Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Dithienopyrrole-based Organic Electroactive Materials and Their Photovoltaic Aspects

Author(s): Renata Rybakiewicz*, Łukasz Skórka and Roman Gańczarczyk

Volume 24, Issue 23, 2020

Page: [2695 - 2736] Pages: 42

DOI: 10.2174/1385272824999201014154321

Price: $65

Abstract

4H-dithieno[3,2-b:2',3'-d]pyrrole has recently become a useful building block in the synthesis of donor-acceptor molecules with practical application in various organic technologies. The DTP molecule itself consists of a pyrrole ring with two fused thiophenes providing an alternative for the related dithieno[3,2-b:2′,3′-d]thiophene. Most notably, the significance of DTP-based low- and high-molecular weight species has increased in recent years since, upon proper processing, they allow to improve the performance of many fields of organic electronics. This review is a trial of a brief report on recent advances in modern DTP chemistry with examples of their applications, mostly in the area of organic photovoltaics. The scope of this manuscript was to present the structure-property relationships that had been found together with the development of DTP-based materials.

Keywords: Synthesis, dithienopyrrole, electroactive compounds, polymerization, photovoltaic devices, solar cells.

Next »
Graphical Abstract

[1]
Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics, 2009, 3(5), 297-302.
[http://dx.doi.org/10.1038/nphoton.2009.69]
[2]
Huang, Y.; Kramer, E.J.; Heeger, A.J.; Bazan, G.C. Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev., 2014, 114(14), 7006-7043.
[http://dx.doi.org/10.1021/cr400353v] [PMID: 24869423]
[3]
Li, Y.; Liu, X.; Wu, F-P.; Zhou, Y.; Jiang, Z-Q.; Song, B.; Xia, Y.; Zhang, Z-G.; Gao, F.; Inganäs, O. Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(16), 5890-5897.
[http://dx.doi.org/10.1039/C6TA00612D]
[4]
Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy, 2016, 1(7), 16089.
[http://dx.doi.org/10.1038/nenergy.2016.89]
[5]
Cha, H.; Wu, J.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M.F.; Baran, D.; Kim, J.S.; McCulloch, I.; Durrant, J.R. An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater., 2017, 29(33)1701156
[http://dx.doi.org/10.1002/adma.201701156] [PMID: 28657152]
[6]
Holliday, S.; Li, Y.; Luscombe, C.K. Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci., 2017, 70, 34-51.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.003]
[7]
Nakano, K.; Tajima, K. Organic planar heterojunctions: from models for interfaces in bulk heterojunctions to high-performance solar cells. Adv. Mater., 2017, 29(25)1603269
[http://dx.doi.org/10.1002/adma.201603269] [PMID: 27885716]
[8]
Xiao, Z.; Jia, X.; Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. (Beijing), 2017, 62(23), 1562-1564.
[http://dx.doi.org/10.1016/j.scib.2017.11.003]
[9]
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc., 2017, 139(21), 7148-7151.
[http://dx.doi.org/10.1021/jacs.7b02677] [PMID: 28513158]
[10]
Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics, 2018, 12(3), 131-142.
[http://dx.doi.org/10.1038/s41566-018-0104-9]
[11]
Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater., 2018, 17(2), 119-128.
[http://dx.doi.org/10.1038/nmat5063] [PMID: 29358765]
[12]
Menke, S.M.; Ran, N.A.; Bazan, G.C.; Friend, R.H. Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule, 2018, 2(1), 25-35.
[http://dx.doi.org/10.1016/j.joule.2017.09.020]
[13]
Yu, R.; Yao, H.; Hou, J. Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv. Energy Mater., 2018, 8(28)1702814
[http://dx.doi.org/10.1002/aenm.201702814]
[14]
Zhang, G.; Zhao, J.; Chow, P.C.Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev., 2018, 118(7), 3447-3507.
[http://dx.doi.org/10.1021/acs.chemrev.7b00535] [PMID: 29557657]
[15]
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev., 2010, 110(11), 6595-6663.
[http://dx.doi.org/10.1021/cr900356p] [PMID: 20831177]
[16]
Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev., 2014, 43(20), 6920-6937.
[http://dx.doi.org/10.1039/C4CS00180J] [PMID: 25014328]
[17]
Sun, Z.; Liang, M.; Chen, J. Kinetics of Iodine-free redox shuttles in dye-sensitized solar cells: interfacial recombination and dye regeneration. Acc. Chem. Res., 2015, 48(6), 1541-1550.
[http://dx.doi.org/10.1021/ar500337g] [PMID: 26001106]
[18]
Pashaei, B.; Shahroosvand, H.; Graetzel, M.; Nazeeruddin, M.K. Influence of ancillary ligands in dye-sensitized solar cells. Chem. Rev., 2016, 116(16), 9485-9564.
[http://dx.doi.org/10.1021/acs.chemrev.5b00621] [PMID: 27479482]
[19]
Zhan, C.; Yao, J. More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem. Mater., 2016, 28(7), 1948-1964.
[http://dx.doi.org/10.1021/acs.chemmater.5b04339]
[20]
Stoltzfus, D.M.; Donaghey, J.E.; Armin, A.; Shaw, P.E.; Burn, P.L.; Meredith, P. Charge generation pathways in organic solar cells: assessing the contribution from the electron acceptor. Chem. Rev., 2016, 116(21), 12920-12955.
[http://dx.doi.org/10.1021/acs.chemrev.6b00126] [PMID: 27341081]
[21]
Lin, Y.; Li, Y.; Zhan, X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev., 2012, 41(11), 4245-4272.
[http://dx.doi.org/10.1039/c2cs15313k] [PMID: 22453295]
[22]
Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev., 2016, 116(21), 12956-13008.
[http://dx.doi.org/10.1021/acs.chemrev.6b00136] [PMID: 27327168]
[23]
Desilvestro, J.; Graetzel, M.; Kavan, L.; Moser, J.; Augustynski, J. Highly efficient sensitization of titanium dioxide. J. Am. Chem. Soc., 1985, 107(10), 2988-2990.
[http://dx.doi.org/10.1021/ja00296a035]
[24]
Wu, Y.; Zhu, W. Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev., 2013, 42(5), 2039-2058.
[http://dx.doi.org/10.1039/C2CS35346F] [PMID: 23192709]
[25]
Liang, M.; Chen, J. Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42(8), 3453-3488.
[http://dx.doi.org/10.1039/c3cs35372a] [PMID: 23396530]
[26]
Miao, K.; Liang, M.; Wang, Z.; Zhang, C.; Sun, Z.; Xue, S. Organic sensitizers featuring thiophene derivative based donors with improved stability and photovoltaic performance. Phys. Chem. Chem. Phys., 2017, 19(3), 1927-1936.
[http://dx.doi.org/10.1039/C6CP07335B] [PMID: 28009863]
[27]
Zhang, L.; Cole, J.M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2015, 7(6), 3427-3455.
[http://dx.doi.org/10.1021/am507334m] [PMID: 25594514]
[28]
Xu, M.; Zhang, M.; Pastore, M.; Li, R.; De Angelis, F.; Wang, P. Joint electrical, photophysical and computational studies on d-π-a dye sensitized solar cells: the impacts of dithiophene rigidification. Chem. Sci. (Camb.), 2012, 3(4), 976.
[http://dx.doi.org/10.1039/c2sc00973k]
[29]
Cai, N.; Zhang, J.; Xu, M.; Zhang, M.; Wang, P. Improving the photovoltage of dithienopyrrole dye-sensitized solar cells via attaching the bulky bis(octyloxy)biphenyl moiety to the conjugated π-linker. Adv. Funct. Mater., 2013, 23(28), 3539-3547.
[http://dx.doi.org/10.1002/adfm.201203348]
[30]
Wang, C.; Liang, M.; Huang, J.; Cheng, F.; Wang, H.; Guo, Y.; Xue, S. Redox couple related influences of bulky electron donor as well as spacer in organic dye-sensitized mesoscopic solar cells. Tetrahedron, 2014, 70(36), 6203-6210.
[http://dx.doi.org/10.1016/j.tet.2014.01.052]
[31]
Wang, Z.; Liang, M.; Wang, L.; Hao, Y.; Wang, C.; Sun, Z.; Xue, S. New triphenylamine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for iodine-free dye-sensitized solar cells. Chem. Commun. (Camb.), 2013, 49(51), 5748-5750.
[http://dx.doi.org/10.1039/c3cc42121j] [PMID: 23685398]
[32]
Gupta, A.; Kelson, M.M.A.; Armel, V.; Bilic, A.; Bhosale, S.V. N-alkyl- and N-aryl-dithieno[3,2-b:2′,3′-d]pyrrole-containing organic dyes for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70(12), 2141-2150.
[http://dx.doi.org/10.1016/j.tet.2014.02.002]
[33]
Polander, L.E.; Yella, A.; Teuscher, J.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari Astani, N.; Gao, P.; Moser, J-E.; Tavernelli, I.; Rothlisberger, U. Unravelling the potential for dithienopyrrole sensitizers in dye-sensitized solar cells. Chem. Mater., 2013, 25(13), 2642-2648.
[http://dx.doi.org/10.1021/cm401144j]
[34]
Wang, Z.; Liang, M.; Hao, Y.; Zhang, Y.; Wang, L.; Sun, Z.; Xue, S. Influence of the N-heterocycle substituent of the dithieno[3,2-b:2′,3′-d]pyrrole (DTP) spacer as well as sensitizer adsorption time on the photovoltaic properties of arylamine organic dyes. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(38), 11809.
[http://dx.doi.org/10.1039/c3ta12746j]
[35]
Wang, Z.; Liang, M.; Wang, H.; Wang, P.; Cheng, F.; Sun, Z.; Song, X. Joint electrical, photophysical, and photovoltaic studies on truxene dye-sensitized solar cells: impact of arylamine electron donors. ChemSusChem, 2014, 7(3), 795-803.
[http://dx.doi.org/10.1002/cssc.201301155] [PMID: 24493016]
[36]
Xia, Q.; Liang, M.; Tan, Y.; Gao, W.; Ouyang, L.; Ge, G.; Sun, Z.; Xue, S. Engineering of the electron donor of triarylamine sensitizers for high-performance dye-sensitized solar cells. Org. Electron., 2015, 17, 285-294.
[http://dx.doi.org/10.1016/j.orgel.2014.12.026]
[37]
Ge, G.; Dai, P.; Lu, Z.; Liang, M.; Dong, H.; Sun, Z.; Xue, S. Synthesis of new Dithieno[3,2-b:2′,3′-d]Pyrrole (DTP) units for photovoltaic cells. Dyes Pigments, 2016, 128, 8-18.
[http://dx.doi.org/10.1016/j.dyepig.2016.01.007]
[38]
Jia, J.; Chen, Y.; Duan, L.; Sun, Z.; Liang, M.; Xue, S. New D–π–A dyes incorporating dithieno[3,2-b:2′,3′-d]pyrrole (DTP)-based π-spacers for efficient dye-sensitized solar cells. RSC Advances, 2017, 7(72), 45807-45817.
[http://dx.doi.org/10.1039/C7RA08965A]
[39]
Su, J.; Chen, Y.; Wu, Y.; Ghimire, R.P.; Xu, Y.; Liu, X.; Wang, Z.; Liang, M. New triarylamine organic dyes containing the 9-hexyl-2-(hexyloxy)-9H-carbazole for dye-sensitized solar cells. Electrochim. Acta, 2017, 254, 191-200.
[http://dx.doi.org/10.1016/j.electacta.2017.09.133]
[40]
Wang, Z.; Wang, H.; Liang, M.; Tan, Y.; Cheng, F.; Sun, Z.; Xue, S. Judicious design of indoline chromophores for high-efficiency iodine-free dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2014, 6(8), 5768-5778.
[http://dx.doi.org/10.1021/am500575s] [PMID: 24666232]
[41]
Zhang, H.; Iqbal, Z.; Chen, Z-E.; Hong, Y-P. Effect of structural optimization on the photovoltaic performance of dithieno[3,2-b:2′,3′-d]pyrrole-based dye-sensitized solar cells. RSC Advances, 2017, 7(57), 35598-35607.
[http://dx.doi.org/10.1039/C7RA05716D]
[42]
Kumar, S.; Justin Thomas, K.R.; Li, C-T.; Ho, K-C. Synthesis and photovoltaic properties of organic dyes containing N -fluoren-2-Yl dithieno[3,2- b :2′,3′- d ]pyrrole and different donors. Org. Electron., 2015, 26, 109-116.
[http://dx.doi.org/10.1016/j.orgel.2015.07.019]
[43]
Xie, Y.; Wu, W.; Zhu, H.; Liu, J.; Zhang, W.; Tian, H.; Zhu, W-H. Unprecedentedly targeted customization of molecular energy levels with auxiliary-groups in organic solar cell sensitizers. Chem. Sci. (Camb.), 2016, 7(1), 544-549.
[http://dx.doi.org/10.1039/C5SC02778K] [PMID: 29896346]
[44]
Gao, P.; Tsao, H.N.; Teuscher, J.; Grätzel, M. Organic dyes containing fused acenes as building blocks: optical, electrochemical and photovoltaic properties. Chin. Chem. Lett., 2018, 29(2), 289-292.
[http://dx.doi.org/10.1016/j.cclet.2017.09.056]
[45]
Han, M-L.; Zhu, Y-Z.; Liu, S.; Liu, Q-L.; Ye, D.; Wang, B.; Zheng, J-Y. The improved photovoltaic performance of phenothiazine-dithienopyrrole based dyes with auxiliary acceptors. J. Power Sources, 2018, 387, 117-125.
[http://dx.doi.org/10.1016/j.jpowsour.2018.03.059]
[46]
Kumar, S.; Thomas, K.R.J.; Li, C-T.; Ho, K-C. Effect of electron-deficient linkers on the physical and photovoltaic properties of dithienopyrrole-based organic dyes. J. Mater. Sci. Mater. Electron., 2017, 28(24), 18404-18417.
[http://dx.doi.org/10.1007/s10854-017-7787-4]
[47]
Sahu, D.; Padhy, H.; Patra, D.; Yin, J-F.; Hsu, Y-C.; Lin, J-T.; Lu, K-L.; Wei, K-H.; Lin, H-C. Synthesis and applications of novel acceptor–donor–acceptor organic dyes with dithienopyrrole- and fluorene-cores for dye-sensitized solar cells. Tetrahedron, 2011, 67(2), 303-311.
[http://dx.doi.org/10.1016/j.tet.2010.11.044]
[48]
Lu, Z.; Dai, P.; Wang, C.; Liang, M.; Zong, X.; Sun, Z.; Xue, S. Synthesis of new dithieno[3,2-b:2′,3′-d]pyrrole (DTP) dyes for dye-sensitized solar cells: effect of substituent on photovoltaic properties. Tetrahedron, 2016, 72(23), 3204-3212.
[http://dx.doi.org/10.1016/j.tet.2016.04.044]
[49]
Delcamp, J.H.; Shi, Y.; Yum, J-H.; Sajoto, T.; Dell’Orto, E.; Barlow, S.; Nazeeruddin, M.K.; Marder, S.R.; Grätzel, M. The role of π bridges in high-efficiency DSCs based on unsymmetrical squaraines. Chemistry, 2013, 19(5), 1819-1827.
[http://dx.doi.org/10.1002/chem.201202677] [PMID: 23255425]
[50]
Jradi, F.M.; Kang, X.; O’Neil, D.; Pajares, G.; Getmanenko, Y.A.; Szymanski, P.; Parker, T.C.; El-Sayed, M.A.; Marder, S.R. Near-infrared asymmetrical squaraine sensitizers for highly efficient dye sensitized solar cells: the effect of π-bridges and anchoring groups on solar cell performance. Chem. Mater., 2015, 27(7), 2480-2487.
[http://dx.doi.org/10.1021/cm5045946]
[51]
Evenson, S.J.; Rasmussen, S.C. N-acyldithieno[3,2-b:2′,3′-d]pyrroles: second generation dithieno[3,2-b:2′,3′-d]pyrrole building blocks with stabilized energy levels. Org. Lett., 2010, 12(18), 4054-4057.
[http://dx.doi.org/10.1021/ol101647f] [PMID: 20726575]
[52]
Bhuwalka, A.; Mike, J.F.; Intemann, J.J.; Ellern, A.; Jeffries-El, M. A versatile and efficient synthesis of bithiophene-based dicarboxaldehydes from a common synthon. Org. Biomol. Chem., 2015, 13(36), 9462-9470.
[http://dx.doi.org/10.1039/C5OB01135C] [PMID: 26248770]
[53]
Rybakiewicz, R.; Skorka, L.; Louarn, G.; Ganczarczyk, R.; Zagorska, M.; Pron, A. N-Substituted dithienopyrroles as electrochemically active monomers: synthesis, electropolymerization and spectroelectrochemistry of the polymerization products. Electrochim. Acta, 2019, 295, 472-483.
[http://dx.doi.org/10.1016/j.electacta.2018.10.123]
[54]
Koeckelberghs, G.; De Cremer, L.; Vanormelingen, W.; Verbiest, T.; Persoons, A.; Samyn, C. Synthesis and properties of polydithieno[3,2- b :2‘,3‘- d ]pyrroles: a class of soluble (chiral) conjugated polymers with a stable oxidized state. Macromolecules, 2005, 38(11), 4545-4547.
[http://dx.doi.org/10.1021/ma047481h]
[55]
Casalbore-Miceli, G.; Beggiato, G.; Zotti, G.; Favaretto, L. Electrochemical preparation of the thionaphtheneindole-dithienopyrrole copolymer. Synth. Met., 1994, 68(1), 85-89.
[http://dx.doi.org/10.1016/0379-6779(94)90151-1]
[56]
Ogawa, K.; Rasmussen, S.C. N-Functionalized poly(dithieno[3,2- b :2‘,3‘- d ]pyrrole)s: highly fluorescent materials with reduced band gaps. Macromolecules, 2006, 39(5), 1771-1778.
[http://dx.doi.org/10.1021/ma052490r]
[57]
Koeckelberghs, G.; De Cremer, L.; Persoons, A.; Verbiest, T. Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2- b :2‘,3‘- d ]pyrrole)s. Macromolecules, 2007, 40(12), 4173-4181.
[http://dx.doi.org/10.1021/ma062808v]
[58]
Vanormelingen, W.; Van den Bergh, K.; Verbiest, T.; Koeckelberghs, G. Conformational transitions in chiral, gallic acid-functionalized poly(dithienopyrrole): a comparative UV-vis and CD study. Macromolecules, 2008, 41(15), 5582-5589.
[http://dx.doi.org/10.1021/ma8012114]
[59]
Vanormelingen, W.; Pandey, L.; Van der Auweraer, M.; Verbiest, T.; Koeckelberghs, G. Steering the conformation and chiroptical properties of poly(dithienopyrrole)s substituted with chiral OPV side chains. Macromolecules, 2010, 43(5), 2157-2168.
[http://dx.doi.org/10.1021/ma902762z]
[60]
Schmid, S.; Gačanin, J.; Wu, Y.; Weil, T.; Bäuerle, P. Synthesis and bioconjugation of first alkynylated poly(dithieno[3,2- b :2′,3′- d ]pyrrole)s. Polym. Chem., 2017, 8(46), 7113-7118.
[http://dx.doi.org/10.1039/C7PY01528C]
[61]
Schwartz, P-O.; Förtsch, S.; Mena-Osteritz, E.; Weirather-Köstner, D.; Wachtler, M.; Bäuerle, P. Ferrocene-functionalized polyheteroacenes for the use as cathode active material in rechargeable batteries. RSC Advances, 2018, 8(26), 14193-14200.
[http://dx.doi.org/10.1039/C8RA00129D]
[62]
Udum, Y.A.; Yıldız, H.B.; Azak, H.; Sahin, E.; Talaz, O.; Çırpan, A.; Toppare, L. Synthesis and spectroelectrochemistry of dithieno(3,2- b :2′,3′- d)pyrrole derivatives. J. Appl. Polym. Sci., 2014, 131(17), 1-9.
[http://dx.doi.org/10.1002/app.40701]
[63]
Kivrak, A.; Yildiz, H.B.; Kyer, S.G.; Bezgi, B.; Arbas, N.C. Electrochemical polymerization of a new alkoxy-bridged dithieno (3,2-b:2′,3′-d) pyrrole derivative. Turk. J. Chem., 2018, 42(2), 439-447.
[http://dx.doi.org/10.3906/KIM-1709-33]
[64]
Wu, T-Y.; Li, J-L. Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives. RSC Advances, 2016, 6(19), 15988-15998.
[http://dx.doi.org/10.1039/C5RA27902J]
[65]
Shi, M-M.; Deng, D.; Chen, L.; Ling, J.; Fu, L.; Hu, X-L.; Chen, H-Z. Design and synthesis of dithieno[3,2-b:2′3′-d]pyrrole-based conjugated polymers for photovoltaic applications: consensus between low bandgap and low HOMO energy level. J. Polym. Sci. A Polym. Chem., 2011, 49(6), 1453-1461.
[http://dx.doi.org/10.1002/pola.24567]
[66]
Peng, Q.; Liu, X.; Qin, Y.; Zhou, D.; Xu, J. Thieno[3,4-b]pyrazine-based low bandgap photovoltaic copolymers: turning the properties by different aza-heteroaromatic donors. J. Polym. Sci. A Polym. Chem., 2011, 49(20), 4458-4467.
[http://dx.doi.org/10.1002/pola.24887]
[67]
Grisorio, R.; Allegretta, G.; Suranna, G.P.; Mastrorilli, P.; Loiudice, A.; Rizzo, A.; Mazzeo, M.; Gigli, G. Monodispersed vs. polydispersed systems for bulk heterojunction solar cells: the case of dithienopyrrole/anthracene based materials. J. Mater. Chem., 2012, 22(37), 19752.
[http://dx.doi.org/10.1039/c2jm33795a]
[68]
Imin, P.; Imit, M.; Adronov, A. Supramolecular functionalization of Single-Walled Carbon Nanotubes (SWNTs) with Dithieno[3,2- b :2′,3′- d ]Pyrrole (DTP) containing conjugated polymers. Macromolecules, 2011, 44(23), 9138-9145.
[http://dx.doi.org/10.1021/ma201610y]
[69]
Zhang, W.; Li, J.; Zhang, B.; Qin, J. Highly fluorescent conjugated copolymers containing dithieno. Pyrrole. Macromol. Rapid Commun., 2008, 29(19), 1603-1608.
[http://dx.doi.org/10.1002/marc.200800336]
[70]
Evenson, S.J.; Mumm, M.J.; Pokhodnya, K.I.; Rasmussen, S.C. Highly fluorescent dithieno[3,2- b:2′,3′- d ]pyrrole-based materials: synthesis, characterization, and OLED device applications. Macromolecules, 2011, 44(4), 835-841.
[http://dx.doi.org/10.1021/ma102633d]
[71]
Honsho, Y.; Saeki, A.; Seki, S. Effects of molecular structure on intramolecular charge carrier transport in dithieno [3,2- b : 3,2-d] pyrrole-based conjugated copolymers. Int. J. Spectrosc., 2012, 2012983523
[http://dx.doi.org/10.1155/2012/983523]
[72]
Liu, J.; Zhang, R.; Osaka, I.; Mishra, S.; Javier, A.E.; Smilgies, D-M.; Kowalewski, T.; McCullough, R.D. Transistor paint: environmentally stable N -alkyldithienopyrrole and bithiazole-based copolymer thin-film transistors show reproducible high mobilities without annealing. Adv. Funct. Mater., 2009, 19(21), 3427-3434.
[http://dx.doi.org/10.1002/adfm.200900926]
[73]
Jeong, H-G.; Lim, B.; Na, S-I.; Baeg, K-J.; Kim, J.; Yun, J-M.; Kim, D-Y. Synthesis and characterization of poly(dithieno[3,2-b:2′,3′-d]pyrrole) derivatives containing thiophene moieties and their application to organic devices. Macromol. Chem. Phys., 2011, 212(21), 2308-2318.
[http://dx.doi.org/10.1002/macp.201100313]
[74]
Liu, J.; Zhang, R.; Sauvé, G.; Kowalewski, T.; McCullough, R.D. Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. J. Am. Chem. Soc., 2008, 130(39), 13167-13176.
[http://dx.doi.org/10.1021/ja803077v] [PMID: 18767846]
[75]
Wang, C.; Liu, G.; Chen, Y.; Liu, S.; Chen, Q.; Li, R.; Zhang, B. Dithienopyrrole-/benzodithiophene-based donor-acceptor polymers for memristor. ChemPlusChem, 2014, 79(9), 1263-1270.
[http://dx.doi.org/10.1002/cplu.201402133]
[76]
Wang, C.; Liu, G.; Chen, Y.; Li, R-W.; Zhang, W.; Wang, L.; Zhang, B. Synthesis and nonvolatile memristive switching effect of a donor–acceptor structured oligomer. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(3), 664-673.
[http://dx.doi.org/10.1039/C4TC02285H]
[77]
Yue, W.; Zhao, Y.; Shao, S.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. J. Mater. Chem., 2009, 19(15), 2199-2206.
[http://dx.doi.org/10.1039/b818885h]
[78]
Lee, W.; Kim, G-H.; Jeong, E.; Wang, X.; Yum, S.; Ko, S-J.; Hwang, S.; Kim, J.Y.; Woo, H.Y. Dithieno[3,2-b :2′,3′-d]pyrrole and benzothiadiazole-based semicrystalline copolymer for photovoltaic devices with indene-C 60 bisadduct. Macromol. Chem. Phys., 2013, 214(18), 2083-2090.
[http://dx.doi.org/10.1002/macp.201300303]
[79]
Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K. synthesis and photovoltaic properties of a novel low band gap Polymer based on N-substituted dithieno[3,2- b :2′,3′- d ]pyrrole. Macromolecules, 2008, 41(22), 8302-8305.
[http://dx.doi.org/10.1021/ma802052w]
[80]
Steckler, T.T.; Zhang, X.; Hwang, J.; Honeyager, R.; Ohira, S.; Zhang, X-H.; Grant, A.; Ellinger, S.; Odom, S.A.; Sweat, D.; Tanner, D.B.; Rinzler, A.G.; Barlow, S.; Brédas, J.L.; Kippelen, B.; Marder, S.R.; Reynolds, J.R. A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer. J. Am. Chem. Soc., 2009, 131(8), 2824-2826.
[http://dx.doi.org/10.1021/ja809372u] [PMID: 19199436]
[81]
Tamilavan, V.; Song, M.; Kim, S.; Agneeswari, R.; Kang, J-W.; Hyun, M.H. Synthesis of N-[4-octylphenyl]dithieno[3,2-b:2′,3′-d]pyrrole-based broad absorbing polymers and their photovoltaic applications. Polymer (Guildf.), 2013, 54(13), 3198-3205.
[http://dx.doi.org/10.1016/j.polymer.2013.04.049]
[82]
Zhang, X.; Steckler, T.T.; Dasari, R.R.; Ohira, S.; Potscavage, W.J.; Tiwari, S.P.; Coppée, S.; Ellinger, S.; Barlow, S.; Brédas, J-L. Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. J. Mater. Chem., 2010, 20(1), 123-134.
[http://dx.doi.org/10.1039/B915940A]
[83]
Vanormelingen, W.; Kesters, J.; Verstappen, P.; Drijkoningen, J.; Kudrjasova, J.; Koudjina, S.; Liégeois, V.; Champagne, B.; Manca, J.; Lutsen, L. Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2′,3′-d]Pyrrole N-acylation. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(20), 7535-7545.
[http://dx.doi.org/10.1039/C4TA00525B]
[84]
Yuen, J.D.; Wang, M.; Fan, J.; Sheberla, D.; Kemei, M.; Banerji, N.; Scarongella, M.; Valouch, S.; Pho, T.; Kumar, R. Importance of unpaired electrons in organic electronics. J. Polym. Sci. A Polym. Chem., 2015, 53(2), 287-293.
[http://dx.doi.org/10.1002/pola.27321]
[85]
Agneeswari, R.; Tamilavan, V.; Song, M.; Kang, J-W.; Jin, S-H.; Hyun, M.H. Synthesis of polymers containing 1,2,4-oxadiazole as an electron-acceptor moiety in their main chain and their solar cell applications. J. Polym. Sci. A Polym. Chem., 2013, 51(10), 2131-2141.
[http://dx.doi.org/10.1002/pola.26605]
[86]
Song, H.; Tong, H.; Xie, Z.; Wang, L.; Wang, F. Synthesis and photovoltaic properties of a donor-acceptor polymer containing both dithieno[3,2-b:2′,3′-d]pyrrole and fluorene as donor units. Polymer (Guildf.), 2012, 53(22), 5103-5108.
[http://dx.doi.org/10.1016/j.polymer.2012.09.013]
[87]
Fukuta, S.; Wu, H.; Koganezawa, T.; Isshiki, Y.; Ueda, M.; Chen, W.; Higashihara, T. Synthesis and FET Characterization of novel ambipolar and low‐bandgap naphthalene‐diimide‐based semiconducting polymers. J. Polym. Sci. A Polym. Chem., 2016, 54(3), 359-367.
[http://dx.doi.org/10.1002/pola.27782]
[88]
Zhang, S.; Wen, Y.; Zhou, W.; Guo, Y.; Ma, L.; Zhao, X.; Zhao, Z.; Barlow, S.; Marder, S.R.; Liu, Y. Perylene diimide copolymers with dithienothiophene and dithienopyrrole: use in n-channel and ambipolar field-effect transistors. J. Polym. Sci. A Polym. Chem., 2013, 51(7), 1550-1558.
[http://dx.doi.org/10.1002/pola.26521]
[89]
Fallahi, A.; Taromi, F.A.; Mohebbi, A.; Yuen, J.D.; Shahinpoor, M. A novel ambipolar polymer: from organic thin-film transistors to enhanced air-stable blue light emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(32), 6491-6501.
[http://dx.doi.org/10.1039/C4TC00684D]
[90]
Rybakiewicz, R.; Glowacki, E.D.; Skorka, L.; Pluczyk, S.; Zassowski, P.; Apaydin, D.H.; Lapkowski, M.; Zagorska, M.; Pron, A. Low and high molecular mass dithienopyrrole-naphthalene bisimide donor-acceptor compounds: synthesis, electrochemical and spectroelectrochemical behaviour. Chemistry, 2017, 23(12), 2839-2851.
[http://dx.doi.org/10.1002/chem.201604672] [PMID: 28059477]
[91]
Qin, Y.; Li, X.; Sun, W.; Luo, X.; Li, M.; Tang, X.; Jin, X.; Xie, Y.; Ouyang, X.; Li, Q. Small bandgap naphthalene diimide copolymers for efficient inorganic-organic hybrid solar cells. RSC Advances, 2015, 5(3), 2147-2154.
[http://dx.doi.org/10.1039/C4RA12188K]
[92]
Conboy, G.; Taylor, R.G.D.; Findlay, N.J.; Kanibolotsky, A.L.; Inigo, A.R.; Ghosh, S.S.; Ebenhoch, B.; Krishnan Jagadamma, L.; Thalluri, G.K.V.V.; Sajjad, M.T. Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(45), 11927-11936.
[http://dx.doi.org/10.1039/C7TC03959J]
[93]
Zhang, Y.; Zou, J.; Yip, H-L.; Sun, Y.; Davies, J.A.; Chen, K-S.; Acton, O.; Jen, A.K-Y. Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. J. Mater. Chem., 2011, 21(11), 3895.
[http://dx.doi.org/10.1039/c0jm03927f]
[94]
Hu, X.; Shi, M.; Zuo, L.; Nan, Y.; Liu, Y.; Fu, L.; Chen, H. Synthesis, characterization, and photovoltaic property of a low band gap polymer alternating dithienopyrrole and thienopyrroledione units. Polymer (Guildf.), 2011, 52(12), 2559-2564.
[http://dx.doi.org/10.1016/j.polymer.2011.03.057]
[95]
Lin, F-J.; Lin, S-D.; Chin, C-H.; Chuang, W-T.; Hsu, C-S. Novel conjugated polymers based on bis-dithieno[3,2- b;2′,3′- d ]pyrrole vinylene donor and diketopyrrolopyrrole acceptor: side chain engineering in organic field effect transistors. Polym. Chem., 2018, 9(1), 28-37.
[http://dx.doi.org/10.1039/C7PY01340J]
[96]
Li, W.; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A.J. Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res., 2016, 49(1), 78-85.
[http://dx.doi.org/10.1021/acs.accounts.5b00334] [PMID: 26693798]
[97]
Wu, F.; Yang, H.; Li, C.M.; Qin, J. Synthesis and photovoltaic behavior of two new alternative donor-acceptor conjugated copolymers containing isoindigo moiety. Polym. Adv. Technol., 2013, 24(11), 945-950.
[http://dx.doi.org/10.1002/pat.3169]
[98]
Brebels, J.; Klider, K.C.C.W.S.; Kelchtermans, M.; Verstappen, P.; Van Landeghem, M.; Van Doorslaer, S.; Goovaerts, E.; Garcia, J.R.; Manca, J.; Lutsen, L. Low bandgap polymers based on bay-annulated indigo for organic photovoltaics: enhanced sustainability in material design and solar cell fabrication. Org. Electron., 2017, 50, 264-272.
[http://dx.doi.org/10.1016/j.orgel.2017.07.037]
[99]
Jung, I.H.; Kim, J-H.; Nam, S.Y.; Lee, C.; Hwang, D-H.; Yoon, S.C. Development of new photovoltaic conjugated polymers based on di(1-benzothieno)[3,2- b :2′,3′- d]pyrrole: benzene ring extension strategy for improving open-circuit voltage. Macromolecules, 2015, 48(15), 5213-5221.
[http://dx.doi.org/10.1021/acs.macromol.5b01129]
[100]
Chung, C-L.; Chen, H-C.; Yang, Y-S.; Tung, W-Y.; Chen, J-W.; Chen, W-C.; Wu, C-G.; Wong, K-T.S.S. N-Heteroacene-based copolymers for highly efficient organic field effect transistors and organic solar cells: critical impact of aromatic subunits in the ladder π-system. ACS Appl. Mater. Interfaces, 2018, 10(7), 6471-6483.
[http://dx.doi.org/10.1021/acsami.7b15584] [PMID: 29377665]
[101]
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K. 18% Efficiency organic solar cells. Sci. Bull. (Beijing), 2020, 65(4), 272-275.
[http://dx.doi.org/10.1016/j.scib.2020.01.001]
[102]
Sun, J.; Ma, X.; Zhang, Z.; Yu, J.; Zhou, J.; Yin, X.; Yang, L.; Geng, R.; Zhu, R.; Zhang, F.; Tang, W. Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells. Adv. Mater., 2018, 30(16)e1707150
[http://dx.doi.org/10.1002/adma.201707150] [PMID: 29527772]
[103]
Li, W.; Chen, M.; Zhang, Z.; Cai, J.; Zhang, H.; Gurney, R.S.; Liu, D.; Yu, J.; Tang, W.; Wang, T. Retarding the crystallization of a nonfullerene electron acceptor for high-performance polymer solar cells. Adv. Funct. Mater., 2019, 29(5)1807662
[http://dx.doi.org/10.1002/adfm.201807662]
[104]
Geng, R.; Song, X.; Feng, H.; Yu, J.; Zhang, M.; Gasparini, N.; Zhang, Z.; Liu, F.; Baran, D.; Tang, W. Nonfullerene acceptor for organic solar cells with chlorination on dithieno[3,2-b:2′,3′-d]pyrrol fused-ring. ACS Energy Lett., 2019, 4(3), 763-770.
[http://dx.doi.org/10.1021/acsenergylett.9b00147]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy