Research Article

BMSCs Runx2的过表达改善膝盖软骨缺损的修复

卷 20, 期 5, 2020

页: [395 - 404] 页: 10

弟呕挨: 10.2174/1566523220666201005110339

价格: $65

摘要

背景:在关节软骨修复中,基因修饰的骨髓间充质干细胞(BMSC)被认为是单细胞注射的替代方法。 目的:本研究旨在探讨Runt相关转录因子2(Runx2)过表达骨髓间充质干细胞在体内的作用是否能提高兔模型膝关节软骨缺损修复组织的质量。 方法:将32只新西兰大白兔随机分为四组。空白组(Con)未注射任何东西,模型组(Mo)给予生理盐水,简单干细胞组(MSCs)接受MSCs注射,Runx2转染组(R-MSCs)接受Runx2过表达MSCs注射。适应环境一周后,在股内侧con的中央形成了直径为5 mm的圆柱形骨软骨缺损。在手术后的第一和第三周进行细胞和盐水注射。在第4和第8周通过肉眼和显微镜评估软骨修复。 结果:骨髓间充质干细胞组在第4周出现缺损,表面光滑。 显微镜下,R-MSCs组在8周的Masson三色染色中表现出与周围正常关节软骨组织相似的着色。 与R-MSCs相比,4周MSCs的COL-II、SOX9和AggrecanmRNA表达增强,8周表达降低,但仍高于Mo组水平(P<0.05)。 通过westernblot检查发现,4周时MSCs的COL-II和SOX9表达高于R-MSCs,8周时表达降低,但仍高于Mo水平(P<0.05)。 关节液中IL-1β含量也表明,R-MSCs修复软骨优于8周MSCs修复(P<0.05)。 结论:R-MSCs组表现出与周围正常关节软骨组织相似的细胞形态和排列,Runx2过表达的MSCs与MSCs相比,在8周时表现出整体上优越的软骨修复。

关键词: Runx2,膝关节软骨修复,骨髓间充质干细胞,软骨缺损,软骨缺损,动物模型。

图形摘要

[1]
Rahim S, Rahim F, Shirbandi K, Haghighi BB, Arjmand B. Sports injuries: diagnosis, prevention, stem cell therapy, and medical sport strategy. Adv Exp Med Biol 2019; 1084: 129-44.
[http://dx.doi.org/10.1007/5584_2018_298] [PMID: 30539427]
[2]
Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13(4): 456-60.
[http://dx.doi.org/10.1016/S0749-8063(97)90124-9] [PMID: 9276052]
[3]
Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage 2006; 14(11): 1126-35.
[http://dx.doi.org/10.1016/j.joca.2006.04.004] [PMID: 16765606]
[4]
Guettler JH, Demetropoulos CK, Yang KH, Jurist KA. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 2004; 32(6): 1451-8.
[http://dx.doi.org/10.1177/0363546504263234] [PMID: 15310570]
[5]
Theodoropoulos J, Dwyer T, Whelan D, Marks P, Hurtig M, Sharma P. Microfracture for knee chondral defects: a survey of surgical practice among Canadian orthopedic surgeons. Knee Surg Sports Traumatol Arthrosc 2012; 20(12): 2430-7.
[http://dx.doi.org/10.1007/s00167-012-1925-6] [PMID: 22362098]
[6]
Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993; 9(3): 318-21.
[http://dx.doi.org/10.1016/S0749-8063(05)80428-1] [PMID: 8323618]
[7]
Zellner J, Grechenig S, Pfeifer CG, et al. Clinical and radiological regeneration of large and deep osteochondral defects of the knee by bone augmentation combined with matrix-guided autologous chondrocyte transplantation. Am J Sports Med 2017; 45(13): 3069-80.
[http://dx.doi.org/10.1177/0363546517717679] [PMID: 28777662]
[8]
Koga H, Shimaya M, Muneta T, et al. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 2008; 10(4): R84.
[http://dx.doi.org/10.1186/ar2460] [PMID: 18664254]
[9]
Jiang S, Guo W, Tian G, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int 2020; 2020: 5690252.
[http://dx.doi.org/10.1155/2020/5690252] [PMID: 32676118]
[10]
Wang J, Zhang W, He GH, Wu B, Chen S. Transfection with CXCR4 potentiates homing of mesenchymal stem cells in vitro and therapy of diabetic retinopathy in vivo. Int J Ophthalmol 2018; 11(5): 766-72.
[PMID: 29862173]
[11]
Wolf D, Wolf AM. Mesenchymal stem cells as cellular immunosuppressants. Lancet 2008; 371(9624): 1553-4.
[http://dx.doi.org/10.1016/S0140-6736(08)60666-2] [PMID: 18468526]
[12]
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11): 2739-49.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[13]
Fernandes TL, Shimomura K, Asperti A, et al. Development of a novel large animal model to evaluate human dental pulp stem cells for articular cartilage treatment. Stem Cell Rev Rep 2018; 14(5): 734-43.
[http://dx.doi.org/10.1007/s12015-018-9820-2] [PMID: 29728886]
[14]
Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest 2000; 105(12): 1663-8.
[http://dx.doi.org/10.1172/JCI10413] [PMID: 10862779]
[15]
Song SY, Hong J, Go S, et al. Interleukin-4 gene transfection and spheroid formation potentiate therapeutic efficacy of mesenchymal stem cells for osteoarthritis. Adv Healthc Mater 2020; 9(5): e1901612.
[http://dx.doi.org/10.1002/adhm.201901612] [PMID: 31977158]
[16]
Xu J, Li Z, Hou Y, Fang W. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am J Transl Res 2015; 7(12): 2527-35.
[PMID: 26885254]
[17]
Enomoto H, Enomoto-Iwamoto M, Iwamoto M, et al. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 2000; 275(12): 8695-702.
[http://dx.doi.org/10.1074/jbc.275.12.8695] [PMID: 10722711]
[18]
Chen CG, Thuillier D, Chin EN, Alliston T. Chondrocyte-intrinsic Smad3 represses Runx2-inducible matrix metalloproteinase 13 expression to maintain articular cartilage and prevent osteoarthritis. Arthritis Rheum 2012; 64(10): 3278-89.
[http://dx.doi.org/10.1002/art.34566] [PMID: 22674505]
[19]
Sasaki T, Akagi R, Akatsu Y, et al. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017; 6(3): 123-31.
[http://dx.doi.org/10.1302/2046-3758.63.BJR-2016-0083] [PMID: 28258115]
[20]
Li ZH, Liao W, Cui XL, et al. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 2011; 8(1): 74-83.
[http://dx.doi.org/10.7150/ijms.8.74] [PMID: 21234272]
[21]
Fathi E, Farahzadi R, Valipour B, Sanaat Z. Cytokines secreted from bone marrow derived mesenchymal stem cells promote apoptosis and change cell cycle distribution of K562 cell line as clinical agent in cell transplantation. PLoS One 2019; 14(4): e0215678.
[http://dx.doi.org/10.1371/journal.pone.0215678] [PMID: 31009502]
[22]
Fathi E, Farahzadi R, Sheikhzadeh N. Immunophenotypic characterization, multi-lineage differentiation and aging of zebrafish heart and liver tissue-derived mesenchymal stem cells as a novel approach in stem cell-based therapy. Tissue Cell 2019; 57: 15-21.
[http://dx.doi.org/10.1016/j.tice.2019.01.006] [PMID: 30947959]
[23]
Li ZH, Liao W, Zhao Q, et al. Effect of Cbfa1 on osteogenic differentiation of mesenchymal stem cells under hypoxia condition. Int J Clin Exp Med 2014; 7(3): 540-8.
[PMID: 24753746]
[24]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[25]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[26]
Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005; 11(7-8): 1198-211.
[http://dx.doi.org/10.1089/ten.2005.11.1198] [PMID: 16144456]
[27]
Gao J, Zhang G, Xu K, et al. Bone marrow mesenchymal stem cells improve bone erosion in collagen-induced arthritis by inhibiting osteoclasia-related factors and differentiating into chondrocytes. Stem Cell Res Ther 2020; 11(1): 171.
[http://dx.doi.org/10.1186/s13287-020-01684-w] [PMID: 32381074]
[28]
Stricker S, Fundele R, Vortkamp A, Mundlos S. Role of Runx genes in chondrocyte differentiation. Dev Biol 2002; 245(1): 95-108.
[http://dx.doi.org/10.1006/dbio.2002.0640] [PMID: 11969258]
[29]
Kuboki T, Kanyama M, Nakanishi T, et al. Cbfa1/Runx2 gene expression in articular chondrocytes of the mice temporomandibular and knee joints in vivo. Arch Oral Biol 2003; 48(7): 519-25.
[http://dx.doi.org/10.1016/S0003-9969(03)00088-8] [PMID: 12798155]
[30]
Chen J, Wang Y, Chen C, et al. Exogenous heparan sulfate enhances the TGF-β3-induced chondrogenesis in human mesenchymal stem cells by activating TGF-β/Smad signaling Stem Cells Int 2016; 2016: 1520136.
[http://dx.doi.org/10.1155/2016/1520136] [PMID: 26783399]
[31]
Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: A Potential Target on Cartilage Regeneration. Front Immunol 2020; 11(111): 111.
[http://dx.doi.org/10.3389/fimmu.2020.00111] [PMID: 32117263]
[32]
Ying J, Wang P, Zhang S, et al. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells. Life Sci 2018; 192: 84-90.
[http://dx.doi.org/10.1016/j.lfs.2017.11.028] [PMID: 29158053]
[33]
Taylor DW, Ahmed N, Parreno J, et al. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes. Tissue Eng Part A 2015; 21(3-4): 683-93.
[http://dx.doi.org/10.1089/ten.tea.2014.0103] [PMID: 25315796]
[34]
Hino K, Saito A, Kido M, et al. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem 2014; 289(20): 13810-20.
[http://dx.doi.org/10.1074/jbc.M113.543322] [PMID: 24711445]
[35]
Tsukamoto I, Inoue S, Teramura T, Takehara T, Ohtani K, Akagi M. Activating types 1 and 2 angiotensin II receptors modulate the hypertrophic differentiation of chondrocytes. FEBS Open Bio 2013; 3: 279-84.
[http://dx.doi.org/10.1016/j.fob.2013.07.001] [PMID: 23905010]
[36]
Kraskiewicz H, Paprocka M, Bielawska-Pohl A, et al. Can supernatant from immortalized adipose tissue MSC replace cell therapy? An in vitro study in chronic wounds model. Stem Cell Res Ther 2020; 11(1): 29-38.
[http://dx.doi.org/10.1186/s13287-020-1558-5] [PMID: 31964417]
[37]
Wang X, Song X, Li T, et al. Aptamer-functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. Am J Sports Med 2019; 47(10): 2316-26.
[http://dx.doi.org/10.1177/0363546519856355] [PMID: 31233332]
[38]
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017; 7(1): 180-95.
[http://dx.doi.org/10.7150/thno.17133] [PMID: 28042326]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy