Research Article

短合成脂肽/Importin-α的计算机分子相互作用和基于脂质体的基因载体介导的转基因表达的体外评估

卷 20, 期 5, 2020

页: [383 - 394] 页: 12

弟呕挨: 10.2174/1566523220666201005104224

价格: $65

摘要

背景:基于脂肽的基因载体显示出低细胞毒性,能够穿透细胞膜,易于制造,因此是基因递送应用的巨大潜力。 目的:本研究旨在探索一系列由烷基链,一个半胱氨酸(C),1-2个组氨酸(H)和赖氨酸(K)残基组成的短合成脂肽(Lau:Lauryl; Pal:Palmitoyl)。进行计算机内分子相互作用和体外评估。 方法:使用AutoDock Vina和Amber14进行脂肽和Importin-α受体之间的分子相互作用。体外评估脂肽/ DNA复合物的相互作用,粒径,ζ电势和转基因表达。基于萤光素酶转基因表达,进行脂肽和Pal-CKKHH来源的脂质体的转染效率。 结果:计算机内相互作用表明,Lau-CKKH和Pal-CKKHH假设加速了核吸收。与天然配体,即核定位序列(-5.4kcal / mol)相比,两种脂肽均具有较低的结合能(分别为-6.3kcal / mol和-6.2kcal / mol)。短的脂肽能够浓缩DNA分子并有效形成紧密的纳米颗粒。根据对COS-7的体外评估,发现Pal-CKKHH是脂肽中最好的转染剂。与辅助脂质DOPE(1:2)一起配制时,其转染效率(ng Luc / mg总蛋白)提高了约3倍(1163 + 55)。基于脂肽的脂质体(Pal-CKKHH:DOPE = 1:2)还促进了萤光素酶转基因在人胚胎肾细胞(293T)和人宫颈腺癌细胞(HeLa)上的表达,转染效率分别为1779 +52和260 + 22。 结论:我们的首次研究表明,完全合成的短脂肽Pal-CKKHH能够与Importin-α牢固地相互作用。脂肽能够有效地凝结DNA分子,促进转基因表达,加速核摄取过程,因此具有潜在的转染剂的特征。

关键词: 脂肽,importin-α,计算机内,脂质体,粒径,转染。

图形摘要

[1]
Naldini L. Gene therapy returns to centre stage. Nature 2015; 526(7573): 351-60.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[2]
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20(5): e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[3]
Yang C, Uertz J, Yohan D, Chithrani BD. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale 2014; 6(20): 12026-33.
[http://dx.doi.org/10.1039/C4NR02535K] [PMID: 25182693]
[4]
Hillyar CR, Cornelissen B, Vallis KA. Uptake, internalization and nuclear translocation of radioimmunotherapeutic agents. Ther Deliv 2014; 5(3): 319-35.
[http://dx.doi.org/10.4155/tde.14.6] [PMID: 24592956]
[5]
Kurrikoff K, Veiman KL, Künnapuu K, et al. Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Sci Rep 2017; 7(1): 17056.
[http://dx.doi.org/10.1038/s41598-017-17316-y] [PMID: 29213085]
[6]
Sun Y, Chen L, Sun F, Tian X, Luo SZ. New amphiphilic N-phosphoryl oligopeptides designed for gene delivery. Int J Pharm 2014; 468(1-2): 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.007] [PMID: 24709211]
[7]
Koloskova OO, Nikonova AA, Budanova UA, et al. Synthesis and evaluation of novel lipopeptide as a vehicle for efficient gene delivery and gene silencing. Eur J Pharm Biopharm 2016; 102: 159-67.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.014] [PMID: 26992289]
[8]
Ho JK, White PJ, Pouton CW. Self-crosslinking lipopeptide/DNA/PEGylated particles: A new platform for DNA vaccination designed for assembly in aqueous solution. Mol Ther Nucleic Acids 2018; 12: 504-17.
[http://dx.doi.org/10.1016/j.omtn.2018.05.025] [PMID: 30195787]
[9]
Biswas A, Chakraborty K, Dutta C, et al. Engineered histidine-enriched facial lipopeptides for enhanced intracellular delivery of functional siRNA to triple negative breast cancer cells. ACS Appl Mater Interfaces 2019; 11(5): 4719-36.
[http://dx.doi.org/10.1021/acsami.8b13794] [PMID: 30628773]
[10]
Kosugi S, Hasebe M, Matsumura N, et al. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 2009; 284(1): 478-85.
[http://dx.doi.org/10.1074/jbc.M807017200] [PMID: 19001369]
[11]
Tarwadi JA, Jazayeri JA, Prankerd RJ, Pouton CW. Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery. Bioconjug Chem 2008; 19(4): 940-50.
[http://dx.doi.org/10.1021/bc700463q] [PMID: 18333604]
[12]
Fontes MR, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 2000; 297(5): 1183-94.
[http://dx.doi.org/10.1006/jmbi.2000.3642] [PMID: 10764582]
[13]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[14]
Tarwadi SP, Rachmawati H, Kartasasmita RE, Asyarie Sa, Jalal A, Jazayeri CW. Pouton, Nanoparticle evaluation of synthetic Palmitoyl-CKKHH as transfection reagent for non-viral gene delivery vehicle. Int J Eng Res Appl 2018; 8(1): 40-8.
[15]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[16]
Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[17]
Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 2002; 16(1): 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[18]
Mochizuki S, Kanegae N, Nishina K, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta 2013; 1828(2): 412-8.
[http://dx.doi.org/10.1016/j.bbamem.2012.10.017] [PMID: 23092705]
[19]
Åmand HL, Nordén B, Fant K. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochem Biophys Res Commun 2012; 418(3): 469-74.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.041] [PMID: 22281502]
[20]
Ong ZY, Yang C, Cheng W, et al. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection. Acta Biomater 2017; 54: 201-11.
[http://dx.doi.org/10.1016/j.actbio.2017.03.027] [PMID: 28323177]
[21]
Perrone B, Miles AJ, Salnikov ES, Wallace BA, Bechinger B. Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities. Eur Biophys J 2014; 43(10-11): 499-507.
[http://dx.doi.org/10.1007/s00249-014-0980-y] [PMID: 25182242]
[22]
Kichler A, Mason AJ, Marquette A, Bechinger B. Histidine-rich cationic cell-penetrating peptides for plasmid DNA and siRNA delivery. Methods Mol Biol 2019; 1943: 39-59.
[http://dx.doi.org/10.1007/978-1-4939-9092-4_3] [PMID: 30838608]
[23]
Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm 2014; 11(3): 683-96.
[http://dx.doi.org/10.1021/mp400353n] [PMID: 24476132]
[24]
Ju J, Huan M-L, Wan N, Qiu H, Zhou S-Y, Zhang B-L. Novel cholesterol-based cationic lipids as transfecting agents of DNA for efficient gene delivery. Int J Mol Sci 2015; 16(3): 5666-81.
[http://dx.doi.org/10.3390/ijms16035666] [PMID: 25768346]
[25]
Muñoz-Ubeda M, Rodríguez-Pulido A, Nogales A, Martín-Molina A, Aicart E, Junquera E. Effect of lipid composition on the structure and theoretical phase diagrams of DC-Chol/DOPE-DNA lipoplexes. Biomacromolecules 2010; 11(12): 3332-40.
[http://dx.doi.org/10.1021/bm1008124] [PMID: 21058732]
[26]
Du Z, Munye MM, Tagalakis AD, Manunta MD, Hart SL. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci Rep 2014; 4: 7107.
[http://dx.doi.org/10.1038/srep07107] [PMID: 25407686]
[27]
Tassler S, Dobner B, Lampp L, et al. DNA delivery systems based on peptide-mimicking cationic lipids-the effect of the co-lipid on the structure and DNA binding capacity. Langmuir 2019; 35(13): 4613-25.
[http://dx.doi.org/10.1021/acs.langmuir.8b04139] [PMID: 30840475]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy