Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Editorial

Editorial on the Occasion of the 20th Anniversary of Endocrine Metabolic Immune Disorders-Drug Targets Journal with a Kaleidoscopic Vision of Selected Publications

Author(s): Thea Magrone and Emilio Jirillo*

Volume 20, Issue 10, 2020

Page: [1696 - 1710] Pages: 15

DOI: 10.2174/1871530320666201007152628

Abstract

Over the past 20 years, Endocrine Metabolic Immune Disorders-Drug Targets (EMIDDT) journal has been covering a broad field of intertwined topics related to pathogenesis, diagnosis, and therapy of endocrine, metabolic, and immune diseases. At first, the journal publications were restricted to reviews only and, then, original article submissions have also been accepted. EMIDDT represents as a successful journal in continuous expansion with 10 issues in 2020 and a current impact factor (IF) equal to 1.973. Moreover, since 2019, EMIDDT is the official journal of the Italian AME (Associazione Medici Endocrinologi), also linked to the American Association of Endocrinologists. Such a connection has given more impetus to the journal in terms of additional higher-quality submissions. In order to celebrate the 20th anniversary of EMIDDT, the content of some original representative articles published by the journal in the past and current years will be illustrated with special emphasis on cellular and molecular bases of drug targeting.

Keywords: Endocrinology, immunology, metabolism, nutrition, therapy, drug targeting.

[1]
Emanueli, C. Diabetes cardiovascular complications. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(2), 105-106.
[http://dx.doi.org/10.2174/187153012800493503] [PMID: 22663760]
[2]
Iacoviello, M.; Triggiani, V. Editorial: Introduction to the special issue: Relevance of endocrine and metabolic disorders in heart failure: From pathophysiology to therapeutic approach. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 2-3.
[http://dx.doi.org/10.2174/1871530311313010002]
[3]
Alam, F.; Kamal, M.A.; Islam, M.A.; Banu, S. Current Genetic and Epigenetic Insights into Type 2 Diabetes Mellitus. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 717-718.
[http://dx.doi.org/10.2174/187153031906190724104004] [PMID: 31530259]
[4]
Rodríguez-Castelán, J.; Zepeda-Pérez, D.; Méndez-Tepepa, M.; Castillo-Romano, M.; Espíndola-Lozano, M.; Anaya-Hernández, A.; Berbel, P.; Cuevas-Romero, E. Hypothyroidism Alters the Uterine Lipid Levels in Pregnant Rabbits and Affects the Fetal Size. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 818-825.
[http://dx.doi.org/10.2174/1871530318666181102093621] [PMID: 30387404]
[5]
Yousefzadeh, N.; Jeddi, S.; Ghasemi, A. Impaired Cardiovascular Function in Male Rats with Hypo- and Hyperthyroidism: Involvement of Imbalanced Nitric Oxide Synthase Levels. Endocr. Metab. Immune Disord. Drug Targets, 2020, (Ahead of print).
[http://dx.doi.org/10.2174/1871530320666200508115543] [PMID: 32384042]
[6]
Ahmed, R.G. Overdoses of acetaminophen disrupt the thyroid-liver axis in neonatal rats. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 705-714.
[http://dx.doi.org/10.2174/1871530319666190212165603] [PMID: 30760194]
[7]
Liu, K.; Gao, M.; Qin, D.; Wang, H.; Lu, Q. Serous BMP8A has Clinical Significance in the Ultrasonic Diagnosis of Thyroid Cancer and Promotes Thyroid Cancer Cell Progression. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 591-598.
[http://dx.doi.org/10.2174/1871530319666191018170022] [PMID: 31656161]
[8]
Liu, B.; Zheng, T.; Dong, L.; Mao, C.; Xu, C.; Mou, X.; Luo, X.; Lu, Q.; Dong, X.; Liu, J.; Kang, P.; Ding, C.; Xiao, Y.; Jiang, P. Caveolin-1 Regulates CCL5 and PPARγ Expression in Nthy-ori 3-1 Cells: Possible Involvement of Caveolin-1 and CCL5 in the Pathogenesis of Hashimoto’s Thyroiditis. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 609-618.
[http://dx.doi.org/10.2174/1871530319666191202115149] [PMID: 31789139]
[9]
Hou, X.; Zhou, J.; Yang, R.; Liu, S.; Bi, M.; Liu, T.; Fan, C.; Guan, H.; Teng, W.; Shan, Z.; Li, Y. Effect of Halofuginone on the Pathogenesis of Autoimmune Thyroid Disease in Different Mice Models. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 141-148.
[http://dx.doi.org/10.2174/1871530317666170424101256] [PMID: 28440200]
[10]
Lepore, S.M.; Maggisano, V.; Lombardo, G.E.; Maiuolo, J.; Mollace, V.; Bulotta, S.; Russo, D.; Celano, M. Antiproliferative Effects of Cynaropicrin on Anaplastic Thyroid Cancer Cells. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(1), 59-66.
[http://dx.doi.org/10.2174/1871530318666180928153241] [PMID: 30264682]
[11]
Kutluturk, F.; Yarman, S.; Sarvan, F.O.; Kekik, C. Association of cytokine gene polymorphisms (IL6, IL10, TNF-α, TGF-β and IFN-γ) and Graves’ disease in Turkish population. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(2), 163-167.
[http://dx.doi.org/10.2174/18715303113139990001] [PMID: 23638863]
[12]
Aktaş, T.; Celik, S.K.; Genc, G.C.; Arpaci, D.; Can, M.; Dursun, A. Higher Levels of Serum TLR2 and TLR4 in Patients with Hashimoto’s Thyroiditis. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 118-126.
[http://dx.doi.org/10.2174/1871530319666190329114621] [PMID: 30924423]
[13]
Kutluturk, F.; Gul, S.S.; Sahin, S.; Tasliyurt, T. Comparison of Mean Platelet Volume, Platelet Count, Neutrophil/ Lymphocyte Ratio and Platelet/Lymphocyte Ratio in the Euthyroid, Overt Hypothyroid and Subclinical Hyperthyroid Phases of Papillary Thyroid Carcinoma. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 859-865.
[http://dx.doi.org/10.2174/1871530319666190206125545] [PMID: 30727930]
[14]
Achille, G.; Garrisi, V.M.; Russo, S.; Guastamacchia, E.; Giagulli, V.A.; Schirosi, L.; Daniele, A.; Tufaro, A.; Cafagna, V.; Centrone, M.; Simone, G.; Abbate, I.; Triggiani, V. Thyroglobulin Determination in Fine Needle Aspiration Biopsy Washout of Suspicious Lymph Nodes in Thyroid Carcinoma Follow up. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(3), 213-218.
[http://dx.doi.org/10.2174/1871530317666170531092501] [PMID: 28558632]
[15]
Albehairy, A.; Fathy, S.; Bahriz, R. Thyroid Peroxidase Antibody (TPO) as a Predictor of Radiation Induced Thyroid Dysfunction Among Nurses and Technicians Working in Mansoura Specialized Medical Hospital: Cross Sectional Study. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 288-294.
[http://dx.doi.org/10.2174/1871530319666190626143301] [PMID: 31241443]
[16]
Vimercati, L.; De Maria, L.; Mansi, F.; Caputi, A.; Ferri, G.M.; Luisi, V.; Lovreglio, P.; Cannone, E.S.S.; Lorusso, P.; Gatti, M.F.; Massagli, C.R.S.; Triggiani, V. Prevalence of Thyroid Diseases in an Occupationally Radiation Exposed Group. Prevalence of Thyroid Diseases in an Occupationally Radiation Exposed Group: A Cross-Sectional Study in a University Hospital of Southern Italy. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 803-808.
[http://dx.doi.org/10.2174/1871530318666181102114627] [PMID: 30387406]
[17]
Acay, A.; Ulu, M.S.; Ahsen, A.; Eroglu, S.; Ozuguz, U.; Yuksel, S.; Acarturk, G. Assessment of thyroid disorders and autoimmunity in patients with rheumatic diseases. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(3), 182-186.
[http://dx.doi.org/10.2174/1871530314666140626113111] [PMID: 24965722]
[18]
Resta, F.; Triggiani, V.; Barile, G.; Benigno, M.; Suppressa, P.; Giagulli, V.A.; Guastamacchia, E.; Sabbà, C. Subclinical hypothyroidism and cognitive dysfunction in the elderly. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(3), 260-267.
[http://dx.doi.org/10.2174/187153012802002875] [PMID: 22385117]
[19]
Iovino, M.; Iovine, N.; Petrosino, A.; Giagulli, V.A.; Licchelli, B.; Guastamacchia, E.; Triggiani, V. Sevelamer carbonate markedly reduces levothyroxine absorption. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(3), 206-209.
[http://dx.doi.org/10.2174/1871530314666140902151804] [PMID: 25183496]
[20]
Triggiani, V.; Iacoviello, M.; Monzani, F.; Puzzovivo, A.; Guida, P.; Forleo, C.; Ciccone, M.M.; Catanzaro, R.; Tafaro, E.; Licchelli, B.; Giagulli, V.A.; Guastamacchia, E.; Favale, S. Incidence and prevalence of hypothyroidism in patients affected by chronic heart failure: role of amiodarone. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(1), 86-94.
[http://dx.doi.org/10.2174/187153012799278947] [PMID: 22214334]
[21]
Ataabadi, G.; Dabbaghmanesh, M.H.; Owji, N.; Bakhshayeshkaram, M.; Montazeri-Najafabady, N. Clinical Features of Graves’ Ophthalmopathy and Impact of Enalapril on the Course of Mild Graves’ Ophthalmopathy: A Pilot Study. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 139-148.
[http://dx.doi.org/10.2174/1389201020666190725113816] [PMID: 31345156]
[22]
Ochi, Y.; Hachiya, T.; Koyama, Y.; Fukuhori, N.; Ashida, N. Antithyroid Drugs Inactivate TSH Binding to the TSH Receptor by their Reducing Action. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 508-512.
[http://dx.doi.org/10.2174/1871530318666180220101845] [PMID: 29468987]
[23]
Canas, C.A.; Bonilla-Abadia, F.; Vallejo, K.; Rengifo, H.M.; Gallon, M.A.; Tobon, G.J. Successful Treatment for Severe Thyroid-associated Ophthalmopathy with Tocilizumab. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(6), 665-667.
[http://dx.doi.org/10.2174/1871530318666180702150243] [PMID: 29962351]
[24]
Zhao, Y.; Xie, Y.; Li, W. Liraglutide Exerts Potential Anti-inflammatory Effect in Type 1 Diabetes by Inhibiting IFN-γ Production via Suppressing JAK-STAT Pathway. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 656-664.
[http://dx.doi.org/10.2174/1871530319666190301115654] [PMID: 30827273]
[25]
Yao, S.; Zhang, J.; Zhan, Y.; Shi, Y.; Yu, Y.; Zheng, L.; Xu, N.; Luo, G. Insulin Resistance in Apolipoprotein M Knockout Mice is Mediated by the Protein Kinase Akt Signaling Pathway. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 771-780.
[http://dx.doi.org/10.2174/1871530319666191023125820] [PMID: 31702495]
[26]
Eleazu, C.; Ekeleme, C.E.; Famurewa, A.; Mohamed, M.; Akunna, G.; David, E.; Nwofe, B.; Chukwu, F.; Precious, A.; Ayogu, C.; Onuoha, W.; Olamide, N.; Achi, N.; Emelike, U. Modulation of the Lipid Profile, Hepatic and Renal Antioxidant Activities, and Markers of Hepatic and Renal Dysfunctions in Alloxan-Induced Diabetic Rats by Virgin Coconut Oil. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 1032-1040.
[http://dx.doi.org/10.2174/1871530319666190119101058] [PMID: 30659555]
[27]
Gutiérrez-Pliego, L.E.; Martínez-Carrillo, B.E.; Reséndiz-Albor, A.A.; Valdés-Ramos, R. Effect on Adipose Tissue of Diabetic Mice Supplemented with n-3 Fatty Acids Extracted from Microalgae. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 728-735.
[http://dx.doi.org/10.2174/1871530320666200213111452] [PMID: 32053089]
[28]
Tuorkey, M.J.; Abdul-Aziz, K.K.; Zidan, A.A. Active immunization against tumor necrosis factor-alpha decreases proinflammatory cytokines, oxidative stress mediators and adhesion molecules risk factors in streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(3), 269-274.
[http://dx.doi.org/10.2174/18715303113139990039] [PMID: 23859636]
[29]
Hangping, Z.; Ling, H.; Lijin, J.; Wenting, Z.; Xiaoxia, L.; Qi, Z.; Xiaoming, Z.; Qingchun, L.; Yiming, L.; Qian, X.; Ji, H.; Bin, L.; Shuo, Z. The Preventive Effect of IL-1beta Antagonist on Diabetic Peripheral Neuropathy. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 753-759.
[http://dx.doi.org/10.2174/1871530319666191022114139] [PMID: 31642797]
[30]
Shi, W.; Guo, Z.; Yuan, R. Testicular Injury Attenuated by Rapamycin Through Induction of Autophagy and Inhibition of Endoplasmic Reticulum Stress in Streptozotocin- Induced Diabetic Rats. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 665-675.
[http://dx.doi.org/10.2174/1871530319666190102112844] [PMID: 30605065]
[31]
Machado, M.P.R.; Schavinski, A.Z.; Deluque, A.L.; Volpato, G.T.; Campos, K.E. The Treatment of Prednisone in Mild Diabetic Rats: Biochemical Parameters and Cell Response. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 797-805.
[http://dx.doi.org/10.2174/1871530319666191204130007] [PMID: 31801454]
[32]
Liu, F.; Ma, Y.; Xu, Y. Taxifolin Shows Anticataractogenesis and Attenuates Diabetic Retinopathy in STZ-Diabetic Rats via Suppression of Aldose Reductase, Oxidative Stress, and MAPK Signaling Pathway. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 599-608.
[http://dx.doi.org/10.2174/1871530319666191018122821] [PMID: 31656158]
[33]
Chen, F.; Wei, G.; Zhou, Y.; Ma, X.; Wang, Q. The Mechanism of miR-192 in Regulating High Glucose-Induced MCP-1 Expression in Rat Glomerular Mesangial Cells. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 1055-1063.
[http://dx.doi.org/10.2174/1871530319666190301154640] [PMID: 30827272]
[34]
Khajeniazi, S.; Marjani, A.; Shakeri, R.; Hakimi, S. Polymorphism of Secretary PLA2G2A Gene Associated with Its Serum Level in Type2 Diabetes Mellitus Patients in Northern Iran. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(8), 1192-1197.
[http://dx.doi.org/10.2174/1871530319666190528111225] [PMID: 31132981]
[35]
Dos Anjos, P.M.F.; Volpe, C.M.O.; Miranda, T.C.; Nogueira-Machado, J.A. Atorvastatin Inhibited ROS Generation and Increased IL-1β And IL-6 Release by Mononuclear Cells from Diabetic Patients. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(8), 1207-1215.
[http://dx.doi.org/10.2174/1871530319666190617160349] [PMID: 31416412]
[36]
Ahmed, S.; Sobh, R. Predictive Value of Osteoprotegerin for Detecting Coronary Artery Calcification in Type 2 Diabetes Mellitus Patients in Correlation with Extent of Calcification Detected by Multidetector Computed Tomography. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 845-851.
[http://dx.doi.org/10.2174/1871530319666190211122858] [PMID: 30747085]
[37]
Ma, X.; An, L.; Wang, Q. Changes in Serum Nampt Levels and Its Significances in Diabetic Nephropathy Patients-The Potential Role of Nampt in T2DM with Diabetic Nephropathy. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 114-124.
[http://dx.doi.org/10.2174/1871530317666170711164347] [PMID: 28699485]
[38]
Rabiee, M.; Marjani, A.; Khajeniazi, S.; Mojerloo, M. Genetic Polymorphisms of Cytochrome p450 (2C9) Enzyme in Patients with Type 2 Diabetes Mellitus in Turkmen and Fars Ethnic Groups. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(6), 653-661.
[http://dx.doi.org/10.2174/1871530318666180821122853] [PMID: 30129421]
[39]
De Pergola, G.; Nardecchia, A.; Cirillo, M.; Boninfante, B.; Sciaraffia, M.; Giagulli, V.A.; Triggiani, V.; Silvestris, F. Higher Waist Circumference, Fasting Hyperinsulinemia And Insulin Resistance Characterize Hypertensive Patients With Impaired Glucose Metabolism. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(4), 297-301.
[http://dx.doi.org/10.2174/1871530315666150506125651] [PMID: 25944063]
[40]
Barseem, N.F.; El Ella, S.S.A.; Tawfik, M.A.; El-Nehrawy, R.R. The Potential Implication of FTO rs17817449 Gene Polymorphism on BMI Mediated Risk For Type2 Diabetes Among Obese Egyptian Children And Adolescents. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 697-704.
[http://dx.doi.org/10.2174/1871530319666190101124751] [PMID: 30621571]
[41]
Zhuang, Y.; Zhang, J.; Li, Y.; Gu, H.; Zhao, J.; Sun, Y.; Wang, R.; Zhang, C.; Chen, W.; Weng, J.; Qi, L.; Lu, H.; Zhang, J.; Liu, Q.; He, Y.; Xu, X. B Lymphocytes Are Predictors of Insulin Resistance in Women with Gestational Diabetes Mellitus. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 358-366.
[http://dx.doi.org/10.2174/1871530319666190101130300] [PMID: 30621567]
[42]
Monjezi, M.R.; Fouladseresht, H.; Farjadian, S.; Gharesi-Fard, B.; Khosropanah, S.; Doroudchi, M. T Cell Proliferative Responses and IgG Antibodies to β2GPI in Patients with Diabetes and Atherosclerosis. Endocr. Metab. Immune Disord. Drug Targets, 2020, (Ahead of print).
[http://dx.doi.org/10.2174/1871530320666200505115850] [PMID: 32368987]
[43]
Vahid, H.; Bonakdaran, S.; Khorasani, Z.M.; Jarahi, L.; Rakhshandeh, H.; Ghorbani, A.; Zarghi, N.; Yousefi, M. Effect of Capparis spinosa Extract on Metabolic Parameters in Patients with Type-2 Diabetes: A Randomized Controlled Trial. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(1), 100-107.
[http://dx.doi.org/10.2174/1871530318666180821131201] [PMID: 30657033]
[44]
Ghorbani, A.; Zarvandi, M.; Rakhshandeh, H. A Randomized Controlled Trial of a Herbal Compound for Improving Metabolic Parameters in Diabetic Patients with Uncontrolled Dyslipidemia. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 1075-1082.
[http://dx.doi.org/10.2174/1871530319666190206213420] [PMID: 30727929]
[45]
Shimodaira, M.; Niwa, T.; Nakajima, K.; Kobayashi, M. Beneficial Effects of Vildagliptin on Metabolic Parameters in Patients with Type 2 Diabetes. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(3), 223-228.
[http://dx.doi.org/10.2174/1871530315666150324114149] [PMID: 25809193]
[46]
Yulug, B.; Saatci, O.; Işıklar, A.; Hanoglu, L.; Kilic, U.; Ozansoy, M.; Cankaya, S.; Cankaya, B.; Kilic, E. The Association between HbA1c Levels, Olfactory Memory and Cognition in Normal, Pre-Diabetic and Diabetic Persons. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 198-212.
[http://dx.doi.org/10.2174/1871530319666190614121738] [PMID: 31203811]
[47]
Meng, F.; Li, D.; Song, B.; Li, L. Impaired Myocardial MIF/AMPK Activation Aggravates Myocardial Ischemia Reperfusion Injury in High-Fat Diet-Induced Obesity. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 1046-1054.
[http://dx.doi.org/10.2174/1871530319666190326143254] [PMID: 30914037]
[48]
Fomina, K.; Beduleva, L.; Menshikov, I.; Anikaeva, M.M.; Suntsova, D.; Sidorov, A.; Stolyarova, E. Immune Response to Native Lipoproteins Induces Visceral Obesity and Aortic Wall Injury in Rats: The Role of Testosterone. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 125-133.
[http://dx.doi.org/10.2174/1871530317666170711154825] [PMID: 28699484]
[49]
Nakamitsu, P.Z.; Compri, C.M.; de Fraia Pinto, L.; Gotardo, É.M.; de Oliveira, C.C.; Ribeiro, M.L.; Pedrazzoli, J., Jr; Gambero, A. Thalidomide controls adipose tissue inflammation associated with high-fat diet-induced obesity in mice. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(2), 151-158.
[http://dx.doi.org/10.2174/1871530314666141128115225] [PMID: 25441253]
[50]
Wang, Y.; Lian, H.; Wang, X.; Zheng, T.; Yu, X.; Chen, R.; Huang, Z.; Lv, Y.; Zhao, A.; Gao, J. Characterization of the active components of the multimerized sTNFRII-adiponectin fusion protein showing both TNFα-antagonizing and glucose uptake-promoting activities. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1081-1089.
[http://dx.doi.org/10.2174/1871530320666200121100449] [PMID: 31965947]
[51]
Ahmadi, S.; Pishva, H.; Eshraghian, M.R.; Hedayati, M. UCP2, SHBG, Leptin, and T3 Levels are Associated with Resting Energy Expenditure in Obese Women. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 234-241.
[http://dx.doi.org/10.2174/1871530319666190723154147] [PMID: 31340742]
[52]
Behiry, E.G.; El Nady, N.M.; AbdEl Haie, O.M.; Mattar, M.K.; Magdy, A. Evaluation of TG-HDL Ratio Instead of HOMA Ratio as Insulin Resistance Marker in Overweight and Children with Obesity. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 676-682.
[http://dx.doi.org/10.2174/1871530319666190121123535] [PMID: 30663576]
[53]
Borges, M.D.; Franca, E.L.; Fujimori, M.; Silva, S.M.C.; de Marchi, P.G.F.; Deluque, A.L.; Honorio-Franca, A.C.; de Abreu, L.C. Relationship between Proinflammatory Cytokines/Chemokines and Adipokines in Serum of Young Adults with Obesity. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 260-267.
[http://dx.doi.org/10.2174/1871530318666180131094733] [PMID: 29384066]
[54]
Amaral, G.A.; Alves, J.D.; Honorio-França, A.C.; Fagundes, D.L.; Araujo, G.G.; Lobato, N.S.; Lima, V.V.; Giachini, F.R. Interleukin 1-beta is Linked to Chronic Low-grade Inflammation and Cardiovascular Risk Factors in Overweight Adolescents. Endocr. Metab. Immune Disord. Drug Targets, 2019, 20(6), 887-894.
[http://dx.doi.org/10.2174/1871530319666191116141159] [PMID: 31738140]
[55]
Popovic, D.S.; Tomic-Naglic, D.; Mitrovic, M.; Zivanovic, Z.; Vukovic, B.; Stokic, E. 1h Post-load Blood Glucose in the Identification of Proatherogenic Cardiometabolic Profile in Obesity. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(3), 226-237.
[http://dx.doi.org/10.2174/1871530317666170613123958] [PMID: 28641570]
[56]
Ciccone, M.M.; Cortese, F.; Gesualdo, M.; Donvito, I.; Carbonara, S.; De Pergola, G. A Glycemic Threshold of 90 mg/dl Promotes Early Signs of Atherosclerosis in Apparetly Healthy Overweight/Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 288-295.
[http://dx.doi.org/10.2174/1871530317666161205124955] [PMID: 27919218]
[57]
Chasapi, A.; Balampanis, K.; Tanoglidi, A.; Kourea, E.; Lambrou, G.I.; Lambadiari, V.; Kalfarentzos, F.; Hatziagelaki, E.; Melachrinou, M.; Sotiropoulou-Bonikou, G. SRC-3/AIB-1 may Enhance Hepatic NFATC1 Transcription and Mediate Inflammation in a Tissue-Specific Manner in Morbid Obesity. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 242-255.
[http://dx.doi.org/10.2174/1871530319666190715160630] [PMID: 31322077]
[58]
De Pergola, G.; Tartagni, M.; Bartolomeo, N.; Bruno, I.; Masiello, M.; Caccavo, D.; Bavaro, S.; Silvestris, F. Possible direct influence of complement 3 in decreasing insulin sensitvity in a cohort of overweight and obese subjects. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(4), 301-305.
[http://dx.doi.org/10.2174/1871530314666140116111542] [PMID: 24428680]
[59]
Remely, M.; Hippe, B.; Zanner, J.; Aumueller, E.; Brath, H.; Haslberger, A.G. Gut Microbiota of Obese, Type 2 Diabetic Individuals is Enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after Weight Loss. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 99-106.
[http://dx.doi.org/10.2174/1871530316666160831093813] [PMID: 27577947]
[60]
De Pergola, G.; Zupo, R.; Lampignano, L.; Bonfiglio, C.; Giannelli, G.; Osella, A.R.; Triggiani, V. Higher Body Mass Index, Uric Acid Levels, and Lower Cholesterol Levels are Associated with Greater Weight Loss. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1268-1281.
[http://dx.doi.org/10.2174/1871530320666200429235830] [PMID: 32351190]
[61]
Kraja, A.T. Metabolic syndrome - modern pharmacological, genetic, clinical and environmental contributions. Endocr. Metab. Immune Disord. Drug Targets, 2010, 10(2), 84-85.
[http://dx.doi.org/10.2174/187153010791213038] [PMID: 20522005]
[62]
Cauli, O. Editorial: Metabolic and Hormonal Alterations in Neuro-Psychiatric Disorders. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(4), 287-288.
[http://dx.doi.org/10.2174/187153031804180612125439] [PMID: 29952261]
[63]
Scotti, L.; Scotti, M.T. Multi-Target Drugs Against Metabolic Disorders. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 389-390.
[http://dx.doi.org/10.2174/187153031904190506102405] [PMID: 31274061]
[64]
Darbà, J.; Marsà, A. Current Status and Use of Resources of Lysosomal Storage Diseases: Analysis of a Spanish Claims Database. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 263-270.
[http://dx.doi.org/10.2174/1871530319666190807162344] [PMID: 31389322]
[65]
Kseneva, S.I.; Borodulina, E.V.; Udut, V.V.; Fisenko, V.P. Mechanism Underlying the Formation of a Cluster of Metabolic Syndrome. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 564-569.
[http://dx.doi.org/10.2174/1871530319666191007115214] [PMID: 31589129]
[66]
Onaolapo, A.Y.; Adebisi, E.O.; Adeleye, A.E.; Olofinnade, A.T.; Onaolapo, O.J. Dietary Melatonin Protects Against Behavioural, Metabolic, Oxidative, and Organ Morphological Changes in Mice that are Fed High-Fat, High- Sugar Diet. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 570-583.
[http://dx.doi.org/10.2174/1871530319666191009161228] [PMID: 32138638]
[67]
Sharami, S.H.; Gholipour, M.; Milani, F.; Kazemnejad, E.; Heirati, S.F.D.; Ranjbar, Z.A. The Association between Dyslipidemia and Preterm Birth: A Prospective Cohort Study in The North of Iran. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 227-233.
[http://dx.doi.org/10.2174/1871530319666190529090517] [PMID: 31142254]
[68]
Raposo, L.; Martins, S.; Ferreira, D.; Guimarães, J.T.; Santos, A.C. Metabolic Syndrome, Thyroid Function and Autoimmunity - The PORMETS Study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(1), 75-83.
[http://dx.doi.org/10.2174/1871530318666180801125258] [PMID: 30068285]
[69]
Kseneva, S.I.; Yurmazov, Z.A.; Timofeev, M.S.; Borodulina, E.V.; Udut, V.V. Lower Urinary Tract Symptoms in Metabolic Syndrome in Young Adults. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 230-234.
[http://dx.doi.org/10.2174/1871530318666180213110539] [PMID: 29437022]
[70]
Vanesa, N.; Svjetlana, L.Z.; Jasmin, S. Anthropometric Correlation with Metabolic Syndrome in Sarajevo Population. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 113-119.
[http://dx.doi.org/10.2174/1871530316666160208150135] [PMID: 26853885]
[71]
Sarbijani, H.M.; Marjani, A.; Khoshnia, M. The Association between Metabolic Syndrome and Serum Levels of Adiponectin and High Sensitive C Reactive Protein in Gorgan. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 107-112.
[http://dx.doi.org/10.2174/1871530315666150608123614] [PMID: 25993991]
[72]
De Pergola, G.; Cortese, F.; Termine, G.; Meliota, G.; Carbonara, R.; Masiello, M.; Cortese, A.M.; Silvestris, F.; Caccavo, D.; Ciccone, M.M. Uric Acid, Metabolic Syndrome and Atherosclerosis: The Chicken or the Egg, Which Comes First? Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 251-259.
[http://dx.doi.org/10.2174/1871530318666180212101548] [PMID: 29437024]
[73]
Veronese, N.; Notarnicola, M.; Osella, A.R.; Cisternino, A.M.; Reddavide, R.; Inguaggiato, R.; Guerra, V.; Rotolo, O.; Zinzi, I.; Chiloiro, M.; Leandro, G.; Correale, M.; Tutino, V.; Misciagna, G.; Bonfiglio, C.; Caruso, M.G. Menopause Does Not Affect Fatty Liver Severity In Women: A Population Study in a Mediterranean Area. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 513-521.
[http://dx.doi.org/10.2174/1871530318666180423101755] [PMID: 29692271]
[74]
Gore, P.N.; Badar, V.A.; Hardas, M.M.; Bansode, V.J. Comparative effect of telmisartan vs lisinopril on blood pressure in patients of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(1), 64-70.
[http://dx.doi.org/10.2174/1871530314666141128154152] [PMID: 25440999]
[75]
Aboelnaga, M.M.; Eladawy, E.H.; Elshafei, M.M.; Abdullah, N.; Shaer, M.E. Different Cabergoline Effect on Metabolic and Anthropometric Parameters in Female Prolactinoma Patients Versus Idiopathic Hyperprolactinemia Patients. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 511-518.
[http://dx.doi.org/10.2174/1871530319666190219103812] [PMID: 30806330]
[76]
Elmadfa, I.; Meyer, A.L.; Hasenegger, V.; Moeslinger, T.; Ekmekcioglu, C. The Association of Potassium Status with Parameters of Glucose Metabolism is influenced by Age in Adults. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 788-796.
[http://dx.doi.org/10.2174/1871530319666191028100109] [PMID: 31657684]
[77]
Hussein, A.M.; Sina, M. p-Nonylphenol Impairment of Osteogenic Differentiation of Mesenchymal Stem Cells was found to be due to Oxidative Stress and Down Regulation of RUNX2 and BMP. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1336-1346.
[http://dx.doi.org/10.2174/1871530320666200505114058] [PMID: 32368982]
[78]
Satoh, M. Editorial: Recent developments and future directions in the treatment of systemic rheumatic disease. Endocr. Metab. Immune Disord. Drug Targets, 2006, 6(4), 303-304.
[79]
Priftis, K.N. Cow’s milk allergy: where do we stand? Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(1), 1.
[http://dx.doi.org/10.2174/1871530314666140121142447] [PMID: 24450457]
[80]
Maru, Y. Anti-inflammatory Treatment for Seemingly Non-inflammatory Disorders. Editorial. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(2), 82.
[http://dx.doi.org/10.2174/187153031502150522123335] [PMID: 26004772]
[81]
Maru, Y. Editorial: Anti inflammatory Treatment for Seemingly Non-inflammatory Disorders-Part 2. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(3), 170.
[http://dx.doi.org/10.2174/187153031503150827163933] [PMID: 26333725]
[82]
Islam, A.; Kamal, M.A. Editorial: Current Vision of Systemic Autoimmune Diseases - From Diagnosis to Management. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(2), 96-97.
[http://dx.doi.org/10.2174/187153031802180213144657] [PMID: 29508678]
[83]
Ozmen, O.; Topsakal, S. Pregabalin Ameliorates Lipopolysaccharide-Induced Pancreatic Inflammation in Aged Rats. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(8), 1141-1147.
[http://dx.doi.org/10.2174/1871530319666190306095532] [PMID: 30843496]
[84]
Goudarzvand, M.; Panahi, Y.; Yazdani, R.; Miladi, H.; Tahmasebi, S.; Sherafat, A.; Afraei, S.; Abouhamzeh, K.; Jamee, M.; Al-Hussieni, K.J.M.R.; Mohammadi, H.; Mohebbi, A.; Hossein-Khannazer, N.; Zaki-Dizaji, M.; Di Fiore, M.M.; D’Aniello, A.; Azizi, G. The Effects of D-aspartate on Neurosteroids, Neurosteroid Receptors, and Inflammatory Mediators in Experimental Autoimmune Encephalomyelitis. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 316-325.
[http://dx.doi.org/10.2174/1871530318666181005093459] [PMID: 30289086]
[85]
Stolyarova, E.; Beduleva, L.; Menshikov, I.; Snigiryev, A.; Khramova, T. Mechanism by which Regulatory Rheumatoid Factor Prevents Experimental Autoimmune Encephalomyelitis. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(6), 596-601.
[http://dx.doi.org/10.2174/1871530318666180308123350] [PMID: 29521254]
[86]
Stolyarova, E.; Beduleva, L.; Sidorov, A.; Menshikov, I.; Terentiev, A.; Vachrusheva, K. The Role of Neutrophil Proteases in LPS-Induced Production of Regulatory Rheumatoid Factor that Suppresses Autoimmunity. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(1), 71-77.
[http://dx.doi.org/10.2174/1871530317666170424160358] [PMID: 28440198]
[87]
Sharifi, L.; Aghamohammadi, A.; Aletaha, S.; Bigdeli, R.; Asgary, V.; Bokaie, S.; Asgardoon, M.H.; Azizi, G.; Mirshafiey, A. Antagonistic Property of G2013 (α-L-Guluronic Acid) on Gene Expression of MyD88, Tollip, and NF-κB in HEK293 TLR2 and HEK293 TLR4. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 144-149.
[http://dx.doi.org/10.2174/1871530319666181126153752] [PMID: 30784390]
[88]
Mcheik, S.; Al-Akl, N.S.; Abdelnoor, A.M. The Effect of Denatured Flagellin on Toll-Like Receptor-5 (TLR-5) in Mice. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(4), 412-416.
[http://dx.doi.org/10.2174/1871530318666180327115448] [PMID: 29589550]
[89]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive Leaf Extracts Act as Modulators of the Human Immune Response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[http://dx.doi.org/10.2174/1871530317666171116110537] [PMID: 29149822]
[90]
Yang, R.; Yang, F.; Hu, Y.; Chen, M.; Liu, Y.; Li, J.; Zhong, W. Hepatocyte Growth Factor Attenuates the Development of TGF-β1- Induced EndMT through Down-regulating the Notch Signaling. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 781-787.
[http://dx.doi.org/10.2174/1871530319666191023141638] [PMID: 31702496]
[91]
Derangula, M.; Panati, K.; Narala, V.R.; Biochanin, A. Biochanin A Ameliorates Ovalbumin-induced Airway Inflammation through Peroxisome Proliferator-activated Receptor-Gamma in a Mouse Model. Endocr. Metab. Immune Disord. Drug Targets, 2020.
[http://dx.doi.org/10.2174/1871530320666200503051609] [PMID: 32359341]
[92]
Asgharzadeh, M.; Najafi-Ghalehlou, N.; Poor, B.M.; Asgharzadeh, V.; Pourostadi, M.; Vegari, A.; Kafil, H.S.; Fadaee, M.; Farhoudi, M.; Rashedi, J. IFN-γ and TNF-α Gene Polymorphisms in Multiple Sclerosis Patients in Northwest Iran. Endocr. Metab. Immune Disord. Drug Targets, 2020.
[http://dx.doi.org/10.2174/1871530320666200505123443] [PMID: 32368988]
[93]
Wang, X.; Shao, X.; Liu, X.; Qin, Q.; Xu, J.; Zhang, J.A. Dysregulated Interleukin -33/ST2 Pathway Perpetuates Chronic Inflammation in Hashimoto’s Thyroiditis. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 1012-1021.
[http://dx.doi.org/10.2174/1871530319666190226164309] [PMID: 30819087]
[94]
Tukbekova, B.; Dyussenova, S.; Kizatova, S.; Kenzhetayeva, T.; Zhubanysheva, K.; Zhaktayeva, K.; Sadvakassova, S.; Serikova, G.; Yerimbetova, N.; Issayeva, A. Peculiarities of the Clinical Course of Oxidative Protein and Lipid Modification in Children with Acute Rheumatic Fever. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 254-263.
[http://dx.doi.org/10.2174/1871530316666161019161433] [PMID: 27774884]
[95]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In Vitro Effects of Nickel on Healthy Non-Allergic Peripheral Blood Mononuclear Cells. The Role of Red Grape Polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 166-173.
[http://dx.doi.org/10.2174/1871530317666170713145350] [PMID: 28707594]
[96]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro Effects of Polyphenols on the Peripheral Immune Responses in Nickel-sensitized Patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[http://dx.doi.org/10.2174/1871530317666171003161314] [PMID: 28982342]
[97]
Magrone, T.; Jirillo, E.; Magrone, M.; Russo, M.A.; Romita, P.; Massari, F.; Foti, C. Red Grape Polyphenol Oral Administration Improves Immune Response in Women Affected by Nickel-Mediated Allergic Contact Dermatitis. Endocr. Metab. Immune Disord. Drug Targets, 2020, (Ahead of print).
[http://dx.doi.org/10.2174/1871530320666200313152648] [PMID: 32167433]
[98]
Tagka, A.; Lambrou, G.I.; Makris, M.; Nakou, E.; Nicolaidou, E.; Chatziioannou, A.; Katsarou, A. Time-Dependent Effects in Chronic Urticaria: A Time-Series Perspective of Omalizumab Treatment. Endocr. Metab. Immune Disord. Drug Targets, 2020, 10(149), 1726-1739.
[http://dx.doi.org/10.2174/1871530320666200313151720] [PMID: 32167432]
[99]
Magrone, T.; Simone, M.; Altamura, M.; Munno, I. Characterization of the immune inflammatory profile in obese asthmatic children. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(3), 187-195.
[http://dx.doi.org/10.2174/1871530314666140526095211] [PMID: 24862964]
[100]
Ganjalikhani-Hakemi, M.; Yazdani, R.; Esmaeili, M.; Abolhassani, H.; Rae, W.; Azizi, G.; Dizaji, M.Z.; Shaghaghi, M.; Rezaei, A.; Abbasi-Rad, F.; Afshar-Qasemloo, S.; Mohammadi, S.; Rezaei, N.; Aghamohammadi, A. Role of Apoptosis in the Pathogenesis of Common Variable Immunodeficiency (CVID). Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 332-340.
[http://dx.doi.org/10.2174/1871530317666170919120245] [PMID: 28925897]
[101]
Azizi, G.; Bagheri, Y.; Tavakol, M.; Askarimoghaddam, F.; Porrostami, K.; Rafiemanesh, H.; Yazdani, R.; Kiaee, F.; Habibi, S.; Abouhamzeh, K.; Mohammadi, H.; Qorbani, M.; Abolhassani, H.; Aghamohammadi, A. The Clinical and Immunological Features of Patients with Primary Antibody Deficiencies. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 537-545.
[http://dx.doi.org/10.2174/1871530318666180413110216] [PMID: 29651973]
[102]
Azizi, G.; Kiaee, F.; Yaslianifard, S.; Rafiemanesh, H.; Mohammadikhajehdehi, S.; Mohammadi, H.; Miresmaeeli, S.S.; Pour, L.H.; Poor Heravi, S.A.; Sharifi, L.; Yazdani, R.; Abolhassani, H.; Aghamohammadi, A. Mannose-Binding Lectin Protein Deficiency Among Patients with Primary Immunodeficiency Disease Receiving IVIG Therapy. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(2), 175-183.
[http://dx.doi.org/10.2174/1871530317666171108111749] [PMID: 29119939]
[103]
Mohebbi, A.; Azizi, G.; Tavakolinia, N.; Abbasi, F.; Sayarifard, F.; Karimipour, M.; Kiaee, F.; Yazdani, R.; Ebrahimi, S.S.; Ebrahimi, M.; Rafiemanesh, H.; Tafaroji, J.; Ziaee, V.; Abolhassani, H.; Aghamohammadi, A. Comparison of Bone Mineral Density in Common Variable Immunodeficiency and X-Linked Agammaglobulinaemia Patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 134-140.
[http://dx.doi.org/10.2174/1871530317666170612093906] [PMID: 28606051]
[104]
Hippe, B.; Remely, M.; Bartosiewicz, N.; Riedel, M.; Nichterl, C.; Schatz, L.; Pummer, S.; Haslberger, A. Abundance and diversity of GI microbiota rather than IgG4 levels correlate with abdominal inconvenience and gut permeability in consumers claiming food intolerances. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(1), 67-75.
[http://dx.doi.org/10.2174/1871530314666140207103335] [PMID: 24502607]
[105]
Grimaldi, F.; Vescini, F.; Tonelli, V.; Pistis, C.; Kara, E.; Triggiani, V.; Tonutti, E.; Curcio, F.; Fabris, M. Exploring the Possible Prognostic Role of B-Lymphocyte Stimulator (BLyS) in a Large Series of Patients with Neuroendocrine Tumors. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(6), 618-625.
[http://dx.doi.org/10.2174/1871530318666180529111224] [PMID: 29807524]
[106]
Amico, A.P.; Terlizzi, A.; Megna, M.; Megna, G.; Damiani, S. Immune endocrinological evaluation in patients with severe vascular acquired brain injuries: therapeutical approaches. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(2), 204-208.
[http://dx.doi.org/10.2174/1871530311313020009] [PMID: 23701252]
[107]
Magrone, T. Editorial: Effects of Extra Virgin Olive Oil on the Immune-mediated Inflammatory Responses: Potential Clinical Applications. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 3.
[http://dx.doi.org/10.2174/187153031801171212094005] [PMID: 29258417]
[108]
Kalmarzi, R.N.; Ahmadi, S.; Rahehagh, R.; Fathallahpour, A.; Khalafi, B.; Kashefi, H.; Roshani, D.; Zaryan, R.N.; Mohamadi, S.; Kooti, W. The Effect of Vitamin D Supplementation on Clinical Outcomes of Asthmatic Children with Vitamin D Insufficiency. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 149-155.
[http://dx.doi.org/10.2174/1871530319666190426161809] [PMID: 31942850]
[109]
Fedakâr, A.; Vitamin, D. Vitamin D Deficiency, Prevalence and Treatment in Neonatal Period. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 866-873.
[http://dx.doi.org/10.2174/1871530319666190215152045] [PMID: 30857517]
[110]
Sideri, V.; Antonakos, G.; Fretzayas, A.; Attilakos, A.; Chrelias, C.; Papaevangelou, V.; Nicolaidou, P.; Papadopoulou, A. Hypovitaminosis D in Healthy Pregnant Women and their Newborns in Greece. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 159-165.
[http://dx.doi.org/10.2174/1871530318666180723103117] [PMID: 30033883]
[111]
Rasa, F.; Naderi, N.; Eftekhar, E.; Mansoori, E.; Rahimzadeh, M. Vitamin D status in coronary artery disease: association with IL-35 and TGF-β1 and disease severity. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 522-529.
[http://dx.doi.org/10.2174/1871530318666180426101756] [PMID: 29701163]
[112]
Aboelnaga, M.M.; Abdullah, N.; El Shaer, M. 25-hydroxyvitamin D Correlation with Prolactin Levels and Adenoma Size in Female Patients with Newly Diagnosed Prolactin Secreting Adenoma. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(3), 219-225.
[http://dx.doi.org/10.2174/1871530317666170609103332] [PMID: 28595559]
[113]
Kumar, A.; Sharma, R.; Rana, D.; Sharma, N. Protective Effect of Alpha-Tocopherol in Deltamethrin Induced Immunotoxicity. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 171-184.
[http://dx.doi.org/10.2174/1871530318666180801144822] [PMID: 30068286]
[114]
Eralp, A.; Menguc, N.Y.; Polat, E.; Yuncu, M.; Koruk, M.; Demir, S.S.; Sari, İ. Preventative Effect of Vitamin E on Mast Cells in Carbon Tetrachlorideinduced Acute Liver Damage. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(3), 205-212.
[http://dx.doi.org/10.2174/1871530316666161029205427] [PMID: 27809748]
[115]
Derakhshan, A.; Khodadoost, M.; Ghanei, M.; Gachkar, L.; Hajimahdipour, H.; Taghipour, A.; Yousefi, J.; Khoshkhui, M.; Azad, F.J. Effects of a Novel Barley-Based Formulation on Allergic Rhinitis: A Randomized Controlled Trial. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(8), 1224-1231.
[http://dx.doi.org/10.2174/1871530319666190306100611] [PMID: 30843497]
[116]
Jahanbakhshi, M.; Babaloo, Z.; Mortazavi-Jahromi, S.S.; Shokri, M.M.; Ahmadi, H.; Mirshafiey, A. Modification of Sexual Hormones in Rheumatoid Arthritis Patients by M2000 (β-D-mannuronic Acid) as a Novel NSAID with Immunosuppressive Property. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 530-536.
[http://dx.doi.org/10.2174/1871530318666180418111354] [PMID: 29667557]
[117]
Tutino, V.; Caruso, M.G.; De Leonardis, G.; De Nunzio, V.; Notarnicola, M. Tissue Fatty Acid Profile is Differently Modulated from Olive Oil and Omega-3 Polyunsaturated Fatty Acids in ApcMin/+ Mice. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 303-308.
[http://dx.doi.org/10.2174/1871530317666170911161623] [PMID: 28901863]
[118]
Casbarien, O.; Cresta, P.; Silva, C.; Feliu, M.S.; Badia, A.; Delgado, N.L.; Navigante, A.; Slobodianik, N. Specific nutritional supplement (Supportan®) in the supportive care of the radio-chemotherapy treatment of head and neck cancers: biochemical parameters. Preliminary study. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(4), 348-350.
[http://dx.doi.org/10.2174/1871530313666131122151325] [PMID: 24261905]
[119]
Abdolahi, M.; Jafarieh, A.; Sarraf, P.; Sedighiyan, M.; Yousefi, A.; Tafakhori, A.; Abdollahi, H.; Salehinia, F.; Djalali, M. The Neuromodulatory Effects of ω-3 Fatty Acids and Nano-Curcumin on the COX-2/ iNOS Network in Migraines: A Clinical Trial Study from Gene Expression to Clinical Symptoms. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 874-884.
[http://dx.doi.org/10.2174/1871530319666190212170140] [PMID: 30760195]
[120]
Rotolo, O.; Zinzi, I.; Veronese, N.; Cisternino, A.M.; Reddavide, R.; Inguaggiato, R.; Leandro, G.; Notarnicola, M.; Tutino, V.; De Nunzio, V.; De Leonardis, G.; Guerra, V.; Donghia, R.; Fucilli, F.; Licinio, R.; Mastrosimini, A.; Rinaldi, C.C.M.; Daddabbo, T.; Giampaolo, N.; Iacovazzi, P.A.; Giannico, S.; Caruso, M.G. Women in LOVe: Lacto-Ovo-Vegetarian Diet Rich in Omega-3 Improves Vasomotor Symptoms in Postmenopausal Women. An Exploratory Randomized Controlled Trial. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(8), 1232-1239.
[http://dx.doi.org/10.2174/1871530319666190528101532] [PMID: 31132980]
[121]
Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics Efficacy on Oxidative Stress Values in Inflammatory Bowel Disease: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 373-381.
[http://dx.doi.org/10.2174/1871530319666181221150352] [PMID: 30574857]
[122]
Palumbo, P.; Lombardi, F.; Cifone, M.G.; Cinque, B. The Epithelial Barrier Model Shows That the Properties of VSL#3 Depend from Where it is Manufactured. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 199-206.
[http://dx.doi.org/10.2174/1871530318666181022164505] [PMID: 30360752]
[123]
Magrone, T.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Corriero, A.; Jirillo, E.; Passantino, L. Effects of Polyphenol Administration to European Farmed Sea Bass (Dicentrharcus labrax L.): Special Focus on Hepatopancreas Morphology. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 526-533.
[http://dx.doi.org/10.2174/1871530318666181009111214] [PMID: 30306883]
[124]
Shaikh, S.B.; Prabhu, A.; Bhandary, Y.P. Curcumin Suppresses Epithelial Growth Factor Receptor (EGFR) and Proliferative Protein (Ki 67) in Acute Lung Injury and Lung Fibrosis In vitro and In vivo. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 558-563.
[http://dx.doi.org/10.2174/1871530319666190823160230] [PMID: 31441735]
[125]
Fard, A.A.; Samadi, M.; Biabangard, A. Possible Protective Effects of Curcumin via Modulating of Androgen Receptor (AR) and Oct2 Gene Alterations in Cisplatin-Induced Testicular Toxicity in Rat. Endocr. Metab. Immune Disord. Drug Targets, 2020, (Ahead of print).
[http://dx.doi.org/10.2174/1871530320666200511073302] [PMID: 32392119]
[126]
Kawaguchi, K.; Kaneko, M.; Miyake, R.; Takimoto, H.; Kumazawa, Y. Potent Inhibitory Effects of Quercetin on Inflammatory Responses of Collagen-Induced Arthritis in Mice. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 308-315.
[http://dx.doi.org/10.2174/1871530319666190206225034] [PMID: 30727927]
[127]
He, J.; Xie, H.; Wu, S. Dietary Supplementation of Curcumin Alleviates NF-κB-dependent Skeletal Muscle Wasting in Rat. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 140-147.
[http://dx.doi.org/10.2174/1871530316666160613115221] [PMID: 27297427]
[128]
Pusparini, Y.; Yenny, ; Hidayat, A. Effect of soy isoflavone supplementation on endothelial dysfunction and oxidative stress in equol-producing postmenopausal women. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(1), 71-79.
[http://dx.doi.org/10.2174/1871530314666141202123309] [PMID: 25441486]
[129]
Gigante, I.; Milella, R.A.; Tutino, V.; Debiase, G.; Notarangelo, L.; Giannandrea, M.A.; De Nunzio, V.; Orlando, A.; D’Alessandro, R.; Caruso, M.G.; Notarnicola, M. Autumn Royal and Egnatia Grape Extracts differently modulate Cell Proliferation in Human Colorectal Cancer Cells. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(10), 1740-1750.
[http://dx.doi.org/10.2174/1871530320666200421102418] [PMID: 32316903]
[130]
Berghe, W.V.; De Naeyer, A.; Dijsselbloem, N.; David, J.P.; De Keukeleire, D.; Haegeman, G. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots. Endocr. Metab. Immune Disord. Drug Targets, 2011, 11(3), 247-261.
[http://dx.doi.org/10.2174/187153011796429790] [PMID: 21831037]
[131]
Triggiani, V.; Iacoviello, M. Thyroid disorders in chronic heart failure: from prognostic set-up to therapeutic management Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 22-37.
[http://dx.doi.org/10.2174/1871530311313010005] [PMID: 23369135]
[132]
Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Iacoviello, M.; Triggiani, V. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 92-99.
[http://dx.doi.org/10.2174/1871530311313010011] [PMID: 23369141]
[133]
Giagulli, V.A.; Moghetti, P.; Kaufman, J.M.; Guastamacchia, E.; Iacoviello, M.; Triggiani, V. Managing erectile dysfunction in heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 125-134.
[http://dx.doi.org/10.2174/1871530311313010011] [PMID: 23369145]

© 2025 Bentham Science Publishers | Privacy Policy