Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Cytotoxic Properties of New Substituted Glycosides-Indole Conjugates as Apoptosis Inducers in Cancer Cells

Author(s): Aladdin M. Srour, Mohamed N. El-Bayaa*, Mervat M. Omran, Marwa M. Sharaky and Wael A. El-Sayed*

Volume 21, Issue 10, 2021

Published on: 29 September, 2020

Page: [1323 - 1333] Pages: 11

DOI: 10.2174/1871520620666200929155246

Price: $65

Abstract

Background & Objective: Glycosyl heterocycles, being as nucleoside analogs with modified glycon and hybrid heterocycle motifs, are of considerable interest, and thus, the targeted compounds were synthesized via a convenient and efficient approach.

Methods: New indolyl-thiadiazolyl thioglycosides scaffolds were synthesized, starting with the reaction of indole-3-carbaldehyde with 2-aminothiadiazole-5-thiole followed by glycosylation and deprotection. Likewise, new molecular hybrids comprising indole, thiadiazole, triazole and glycosyl moieties were synthesized utilizing click chemistry strategy. The cytotoxic activities of the newly synthesized compounds were studied on colon carcinoma HCT116, breast carcinoma MCF-7, lung carcinoma A549 and hepatocellular carcinoma HepG2 cell lines using Sulphorhodamine-B (SRB) assay.

Results: The 1,3,4-thiadiazole thioglycoside and the 1,2,3-triazole N1-glycoside possessing xylose moiety, compounds 8 and 15 revealed the most potent bio-activity among the new chemical entities; therefore, they undertook for further analysis of apoptosis.

Conclusion: IC50s of Compound 8 were 38, 36, 33 and 158μg/ml, while they were 41, 44, 32 and 25μg/ml for compound 15 on HepG2, MCF7, HCT116 and A549 cell lines, respectively; furthermore, the total apoptosis rate (%) for control untreated cells were 9.63, 28.4, 25.4 (%), compounds 8 and 15 respectively, they produced a significant increase in total and early apoptosis rate (%) compared to control (P=0.0001). At the same time, no significant difference was detected in the late apoptosis rate (%), which means that both derivatives have the potential to be developed into potent anticancer agents.

Keywords: Indole-3-carbaldehyde, triazole, thiadiazole, glycosides, anticancer, apoptosis.

« Previous
Graphical Abstract

[1]
Ferlay, J.S.I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide; Lyon, France: International Agency for Research on Cancer, 2012.
[2]
Sommerwerk, S.; Heller, L.; Csuk, R. Synthesis and cytotoxic activity of pentacyclic triterpenoid sulfamates. Arch. Pharm. (Weinheim), 2015, 348(1), 46-54.
[http://dx.doi.org/10.1002/ardp.201400297] [PMID: 25581678]
[3]
Mok, N.Y.; Maxe, S.; Brenk, R. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries. J. Chem. Inf. Model., 2013, 53(3), 534-544.
[http://dx.doi.org/10.1021/ci300382f] [PMID: 23451880]
[4]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-Activity Relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[5]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[6]
Bourne, Y.; Kolb, H.C.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Marchot, P. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc. Natl. Acad. Sci. USA, 2004, 101(6), 1449-1454.
[http://dx.doi.org/10.1073/pnas.0308206100] [PMID: 14757816]
[7]
El-Sayed, W.A.; Abdel-Rahman, A.A-H. Copper-catalyzed synthesis and antimicrobial activity of disubstituted 1,2,3-triazoles starting from 1-propargyluracils and ethyl (4-azido- 1,2,3-trihydroxybutyl)furan-3-carboxylate. Monatsh. Chem., 2010, 65(1), 57.
[http://dx.doi.org/10.1515/znb-2010-0110]]
[8]
Broggi, J.; Joubert, N.; Aucagne, V.; Berteina-Raboin, S.; Diez-Gonzalez, S.; Nolan, S.; Topalis, D.; Deville-Bonne, D.; Balzarini, J.; Neyts, J.; Andrei, G.; Snoeck, R.; Agrofoglio, L.A. Alkyne-azide click chemistry mediated carbanucleosides synthesis. Nucleosides Nucleotides Nucleic Acids, 2007, 26(10-12), 1391-1394.
[http://dx.doi.org/10.1080/15257770701534139] [PMID: 18066789]
[9]
El-Sayed, W.A.; El-Essawy, F.A.; Ali, O.M.; Nasr, B.S.; Abdalla, M.M.; Abdel-Rahman, A.A.H. Synthesis and antiviral evaluation of new 2,5-disubstituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues. Monatsh. Chem., 2010, 141(9), 1021-1028.
[http://dx.doi.org/10.1007/s00706-010-0360-y]
[10]
Zhu, R.; Wang, M.; Xia, Y.; Qu, F.; Neyts, J.; Peng, L. Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorg. Med. Chem. Lett., 2008, 18(11), 3321-3327.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.026] [PMID: 18445526]
[11]
Dutta, S.; Gupta, S.J.; Sen, A.K. Silver trifluoromethanesulfonate and metallic copper mediated syntheses of 1,2,3-triazole-O- and triazolyl glycoconjugates: Consecutive glycosylation and cyclization under one-pot condition. Tetrahedron Lett., 2016, 57(29), 3086-3090.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.088]
[12]
Zhang, S-Y.; Fu, D-J.; Yue, X-X.; Liu, Y-C.; Song, J.; Sun, H-H.; Liu, H-M.; Zhang, Y-B. Design, synthesis and structure-activity relationships of novel chalcone-1, 2, 3-triazole-azole derivates as antiproliferative agents. Molecules, 2016, 21(5), 653.
[http://dx.doi.org/10.3390/molecules21050653] [PMID: 27213317]
[13]
Ruddarraju, R.R.; Murugulla, A.C.; Kotla, R.; Chandra Babu Tirumalasetty, M.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R.; Baburao, K.; Parasa, L.S. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives. Eur. J. Med. Chem., 2016, 123, 379-396.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.024] [PMID: 27487568]
[14]
Dondoni, A.; Marra, A. C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers. J. Org. Chem., 2006, 71(20), 7546-7557.
[http://dx.doi.org/10.1021/jo0607156] [PMID: 16995658]
[15]
Megna, B.W.; Carney, P.R.; Nukaya, M.; Geiger, P.; Kennedy, G.D. Indole-3-carbinol induces tumor cell death: Function follows form. J. Surg. Res., 2016, 204(1), 47-54.
[http://dx.doi.org/10.1016/j.jss.2016.04.021] [PMID: 27451867]
[16]
Kumar, D.; Maruthi Kumar, N.; Tantak, M.P.; Ogura, M.; Kusaka, E.; Ito, T. Synthesis and identification of α-cyano bis(indolyl)chalcones as novel anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(22), 5170-5174.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.085] [PMID: 25442306]
[17]
Yousif, M.N.; Hussein, H.A.; Yousif, N.M.; El-Manawaty, M.A.; El-Sayed, W.A. Synthesis and anticancer activity of novel 2- phenylindole linked imidazolothiazole, thiazolo-s-triazine and imidazolyl- sugar systems. J. Appl. Pharm. Sci., 2019, 9(01), 006-014..
[http://dx.doi.org/10.7324/JAPS.2019.90102]
[18]
Zhou, Y.; Duan, K.; Zhu, L.; Liu, Z.; Zhang, C.; Yang, L.; Li, M.; Zhang, H.; Yang, X. Synthesis and cytotoxic activity of novel hexahydropyrrolo[2,3-b]indole imidazolium salts. Bioorg. Med. Chem. Lett., 2016, 26(2), 460-465.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.092] [PMID: 26684853]
[19]
Fortes, M.P.; da Silva, P.B.N.; da Silva, T.G.; Kaufman, T.S.; Militão, G.C.G.; Silveira, C.C. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents. Eur. J. Med. Chem., 2016, 118, 21-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.039] [PMID: 27116711]
[20]
Gehrcke, M.; Giuliani, L.M.; Ferreira, L.M.; Barbieri, A.V.; Sari, M.H.M.; da Silveira, E.F.; Azambuja, J.H.; Nogueira, C.W.; Braganhol, E.; Cruz, L. Enhanced photostability, radical scavenging and antitumor activity of indole-3-carbinol-loaded rose hip oil nanocapsules. Mater. Sci. Eng. A Struct. Mater., 2017, 74, 279-286.
[http://dx.doi.org/10.1016/j.msec.2016.12.006] [PMID: 28254296]
[21]
El-Sayed, W.A.; El-Sofany, W.I.; Hussein, H.A.R.; Fathy, N.M.; Acids, N. Synthesis and anticancer activity of new [(Indolyl)pyrazolyl]-1,3,4-oxadiazole thioglycosides and acyclic nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2017, 36(7), 474-495.
[http://dx.doi.org/10.1080/15257770.2017.1327665] [PMID: 28613111]
[22]
El-Sayed, W.A.; El-Kosy, S.M.; Ali, O.M.; Emselm, H.M.; Abdel-Rahman, A.A. Anticancer activity of new (tetrazol-5-yl)methylindole derivatives and their acyclic c-nucleoside analogs. Acta Pol. Pharm., 2012, 69(4), 669-677.
[PMID: 22876609]
[23]
Schuck, D.C.; Jordão, A.K.; Nakabashi, M.; Cunha, A.C.; Ferreira, V.F.; Garcia, C.R.S. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur. J. Med. Chem., 2014, 78, 375-382.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.055] [PMID: 24699367]
[24]
Rocha e Silva, L.F.; Montoia, A.; Amorim, R.C.N.; Melo, M.R.; Henrique, M.C.; Nunomura, S.M.; Costa, M.R.F.; Andrade Neto, V.F.; Costa, D.S.; Dantas, G.; Lavrado, J.; Moreira, R.; Paulo, A.; Pinto, A.C.; Tadei, W.P.; Zacardi, R.S.; Eberlin, M.N.; Pohlit, A.M. Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomedicine, 2012, 20(1), 71-76.
[http://dx.doi.org/10.1016/j.phymed.2012.09.008] [PMID: 23092722]
[25]
Khan, G.A.; War, J.A.; Naikoo, G.A.; Pandit, U.J.; Das, R. Porous CuO catalysed green synthesis of some novel 3-alkylated indoles as potent antitubercular agents. J. Saudi Chem. Soc., 2018, 22(1), 6-15.
[http://dx.doi.org/10.1016/j.jscs.2016.03.009]
[26]
El-Sayed, W.A.; Abdel Megeid, R.E.; Abbas, H-A.S. Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl)methyl] indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs. Arch. Pharm. Res., 2011, 34(7), 1085-1096.
[http://dx.doi.org/10.1007/s12272-011-0706-y] [PMID: 21811915]
[27]
El-Sayed, W.; Abbas, A.; Mageid, R.; Magdziarz, T. Synthesis, antimicrobial activity and docking studies of new N-ethyl-3-indolyl heterocycles. Med. Chem. Res., 2015, 25(2), 339-355.
[http://dx.doi.org/10.1007/s00044-015-1488-4.]]
[28]
Singh, P.; Kaur, J.; Singh, G.; Bhatti, R. Triblock conjugates: Identification of a highly potent antiinflammatory agent. J. Med. Chem., 2015, 58(15), 5989-6001.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00952] [PMID: 26204057]
[29]
Mehndiratta, S.; Hsieh, Y-L.; Liu, Y-M.; Wang, A.W.; Lee, H-Y.; Liang, L-Y.; Kumar, S.; Teng, C-M.; Yang, C-R.; Liou, J-P. Indole-3-ethylsulfamoylphenylacrylamides: Potent histone deacetylase inhibitors with anti-inflammatory activity. Eur. J. Med. Chem., 2014, 85, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.020] [PMID: 25113875]
[30]
Abdel-Aal, M.T.; El-Sayed, W.A.; El-Kosy, S.M.; El-Ashry, S.H. Synthesis and antiviral evaluation of novel 5-(N-Aryl-aminomethyl-1,3,4-oxadiazol-2-yl)hydrazines and their sugars, 1,2,4-triazoles, tetrazoles and pyrazolyl derivatives. Arch. Pharm. (Weinheim), 2008, 341(5), 307-313.
[http://dx.doi.org/10.1002/ardp.200700154] [PMID: 18404774]
[31]
Matysiak, J. Biological and pharmacological activities of 1,3,4-thiadiazole based compounds. Mini Rev. Med. Chem., 2015, 15(9), 762-775.
[http://dx.doi.org/10.2174/1389557515666150519104057] [PMID: 25985954]
[32]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.035] [PMID: 25553540]
[33]
Aliabadi, A. 1,3,4-thiadiazole based anticancer agents. Anticancer. Agents Med. Chem., 2016, 16(10), 1301-1314.
[http://dx.doi.org/10.2174/1871520616666160628100936] [PMID: 27484056]
[34]
El-Sayed, W.A.; Metwally, M.A.; Nada, D.S.; Mohamed, A.A.; Abdel-Rahman, A.A-H. Synthesis and antimicrobial activity of new substituted 5-(pyridine-3-yl)-1,3,4-thiadiazoles and their sugar derivatives. J. Heterocycl. Chem., 2013, 50(2), 194-201.
[http://dx.doi.org/10.1002/jhet.901]
[35]
Zhang, K.; Wang, P.; Xuan, L-N.; Fu, X-Y.; Jing, F.; Li, S.; Liu, Y-M.; Chen, B-Q. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety. Bioorg. Med. Chem. Lett., 2014, 24(22), 5154-5156.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.086] [PMID: 25442303]
[36]
Yadagiri, B.; Gurrala, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Srujana, G.; Jain, N. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg. Med. Chem. Lett., 2015, 25(10), 2220-2224.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.032] [PMID: 25827522]
[37]
Li, Y-J.; Qin, Y-J.; Makawana, J.A.; Wang, Y-T.; Zhang, Y-Q.; Zhang, Y-L.; Yang, M-R.; Jiang, A-Q.; Zhu, H-L. Synthesis, biological evaluation and molecular modeling of 1,3,4-thiadiazol-2-amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2014, 22(15), 4312-4322.
[http://dx.doi.org/10.1016/j.bmc.2014.05.017] [PMID: 24909678]
[38]
Guan, P.; Wang, L.; Hou, X.; Wan, Y.; Xu, W.; Tang, W.; Fang, H. Improved antiproliferative activity of 1,3,4-thiadiazole-containing Histone Deacetylase (HDAC) inhibitors by introduction of the heteroaromatic surface recognition motif. Bioorg. Med. Chem., 2014, 22(21), 5766-5775.
[http://dx.doi.org/10.1016/j.bmc.2014.09.039] [PMID: 25311567]
[39]
Hosseinzadeh, L.; Khorand, A.; Aliabadi, A. Discovery of 2-phenyl-N-(5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl)acetamide derivatives as apoptosis inducers via the caspase pathway with potential anticancer activity. Arch. Pharm. (Weinheim), 2013, 346(11), 812-818.
[http://dx.doi.org/10.1002/ardp.201300180] [PMID: 24123162]
[40]
Hassan, A.; Ali, M.M.; Diaa, M.; Germoush, M.O.; Mohamed, A.M.; El-Sayed, W. Oxidative stress of some triazolopyrimidine derivatives and their nucleoside analogues on Mcf-7 and A549 cell lines. Egypt. J. Chem., 2020, 63(1), 247-253.
[http://dx.doi.org/10.21608/ejchem.2019.18248.2136]
[41]
Yousif, M.N.M.; Nassar, I.F.; Yousif, N.M.; Awad, H.M.; El-Sayed, W.A. Synthesis and anticancer activity of new substituted piperidinones linked to pyrimidine, thiazole, and triazole glycoside derivatives. Russ. J. Gen. Chem., 2019, 89(8), 1673-1682.
[http://dx.doi.org/10.1134/S1070363219080218]
[42]
Kassem, A.F.; Nassar, I.F.; Abdel-Aal, M.T.; Awad, H.M.; El-Sayed, W.A. Synthesis and anticancer activity of new ((furan-2-yl)-1,3,4-thiadiazolyl)-1,3,4-oxadiazole acyclic sugar derivatives. Chem. Pharm. Bull. (Tokyo), 2019, 67(8), 888-895.
[http://dx.doi.org/10.1248/cpb.c19-00280] [PMID: 31366838]
[43]
Khaw, P.T.; Sherwood, M.B.; MacKay, S.L.D.; Rossi, M.J.; Schultz, G. Five-minute treatments with fluorouracil, floxuridine, and mitomycin have long-term effects on human Tenon’s capsule fibroblasts. Arch. Ophthalmol., 1992, 110(8), 1150-1154.
[http://dx.doi.org/10.1001/archopht.1992.01080200130040] [PMID: 1386726]
[44]
Nassar, I.F. El kady, D.S.; Awad, H.M.; El-Sayed, W.A. Design, synthesis, and anticancer activity of new oxadiazolyl-linked and thiazolyl-linked benzimidazole arylidines, thioglycoside, and acyclic analogs. J. Heterocycl. Chem., 2019, 56(3), 1086-1100.
[http://dx.doi.org/10.1002/jhet.3496]
[45]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]
[46]
Tolan, H.E.M.; El-Sayed, W.A.; Tawfek, N.; Abdel-Megeid, F.M.E.; Kutkat, O.M. Synthesis and anti-H5N1 virus activity of triazole- and oxadiazole-pyrimidine hybrids and their nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2020, 29(5), 649-670.
[http://dx.doi.org/10.1080/15257770.2019.1674331] [PMID: 31599202]
[47]
El-Sayed, W.A.; Fathi, N.M.; Gad, W.A.; El‐Ashry, E.S.H. Synthesis and antiviral evaluation of some 5‐N‐arylaminomethyl-2-glycosylsulphanyl‐1,3,4‐oxadiazoles and their analogs against hepatitis A and herpes simplex viruses. J. Carbohydr. Chem., 2008, 27(6), 357-372.
[http://dx.doi.org/10.1080/07328300802262778]
[48]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[49]
Nassar, I.F.; El-Sayed, W.A.; Ragab, T.I.M.; Shalaby, A.S.G.; Mehany, A.B.M. Design, synthesis of new pyridine and pyrimidine sugar compounds as antagonists targeting the ERα via structure-based virtual screening. Mini Rev. Med. Chem., 2019, 19(5), 395-409.
[http://dx.doi.org/10.2174/1389557518666180820125210] [PMID: 30124151]
[50]
Rahman, A.A.H.A.; Nassar, I.F.; Shaban, A.K.F.; El-Kady, D.S.; Awad, H.M.; El Sayed, W.A. Synthesis, docking studies into CDK-2 and anticancer activity of new derivatives based pyrimidine scaffold and their derived glycosides. Mini Rev. Med. Chem., 2019, 19(13), 1093-1110.
[http://dx.doi.org/10.2174/1389557519666190312165717] [PMID: 30864522]
[51]
Kassem, A.F.; Abbas, E.M.H.; El-Kady, D.S.; Awad, H.M.; El-Sayed, W.A. Design, synthesis and anticancer activity of new thiazole-tetrazole or triazole hybrid glycosides targeting CDK-2 via structure-based virtual screening. Mini Rev. Med. Chem., 2019, 19(11), 933-948.
[http://dx.doi.org/10.2174/1389557519666181231121217] [PMID: 30599108]
[52]
Basiony, E.A.; Hassan, A.A.; Al-Amshany, Z.M.; Abd-Rabou, A.A.; Abdel-Rahman, A.A.; Hassan, N.A.; El-Sayed, W.A. Synthesis and cytotoxic activity of new thiazolopyrimidine sugar hydrazones and their derived acyclic nucleoside analogues. Molecules, 2020, 25(2), E399.
[http://dx.doi.org/10.3390/molecules25020399] [PMID: 31963649]
[53]
Saman, E.; Claeyssens, M.; Kersters-Hilderson, H.; De Bruyne, C.K. Letters: Azido compounds as potential affinity labels for glycosidases. Carbohydr. Res., 1973, 30(1), 207-210.
[http://dx.doi.org/10.1016/S0008-6215(00)82193-X] [PMID: 4755283]
[54]
Adesoye, O.G.; Mills, I.N.; Temelkoff, D.P.; Jackson, J.A.; Norris, P. Synthesis of a d-glucopyranosyl azide: Spectroscopic evidence for stereochemical inversion in the SN2 reaction. J. Chem. Educ., 2012, 89(7), 943-945.
[http://dx.doi.org/10.1021/ed200596p]
[55]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[56]
Rochette, L.; Guenancia, C.; Gudjoncik, A.; Hachet, O.; Zeller, M.; Cottin, Y.; Vergely, C. Anthracyclines/trastuzumab: New aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol. Sci., 2015, 36(6), 326-348.
[http://dx.doi.org/10.1016/j.tips.2015.03.005] [PMID: 25895646]
[57]
Zhang, N.; Liu, D.; Wei, S.; Cao, S.; Feng, X.; Wang, K.; Ding, L.; Qiu, F. Phenylethanol glycosides from the seeds of Aesculus chinensis var. chekiangensis. BMC Chem., 2020, 14(1), 31.
[http://dx.doi.org/10.1186/s13065-020-00685-3] [PMID: 32337510]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy