1200/JCO.2007.15.3700] [PMID: 18316790]
[68]
Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; Price, T.J.; Shepherd, L.; Au, H.J.; Langer, C.; Moore, M.J.; Zalcberg, J.R. K-Ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med., 2008, 359(17), 1757-1765.
[http://dx.doi.org/10.1056/NEJMoa0804385] [PMID: 18946061]
[69]
Lièvre, A.; Bachet, J-B.; Boige, V.; Cayre, A.; Le Corre, D.; Buc, E.; Ychou, M.; Bouché, O.; Landi, B.; Louvet, C.; André, T.; Bibeau, F.; Diebold, M.D.; Rougier, P.; Ducreux, M.; Tomasic, G.; Emile, J.F.; Penault-Llorca, F.; Laurent-Puig, P. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol., 2008, 26(3), 374-379.
[http://dx.doi.org/10.1200/JCO.2007.12.5906] [PMID: 18202412]
[70]
Allegra, C.J.; Rumble, R.B.; Hamilton, S.R.; Mangu, P.B.; Roach, N.; Hantel, A.; Schilsky, R.L. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J. Clin. Oncol., 2016, 34(2), 179-185.
[http://dx.doi.org/10.1200/JCO.2015.63.9674] [PMID: 26438111]
[71]
Stec, R.; Bodnar, L.; Charkiewicz, R.; Korniluk, J.; Rokita, M.; Smoter, M.; Ciechowicz, M.; Chyczewski, L.; Nikliński, J.; Kozłowski, W.; Szczylik, C. K-Ras gene mutation status as a prognostic and predictive factor in patients with colorectal cancer undergoing irinotecan- or oxaliplatin-based chemotherapy. Cancer Biol. Ther., 2012, 13(13), 1235-1243.
[http://dx.doi.org/10.4161/cbt.21813] [PMID: 22909976]
[72]
Grothey, A.; Lenz, H.J. Explaining the unexplainable: EGFR antibodies in colorectal cancer. J. Clin. Oncol., 2012, 30(15), 1735-1737.
[http://dx.doi.org/10.1200/JCO.2011.40.4194] [PMID: 22473160]
[73]
Huang, J.; Nair, S.G.; Mahoney, M.R.; Nelson, G.D.; Shields, A.F.; Chan, E.; Goldberg, R.M.; Gill, S.; Kahlenberg, M.S.; Quesenberry, J.T.; Thibodeau, S.N.; Smyrk, T.C.; Grothey, A.; Sinicrope, F.A.; Webb, T.A.; Farr, G.H. Jr.; Pockaj, B.A.; Berenberg, J.L.; Mooney, M.; Sargent, D.J.; Alberts, S.R. Comparison of FOLFIRI with or without cetuximab in patients with resected stage III colon cancer; NCCTG (Alliance) intergroup trial N0147. Clin. Colorectal Cancer, 2014, 13(2), 100-109.https://dxdoi.org/10.1016/j.clcc.2013.12.002
[PMID: 24512953]
[74]
Lin, Y.L.; Liang, Y.H.; Tsai, J.H.; Liau, J.Y.; Liang, J.T.; Lin, B.R.; Hung, J.S.; Lin, L.I.; Tseng, L.H.; Chang, Y.L.; Yeh, K.H.; Cheng, A.L. Oxaliplatin-based chemotherapy is more beneficial in KRAS mutant than in KRAS wild-type metastatic colorectal cancer patients. PLoS One, 2014, 9(2), e86789.
[http://dx.doi.org/10.1371/journal.pone.0086789]] [PMID: 24505265]
[75]
Lin, Y.L.; Liau, J.Y.; Yu, S.C.; Tseng, L.H.; Lin, L.I.; Liang, J.T.; Lin, B.R.; Hung, J.S.; Chang, Y.L.; Yeh, K.H.; Cheng, A.L. Oxaliplatin-based chemotherapy might provide longer progression-free survival in kras mutant metastatic colorectal cancer. Transl. Oncol., 2013, 6(3), 363-369.
[http://dx.doi.org/10.1593/tlo.13166]] [PMID: 23730417]
[76]
Weinstein, I.B. Addiction to oncogenes-the Achilles heal of cancer. Science, 2002, 297(5578), 63-64.
[http://dx.doi.org/10.1126/science.1073096]] [PMID: 12098689]
[77]
Vekris, A.; Meynard, D.; Haaz, M.C.; Bayssas, M.; Bonnet, J.; Robert, J. Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research. Cancer Res., 2004, 64(1), 356-362.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2258] [PMID: 14729645]
[78]
Reed, E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat. Rev., 1998, 24(5), 331-344.
[http://dx.doi.org/10.1016/S0305-7372(98)90056-1] [PMID: 9861196]
[79]
Tsodikov, O.V.; Enzlin, J.H.; Schärer, O.D.; Ellenberger, T. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11236-11241.
[http://dx.doi.org/10.1073/pnas.0504341102] [PMID: 16076955]
[80]
Youn, C.K.; Kim, M.H.; Cho, H.J.; Kim, H.B.; Chang, I.Y.; Chung, M.H.; You, H.J. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res., 2004, 64(14), 4849-4857.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0348] [PMID: 15256455]
[81]
Orlandi, A.; Di Salvatore, M.; Bagalà, C.; Basso, M.; Strippoli, A.; Plastino, F.; Calegari, M.A.; Cassano, A.; Astone, A.; Barone, C. ERCC1 Induction after oxaliplatin exposure may depend on kras mutational status in colorectal cancer cell line: in vitro veritas. J. Cancer, 2015, 6(1), 70-81.
[http://dx.doi.org/10.7150/jca.10478] [PMID: 25553091]
[82]
Castellano, E.; Santos, E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer, 2011, 2(3), 216-231.
[http://dx.doi.org/10.1177/1947601911408081] [PMID: 21779495]
[83]
Balin-Gauthier, D.; Delord, J-P.; Pillaire, M-J.; Rochaix, P.; Hoffman, J-S.; Bugat, R.; Cazaux, C.; Canal, P.; Allal, B.C. Cetuximab potentiates oxaliplatin cytotoxic effect through a defect in NER and DNA replication initiation. Br. J. Cancer, 2008, 98(1), 120-128.
[http://dx.doi.org/10.1038/sj.bjc.6604134] [PMID: 18182978]
[84]
Bokemeyer, C.; Bondarenko, I.; Makhson, A.; Hartmann, J.T.; Aparicio, J.; de Braud, F.; Donea, S.; Ludwig, H.; Schuch, G.; Stroh, C.; Loos, A.H.; Zubel, A.; Koralewski, P. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol., 2009, 27(5), 663-671.
[http://dx.doi.org/10.1200/JCO.2008.20.8397] [PMID: 19114683]
[85]
Tejpar, S.; Celik, I.; Schlichting, M.; Sartorius, U.; Bokemeyer, C.; Van Cutsem, E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol., 2012, 30(29), 3570-3577.
[http://dx.doi.org/10.1200/JCO.2012.42.2592] [PMID: 22734028]
[86]
Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Williams, R.; Rong, A.; Wiezorek, J.; Sidhu, R.; Patterson, S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med., 2013, 369(11), 1023-1034.
[http://dx.doi.org/10.1056/NEJMoa1305275] [PMID: 24024839]
[87]
Maughan, T.S.; Adams, R.A.; Smith, C.G.; Meade, A.M.; Seymour, M.T.; Wilson, R.H.; Idziaszczyk, S.; Harris, R.; Fisher, D.; Kenny, S.L.; Kay, E.; Mitchell, J.K.; Madi, A.; Jasani, B.; James, M.D.; Bridgewater, J.; Kennedy, M.J.; Claes, B.; Lambrechts, D.; Kaplan, R.; Cheadle, J.P. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet, 2011, 377(9783), 2103-2114.
[http://dx.doi.org/10.1016/S0140-6736(11)60613-2] [PMID: 21641636]
[88]
Correale, P.; Marra, M.; Remondo, C.; Migali, C.; Misso, G.; Arcuri, F.P.; Del Vecchio, M.T.; Carducci, A.; Loiacono, L.; Tassone, P.; Abbruzzese, A.; Tagliaferri, P.; Caraglia, M. Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC). Eur. J. Cancer, 2010, 46(9), 1703-1711.
[http://dx.doi.org/10.1016/j.ejca.2010.03.005] [PMID: 20399639]
[89]
Inoue, Y.; Hazama, S.; Suzuki, N.; Tokumitsu, Y.; Kanekiyo, S.; Tomochika, S.; Tsunedomi, R.; Tokuhisa, Y.; Iida, M.; Sakamoto, K.; Takeda, S.; Ueno, T.; Yoshino, S.; Nagano, H. Cetuximab strongly enhances immune cell infiltration into liver metastatic sites in colorectal cancer. Cancer Sci., 2017, 108(3), 455-460.
[http://dx.doi.org/10.1111/cas.13162] [PMID: 28075526]
[90]
Lotti, F.; Jarrar, A.M.; Pai, R.K.; Hitomi, M.; Lathia, J.; Mace, A.; Gantt, G.A. Jr.; Sukhdeo, K.; DeVecchio, J.; Vasanji, A.; Leahy, P.; Hjelmeland, A.B.; Kalady, M.F.; Rich, J.N. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med., 2013, 210(13), 2851-2872.
[http://dx.doi.org/10.1084/jem.20131195] [PMID: 24323355]
[91]
Bierie, B.; Moses, H.L. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer, 2006, 6(7), 506-520.
[http://dx.doi.org/10.1038/nrc1926] [PMID: 16794634]
[92]
Ikushima, H.; Miyazono, K. TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer, 2010, 10(6), 415-424.
[http://dx.doi.org/10.1038/nrc2853] [PMID: 20495575]
[93]
Johnston, C.J.; Smyth, D.J.; Dresser, D.W.; Maizels, R.M. TGF-β in tolerance, development and regulation of immunity. Cell. Immunol., 2016, 299, 14-22.
[http://dx.doi.org/10.1016/j.cellimm.2015.10.006] [PMID: 26617281]
[94]
Carrasco, J.; Gizzi, M.; Pairet, G.; Lannoy, V.; Lefesvre, P.; Gigot, J.F.; Hubert, C.; Jouret-Mourin, A.; Humblet, Y.; Canon, J.L.; Sempoux, C.; Chapaux, X.; Danse, E.; Tinton, N.; Navez, B.; Van den Eynde, M. Pathological responses after angiogenesis or EGFR inhibitors in metastatic colorectal cancer depend on the chemotherapy backbone. Br. J. Cancer, 2015, 113(9), 1298-1304.
[http://dx.doi.org/10.1038/bjc.2015.321] [PMID: 26461062]
[95]
Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chang Chien, C.R Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; Roh, J.K.; Folprecht, G.; Ruff, P.; Stroh, C.; Tejpar, S.; Schlichting, M.; Nippgen, J.; Rougier, P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 2009, 360(14), 1408-1417.
[http://dx.doi.org/10.1056/NEJMoa0805019] [PMID: 19339720]
[96]
Loupakis, F.; Cremolini, C.; Salvatore, L.; Schirripa, M.; Lonardi, S.; Vaccaro, V.; Cuppone, F.; Giannarelli, D.; Zagonel, V.; Cognetti, F.; Tortora, G.; Falcone, A.; Bria, E. Clinical impact of anti-epidermal growth factor receptor monoclonal antibodies in first-line treatment of metastatic colorectal cancer: meta-analytical estimation and implications for therapeutic strategies. Cancer, 2012, 118(6), 1523-1532.
[http://dx.doi.org/10.1002/cncr.26460] [PMID: 22009364]
[97]
Tauriello, D.V.F.; Palomo-Ponce, S.; Stork, D.; Berenguer-Llergo, A.; Badia-Ramentol, J.; Iglesias, M.; Sevillano, M.; Ibiza, S.; Cañellas, A.; Hernando-Momblona, X.; Byrom, D.; Matarin, J.A.; Calon, A.; Rivas, E.I.; Nebreda, A.R.; Riera, A.; Attolini, C.S.; Batlle, E. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 2018, 554(7693), 538-543.
[http://dx.doi.org/10.1038/nature25492] [PMID: 29443964]
[98]
Yang, L.; Pang, Y.; Moses, H.L. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 2010, 31(6), 220-227.
[http://dx.doi.org/10.1016/j.it.2010.04.002] [PMID: 20538542]
[99]
Yi, J.Y.; Shin, I.; Arteaga, C.L. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem., 2005, 280(11), 10870-10876.
[http://dx.doi.org/10.1074/jbc.M413223200] [PMID: 15657037]
[100]
Bedi, A.; Chang, X.; Noonan, K.; Pham, V.; Bedi, R.; Fertig, E.J.; Considine, M.; Califano, J.A.; Borrello, I.; Chung, C.H.; Sidransky, D.; Ravi, R. Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol. Cancer Ther., 2012, 11(11), 2429-2439.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0101-T] [PMID: 22927667]
[101]
Richman, S.D.; Seymour, M.T.; Chambers, P.; Elliott, F.; Daly, C.L.; Meade, A.M.; Taylor, G.; Barrett, J.H.; Quirke, P. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J. Clin. Oncol., 2009, 27(35), 5931-5937.
[http://dx.doi.org/10.1200/JCO.2009.22.4295] [PMID: 19884549]
[102]
Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; Tonini, G.; Carlomagno, C.; Allegrini, G.; Chiara, S.; D’Amico, M.; Granetto, C.; Cazzaniga, M.; Boni, L.; Fontanini, G.; Falcone, A. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol., 2015, 16(13), 1306-1315.
[http://dx.doi.org/10.1016/S1470-2045(15)00122-9] [PMID: 26338525]
[103]
Geissler, M.; Martens, U.; Knorrenschield, R.; Greeve, J.; Florschuetz, A.; Tannapfel, A.; Wessendorf, F.; Seuerlein, T.; Kanzler, S.; Heinemann, V.; Reinacher-Schick, A.C.; Martens, U.M. 475O-mFOLFOXIRI + panitumumab versus FOLFOXIRI as first-line treatment in patients with RAS wild-type metastatic colorectal cancer m(CRC): a randomized phase II VOLFI trial of the AIO (AIO-KRK0109). Ann. Oncol., 2017, 28(Suppl. 5), v158-v208.
[http://dx.doi.org/10.1093/annonc/mdx393.002]
[104]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[105]
Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Clendenning, M.; Sotamaa, K.; Prior, T.; Westman, J.A.; Panescu, J.; Fix, D.; Lockman, J.; LaJeunesse, J.; Comeras, I.; de la Chapelle, A. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol., 2008, 26(35), 5783-5788.
[http://dx.doi.org/10.1200/JCO.2008.17.5950] [PMID: 18809606]
[106]
Lynch, H.T.; de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med., 2003, 348(10), 919-932.
[http://dx.doi.org/10.1056/NEJMra012242] [PMID: 12621137]
[107]
Aaltonen, L.A.; Salovaara, R.; Kristo, P.; Canzian, F.; Hemminki, A.; Peltomäki, P.; Chadwick, R.B.; Kääriäinen, H.; Eskelinen, M.; Järvinen, H.; Mecklin, J.P.; de la Chapelle, A. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med., 1998, 338(21), 1481-1487.
[http://dx.doi.org/10.1056/NEJM199805213382101] [PMID: 9593786]
[108]
Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Nakagawa, H.; Sotamaa, K.; Prior, T.W.; Westman, J.; Panescu, J.; Fix, D.; Lockman, J.; Comeras, I.; de la Chapelle, A. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med., 2005, 352(18), 1851-1860.
[http://dx.doi.org/10.1056/NEJMoa043146] [PMID: 15872200]
[109]
Halvarsson, B.; Anderson, H.; Domanska, K.; Lindmark, G.; Nilbert, M. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers. Am. J. Clin. Pathol., 2008, 129(2), 238-244.
[http://dx.doi.org/10.1309/0PP5GDRTXUDVKAWJ] [PMID: 18208804]
[110]
Koopman, M.; Kortman, G.A.M.; Mekenkamp, L.; Ligtenberg, M.J.; Hoogerbrugge, N.; Antonini, N.F.; Punt, C.J.; van Krieken, J.H. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer, 2009, 100(2), 266-273.
[http://dx.doi.org/10.1038/sj.bjc.6604867] [PMID: 19165197]
[111]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[112]
U.S. Food & Drug Administration. Package Insert. KEYTRUDA® (pembrolizumab) injection, for intravenous use 2019.Available at:. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514s065lbl.pdf(Accessed: February 8, 2020).
[113]
U.S. Food & Drug Administration. Package Insert. OPDIVO (nivolumab) injection, for intravenous use 2019.Available at:. https://www.accessdata.fda.gov/drugsatfda_ docs/label/2019/125554s075lbl.pdf(Accessed: February 8,2020).
[114]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A. Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[115]
Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; Sawyer, M.B.; Hendlisz, A.; Neyns, B.; Svrcek, M.; Moss, R.A.; Ledeine, J.M.; Cao, Z.A.; Kamble, S.; Kopetz, S.; André, T. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol., 2018, 36(8), 773-779.
[http://dx.doi.org/10.1200/JCO.2017.76.9901] [PMID: 29355075]
[116]
Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; Goldberg, M.V.; Cao, Z.A.; Ledeine, J.M.; Maglinte, G.A.; Kopetz, S.; André, T. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol., 2017, 18(9), 1182-1191.
[http://dx.doi.org/10.1016/S1470-2045(17)30422-9] [PMID: 28734759]
[117]
Fink, D.; Aebi, S.; Howell, S.B. The role of DNA mismatch repair in drug resistance. Clin. Cancer Res., 1998, 4(1), 1-6.
[PMID: 9516945]
[118]
Kat, A.; Thilly, W.G.; Fang, W.H.; Longley, M.J.; Li, G.M.; Modrich, P. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6424-6428.
[http://dx.doi.org/10.1073/pnas.90.14.6424] [PMID: 8341649]
[119]
Sibghat, -Ullah Day, R.S., III Incision at O6-methylguanine: thymine mispairs in DNA by extracts of human cells. Biochemistry, 1992, 31(34), 7998-8008.
[http://dx.doi.org/10.1021/bi00149a034] [PMID: 1510986]
[120]
Swann, P.F.; Waters, T.R.; Moulton, D.C.; Xu, Y-Z.; Zheng, Q.; Edwards, M.; Mace, R. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science, 1996, 273(5278), 1109-1111.
[http://dx.doi.org/10.1126/science.273.5278.1109] [PMID: 8688098]
[121]
Fedier, A.; Schwarz, V.A.; Walt, H.; Carpini, R.D.; Haller, U.; Fink, D. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int. J. Cancer, 2001, 93(4), 571-576.
[http://dx.doi.org/10.1002/ijc.1356] [PMID: 11477562]
[122]
Aebi, S.; Kurdi-Haidar, B.; Gordon, R.; Cenni, B.; Zheng, H.; Fink, D.; Christen, R.D.; Boland, C.R.; Koi, M.; Fishel, R.; Howell, S.B. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res., 1996, 56(13), 3087-3090.
[PMID: 8674066]
[123]
Branch, P.; Masson, M.; Aquilina, G.; Bignami, M.; Karran, P. Spontaneous development of drug resistance: mismatch repair and p53 defects in resistance to cisplatin in human tumor cells. Oncogene, 2000, 19(28), 3138-3145.
[http://dx.doi.org/10.1038/sj.onc.1203668] [PMID: 10918568]
[124]
Fink, D.; Zheng, H.; Nebel, S.; Norris, P.S.; Aebi, S.; Lin, T.P.; Nehmé, A.; Christen, R.D.; Haas, M.; MacLeod, C.L.; Howell, S.B. In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res., 1997, 57(10), 1841-1845.
[PMID: 9157971]
[125]
Fink, D.; Nebel, S.; Aebi, S.; Zheng, H.; Cenni, B.; Nehmé, A.; Christen, R.D.; Howell, S.B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res., 1996, 56(21), 4881-4886.
[PMID: 8895738]
[126]
van Boom, S.S.; Yang, D.; Reedijk, J.; van der Marel, G.A.; Wang, A.H.J. Structural effect of intra-strand cisplatin-crosslink on palindromic DNA sequences. J. Biomol. Struct. Dyn., 1996, 13(6), 989-998.
[http://dx.doi.org/10.1080/07391102.1996.10508913] [PMID: 8832381]
[127]
Mello, J.A.; Acharya, S.; Fishel, R.; Essigmann, J.M. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol., 1996, 3(7), 579-589.
[http://dx.doi.org/10.1016/S1074-5521(96)90149-0] [PMID: 8807890]
[128]
Yamada, M.; O’Regan, E.; Brown, R.; Karran, P. Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins. Nucleic Acids Res., 1997, 25(3), 491-496.
[http://dx.doi.org/10.1093/nar/25.3.491] [PMID: 9016586]
[129]
Vaisman, A.; Varchenko, M.; Umar, A.; Kunkel, T.A.; Risinger, J.I.; Barrett, J.C.; Hamilton, T.C.; Chaney, S.G. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res., 1998, 58(16), 3579-3585.
[PMID: 9721864]
[130]
Mamenta, E.L.; Poma, E.E.; Kaufmann, W.K.; Delmastro, D.A.; Grady, H.L.; Chaney, S.G. Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res., 1994, 54(13), 3500-3505.
[PMID: 8012973]
[131]
des Guetz, G.; Mariani, P.; Cucherousset, J.; Benamoun, M.; Lagorce, C.; Sastre, X.; Le Toumelin, P.; Uzzan, B.; Perret, G.Y.; Morere, J.F.; Breau, J.L.; Fagard, R.; Schischmanoff, P.O. Microsatellite instability and sensitivitiy to FOLFOX treatment in metastatic colorectal cancer. Anticancer Res., 2007, 27(4C), 2715-2719.
[PMID: 17695437]
[132]
Bras-Gonçalves, R.A.; Rosty, C.; Laurent-Puig, P.; Soulié, P.; Dutrillaux, B.; Poupon, M.F. Sensitivity to CPT-11 of xenografted human colorectal cancers as a function of microsatellite instability and p53 status. Br. J. Cancer, 2000, 82(4), 913-923.
[http://dx.doi.org/10.1054/bjoc.1999.1019] [PMID: 10732766]
[133]
Xu, Y.; Her, C. Inhibition of Topoisomerase (DNA) I (TOP1): DNA Damage Repair and Anticancer Therapy. Biomolecules, 2015, 5(3), 1652-1670.
[http://dx.doi.org/10.3390/biom5031652] [PMID: 26287259]
[134]
Harfe, B.D.; Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet., 2000, 34, 359-399.
[http://dx.doi.org/10.1146/annurev.genet.34.1.359] [PMID: 11092832]
[135]
Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 1995, 268(5215), 1336-1338.
[http://dx.doi.org/10.1126/science.7761852] [PMID: 7761852]
[136]
Rampino, N.; Yamamoto, H.; Ionov, Y.; Li, Y.; Sawai, H.; Reed, J.C.; Perucho, M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997, 275(5302), 967-969.
[http://dx.doi.org/10.1126/science.275.5302.967] [PMID: 9020077]
[137]
Fallik, D.; Borrini, F.; Boige, V.; Viguier, J.; Jacob, S.; Miquel, C.; Sabourin, J.C.; Ducreux, M.; Praz, F. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res., 2003, 63(18), 5738-5744.
[PMID: 14522894]
[138]
Vilar, E.; Scaltriti, M.; Balmaña, J.; Saura, C.; Guzman, M.; Arribas, J.; Baselga, J.; Tabernero, J. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br. J. Cancer, 2008, 99(10), 1607-1612.
[http://dx.doi.org/10.1038/sj.bjc.6604691] [PMID: 18941461]
[139]
Pavillard, V.; Formento, P.; Rostagno, P.; Formento, J.L.; Fischel, J.L.; Francoual, M.; Etienne, M.C.; Milano, G. Combination of irinotecan (CPT11) and 5-fluorouracil with an analysis of cellular determinants of drug activity. Biochem. Pharmacol., 1998, 56(10), 1315-1322.
[http://dx.doi.org/10.1016/S0006-2952(98)00205-6] [PMID: 9825730]
[140]
Magrini, R.; Bhonde, M.R.; Hanski, M.L.; Notter, M.; Scherübl, H.; Boland, C.R.; Zeitz, M.; Hanski, C. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int. J. Cancer, 2002, 101(1), 23-31.
[http://dx.doi.org/10.1002/ijc.10565] [PMID: 12209584]
[141]
Kim, J.E.; Hong, Y.S.; Ryu, M.H.; Lee, J.L.; Chang, H.M.; Lim, S.B.; Kim, J.H.; Jang, S.J.; Kim, M.J.; Yu, C.S.; Kang, Y.K.; Kim, J.C.; Kim, T.W. Association between deficient mismatch repair system and efficacy to irinotecan-containing chemotherapy in metastatic colon cancer. Cancer Sci., 2011, 102(9), 1706-1711.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02009.x] [PMID: 21679278]
[142]
Wang, D.; Zhang, X.; Zhang, Y.; Wu, Y.; Guan, X.; Zhu, W.; Wang, M.; Qi, C.; Shen, B. Association of MLH1 single nucleotide polymorphisms with clinical outcomes of first-line irinotecan-based chemotherapy in colorectal cancer. OncoTargets Ther., 2018, 11, 8083-8088.
[http://dx.doi.org/10.2147/OTT.S180145] [PMID: 30519050]
[143]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa, E. Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[144]
Okita, A.; Takahashi, S.; Ouchi, K.; Inoue, M.; Watanabe, M.; Endo, M.; Honda, H.; Yamada, Y.; Ishioka, C. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget, 2018, 9(27), 18698-18711.
[http://dx.doi.org/10.18632/oncotarget.24617] [PMID: 29721154]
[145]
Aderka, D.; Stintzing, S.; Heinemann, V. Explaining the unexplainable: discrepancies in results from the CALGB/SWOG 80405 and FIRE-3 studies. Lancet Oncol., 2019, 20(5), e274-e283.
[http://dx.doi.org/10.1016/S1470-2045(19)30172-X] [PMID: 31044725]
[146]
Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; Steeghs, N.; Guren, T.K.; Arkenau, H.T.; Garcia-Alfonso, P.; Pfeiffer, P.; Orlov, S.; Lonardi, S.; Elez, E.; Kim, T.W.; Schellens, J.H.M.; Guo, C.; Krishnan, A.; Dekervel, J.; Morris, V.; Calvo Ferrandiz, A.; Tarpgaard, L.S.; Braun, M.; Gollerkeri, A.; Keir, C.; Maharry, K.; Pickard, M.; Christy-Bittel, J.; Anderson, L.; Sandor, V.; Tabernero, J. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med., 2019, 381(17), 1632-1643.
[http://dx.doi.org/10.1056/NEJMoa1908075] [PMID: 31566309]
[147]
Grothey, A.; Tabernero, J.; Taieb, J.; Yaeger, R.; Yoshino, T.; Maiello, E.; Elez Fernandez, E.; Ruiz Casado, A.; Ross, P.; André, T.; Kato, T.; Ruffinelli, J.; Graham, J.; Van den Eynde, M.; Vera, R.; Jean, B.; Carriere Roussel, E.; Cahuzac, C.; Issiakhem, Z.; Vedovato, J.; Van Cutsem, E. LBA-5 ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E mutant metastatic colorectal cancer. Ann. Oncol., 2020, 31(suppl. 3), S242-S243.
[http://dx.doi.org/10.1016/j.annonc.2020.04.080]
[148]
Andre, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.M. GarciaCarbonero, R.; Manuel Benavides, M.; Gibbs, P.; De La Fouchardiere, C.; Rivera, F.; Elez, E.; Bendell, J.C.; Le, D-T.; Yoshino, T.; Yang, P.; Farooqui, M.Z.H.; Marinello, P.; Diaz, L.A. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 study. J. Clin. Oncol., 2020, 38(18), LBA4-LBA4.
[http://dx.doi.org/10.1200/JCO.2020.38.18_suppl.LBA4]
[149]
Chan, D.L.; Pavlakis, N.; Shapiro, J.; Price, T.J.; Karapetis, C.S.; Tebbutt, N.C.; Segelov, E. Does the chemotherapy backbone impact on the efficacy of targeted agents in metastatic colorectal cancer? A systematic review and meta-analysis of the literature. PLoS One, 2015, 10(8), e0135599.
[http://dx.doi.org/10.1371/journal.pone.0135599] [PMID: 26275292]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy