Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Covid-19 Susceptibility and Severity Might be Modified by Vitamin D Status: Theoretical and Practical Considerations

Author(s): Alex Tanner, Divya Tiwari and Stephen Allen*

Volume 16, Issue 2, 2020

Page: [93 - 101] Pages: 9

DOI: 10.2174/1568009620999200924155221

Price: $65

Abstract

Background: The recently identified SARS-CoV-2 coronavirus has resulted in the Covid-19 pandemic with severe morbidity and high mortality, particularly in certain sections of the population. The co-morbidity patterns associated with adverse outcomes are multiple and complex and there is emerging epidemiological, nutritional and molecular biological evidence that an inadequate vitamin D status is a contributing factor.

Objective: The aim was to review the role of vitamin D in immune function with particular reference to the mechanisms whereby it supports immune efficiency, host protection and immune modulation. The evidence for the possible benefit of vitamin D supplementation to ameliorate the severity of respiratory infection by SARS-CoV-2 and other pathogens was also reviewed with a view to making a recommendation.

Methods: PubMed, MEDLINE and Google Scholar were searched using the terms: Covid-19, coronavirus, SARS-CoV-2, vitamin D, calcitriol, deficiency, adaptive immunity, innate immunity, ventilation, critical care, intensive care, acute respiratory distress syndrome, cytokine storm, respiratory viruses, respiratory tract infection, respiratory syncytial virus, influenza, supplementation. Papers for inclusion were selected on the basis of relevance and quality.

Findings: Vitamin D insufficiency is widespread in many parts of the world. Vitamin D is needed for normal protective and surveillance immune function and there is evidence that deficiency increases the risk of some respiratory infections, probably including Covid-19. By binding with dedicated receptors on immune cells vitamin D influences several strands of immune function, including the production of anti-microbial peptides and several cytokines that promote an appropriate immune response. Vitamin D supplementation probably reduces the risk of respiratory infection, with persuasive biological, epidemiological and observational evidence for possible benefit against Covid-19.

Conclusion: Despite the lack of direct evidence specific to Covid-19 a cogent theoretical case can be made for giving adults from selected groups, and arguably all adults, routine supplementation with vitamin D to improve immune efficiency and reduce the incidence and severity of respiratory infections. This could be particularly important in sections of the population with a high prevalence of vitamin D insufficiency. Targeted research is required to provide firm evidence to guide practice.

Keywords: Covid-19, SARS-CoV-2, immune function, innate immunity, adaptive immunity, vitamin D.

[1]
Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032]
[2]
Hopkins UJ. COVID-19 Dashboard 2019. Available from: https://coronavirus.jhu.edu/map.html
[3]
Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents 2020; 55(6): 105948.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948]
[4]
Tanner A, Allen S. The case for vitamin D supplementation to improve protection against respiratory tract infections. Curr Respir Med Rev 2018; 14(3): 128-34.
[http://dx.doi.org/10.2174/1573398X15666181211112527]
[5]
Imai N, Cori A, Dorigatti I, et al. Imperial College London Covid-19 Respone Team Report 3: Transmissibility of 2019-nCoV Imperial College London 2020. Available from: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
[6]
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020; 27(2): 1-4.
[http://dx.doi.org/10.1093/jtm/taaa021]
[7]
Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020; 158(6): 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055]
[8]
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020; 35(5): 1545-9.
[http://dx.doi.org/10.1007/s11606-020-05762-w]
[9]
Kirby T. Evidence mounts on the disproportionate effect of Covid-19 on ethnic minorities. Lancet Respir Med 2020.
[10]
Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection N Engl J Med 2020. Available from: http://www.nejm.org/ doi/10.1056/NEJMc2008597
[11]
Kulie T, Groff A, Redmer J, Hounshell J, Schrager S, Vitamin D. Vitamin D: an evidence-based review. J Am Board Fam Med 2009; 22(6): 698-706.
[http://dx.doi.org/10.3122/jabfm.2009.06.090037]
[12]
Lang PO, Aspinall R. Vitamin D status and the host resistance to infections: what is currently (not) understood. Clin Ther 2017; 39(5): 930-45.
[http://dx.doi.org/10.1016/j.clinthera.2017.04.004]
[13]
Frith J. History of tuberculosis. Part 1 - phthisis, consumption and the white plague. J Mil Veterans Health 2014; 22(2): 29-35.
[14]
Bergman P, Norlin A-C, Hansen S, et al. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open 2012; 2(6): e001663.
[http://dx.doi.org/10.1136/bmjopen-2012-001663]
[15]
Prentice A. Vitamin D and health 2016 Scientific Advisory Committee on Nutrition Report 2016. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/537616/SACN_Vitamin_D_and_Health_report.pdf
[16]
Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96(7): 1911-30.
[http://dx.doi.org/10.1210/jc.2011-0385]
[17]
Webb AR, Kazantzidis A, Kift RC, Farrar MD, Wilkinson J, Rhodes LE. Colour counts: sunlight and skin type as drivers of vitamin D deficiency at UK latitudes. Nutrients 2018; 10(4): 4-10.
[http://dx.doi.org/10.3390/nu10040457]
[18]
Nair R, Maseeh A, Vitamin D. The “sunshine” vitamin. J Pharmacol Pharmacother 2012; 3(2): 118-26.
[19]
Hill TR. "HYPERLINK" Vitamin D status is poor in the UK BMJ 2014; 348.
[http://dx.doi.org/10.1136/bmj.g2818]
[20]
Hill TR, Aspray TJ. The role of vitamin D in maintaining bone health in older people. Ther Adv Musculoskelet Dis 2017; 9(4): 89-95.
[http://dx.doi.org/10.1177/1759720X17692502]
[21]
Edwards MH, Cole ZA, Harvey NC, Cooper C. The global epidemiology of vitamin D status. J Aging Res Clin Pract 2014; 3(3): 148-58.
[22]
Watkins J. Preventing a covid-19 pandemic. BMJ 2020; 368: m810.
[http://dx.doi.org/10.1136/bmj.m810]
[23]
Yancy CW. COVID-19 and African Americans. JAMA 2020; 323(19): 1891-2.
[http://dx.doi.org/10.1001/jama.2020.6548]
[24]
Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ 2020; 369: m1548.
[http://dx.doi.org/10.1136/bmj.m1548]
[25]
Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7(6): 4240-70.
[http://dx.doi.org/10.3390/nu7064240]
[26]
Wei R, Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients 2015; 7(10): 8251-60.
[http://dx.doi.org/10.3390/nu7105392]
[27]
Aranow C. Vitamin D and the immune system. J Investig Med 2011; 59(6): 881-6.
[http://dx.doi.org/10.2310/JIM.0b013e31821b8755]
[28]
Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol 2016; 83(2): 83-91.
[http://dx.doi.org/10.1111/sji.12403]
[29]
Hewison M. Vitamin D and immune function: an overview. Proc Nutr Soc 2012; 71(1): 50-61.
[http://dx.doi.org/10.1017/S0029665111001650]
[30]
Chromek M, Slamová Z, Bergman P, et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 2006; 12(6): 636-41.
[http://dx.doi.org/10.1038/nm1407]
[31]
Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 2005; 174(8): 4901-7.
[http://dx.doi.org/10.4049/jimmunol.174.8.4901]
[32]
Sousa FH, Casanova V, Findlay F, et al. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 2017; 95: 76-83.
[http://dx.doi.org/10.1016/j.peptides.2017.07.013]
[33]
Barlow PG, Svoboda P, Mackellar A, et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 2011; 6(10): e25333.
[http://dx.doi.org/10.1371/journal.pone.0025333]
[34]
Currie SM, Gwyer Findlay E, McFarlane AJ, et al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 2016; 196(6): 2699-710.
[http://dx.doi.org/10.4049/jimmunol.1502478]
[35]
Alagarasu K, Patil PS, Shil P, et al. In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 2017; 92: 23-30.
[http://dx.doi.org/10.1016/j.peptides.2017.04.002]
[36]
Nguyen HB, Eshete B, Lau KHW, Sai A, Villarin M, Baylink D. Serum 1,25-dihydroxyvitamin D: an outcome prognosticator in human sepsis. PLoS One 2013; 8(5): e64348.
[http://dx.doi.org/10.1371/journal.pone.0064348]
[37]
Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 2007; 6(6): 403-10.
[http://dx.doi.org/10.1016/j.jcf.2007.03.003]
[38]
Schögler A, Muster RJ, Kieninger E, et al. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur Respir J 2016; 47(2): 520-30.
[http://dx.doi.org/10.1183/13993003.00665-2015]
[39]
Han JE, Alvarez JA, Jones JL, et al. Impact of high-dose vitamin D3 on plasma free 25-hydroxyvitamin D concentrations and antimicrobial peptides in critically ill mechanically ventilated adults. Nutrition 2017; 38(1): 102-8.
[http://dx.doi.org/10.1016/j.nut.2017.02.002]
[40]
Dixon BM, Barker T, McKinnon T, et al. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res Notes 2012; 5: 575.
[http://dx.doi.org/10.1186/1756-0500-5-575]
[41]
Vargas BLG, Cano M. Effect of vitamin D3 on the antimicrobial activity of human airway surface liquid: preliminary results of a randomised placebo-controlled double-blind trial. BMJ Open Respir Res 2017; 4(1): e000211.
[http://dx.doi.org/10.1136/bmjresp-2017-000211]
[42]
Das M, Tomar N, Sreenivas V, Gupta N, Goswami R. Effect of vitamin D supplementation on cathelicidin, IFN-γ, IL-4 and Th1/Th2 transcription factors in young healthy females. Eur J Clin Nutr 2014; 68(3): 338-43.
[http://dx.doi.org/10.1038/ejcn.2013.268]
[43]
Holly MK, Diaz K, Smith JG. Defensins in viral infection and pathogenesis. Annu Rev Virol 2017; 4(1): 369-91.
[http://dx.doi.org/10.1146/annurev-virology-101416-041734]
[44]
Berry DJ, Hesketh K, Power C, Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr 2011; 106(9): 1433-40.
[http://dx.doi.org/10.1017/S0007114511001991]
[45]
Holter JC, Ueland T, Norseth J, et al. Vitamin D status and long-term mortality in community-acquired pneumonia: secondary data analysis from a prospective cohort. PLoS One 2016; 11(7): e0158536.
[http://dx.doi.org/10.1371/journal.pone.0158536]
[46]
Cannell JJ, Zasloff M, Garland CF, Scragg R, Giovannucci E. On the epidemiology of influenza. Virol J 2008; 5(1): 29.
[http://dx.doi.org/10.1186/1743-422X-5-29]
[47]
Malinovschi A, Masoero M, Bellocchia M, et al. Severe vitamin D deficiency is associated with frequent exacerbations and hospitalization in COPD patients. Respir Res 2014; 15(1): 131.
[http://dx.doi.org/10.1186/s12931-014-0131-0]
[48]
Chalmers JD, McHugh BJ, Docherty C, Govan JRW, Hill AT. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 2013; 68(1): 39-47.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202125]
[49]
Grant WB, Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918-1919 influenza pandemic in the United States. Dermatoendocrinol 2009; 1(4): 215-9.
[http://dx.doi.org/10.4161/derm.1.4.9063]
[50]
Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583.
[http://dx.doi.org/10.1136/bmj.i6583]
[51]
Bergman P, Lindh ÅU, Björkhem-Bergman L, Lindh JD. Vitamin D and respiratory tract Infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2013; 8(6): e65835.
[http://dx.doi.org/10.1371/journal.pone.0065835]
[52]
Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother 2012; 3(4): 300-3.
[http://dx.doi.org/10.4103/0976-500X.103685]
[53]
Simpson S, van der Mei I, Stewart N, Blizzard L, Tettey P, Taylor B. Weekly cholecalciferol supplementation results in significant reductions in infection risk among the vitamin D deficient: results from the CIPRIS pilot RCT. BMC Nutr 2015; 1(1): 7.
[http://dx.doi.org/10.1186/2055-0928-1-7]
[54]
Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One 2010; 5(6): e11088.
[http://dx.doi.org/10.1371/journal.pone.0011088]
[55]
Tran B, Armstrong BK, Ebeling PR, et al. Effect of vitamin D supplementation on antibiotic use: a randomized controlled trial. Am J Clin Nutr 2014; 99(1): 156-61.
[http://dx.doi.org/10.3945/ajcn.113.063271]
[56]
Vanherwegen AS, Gysemans C, Mathieu C. Vitamin D endocrinology on the cross-road between immunity and metabolism. Mol Cell Endocrinol 2017; 453: 52-67.
[http://dx.doi.org/10.1016/j.mce.2017.04.018]
[57]
Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015; 7(4): 3011-21.
[http://dx.doi.org/10.3390/nu7043011]
[58]
Cyprian F, Lefkou E, Varoudi K, Girardi G. Immunomodulatory effects of vitamin D in pregnancy and beyond. Front Immunol 2019; 10: 2739.
[http://dx.doi.org/10.3389/fimmu.2019.02739]
[59]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration. UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0]
[60]
Arboleda JF, Fernandez GJ, Urcuqui-Inchima S. Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infect Genet Evol 2019; 69: 12-21.
[http://dx.doi.org/10.1016/j.meegid.2018.12.033]
[61]
Giraldo DM, Cardona A, Urcuqui-Inchima S. High-dose of vitamin D supplement is associated with reduced susceptibility of monocyte-derived macrophages to dengue virus infection and pro-inflammatory cytokine production: An exploratory study. Clin Chim Acta 2018; 478: 140-51.
[http://dx.doi.org/10.1016/j.cca.2017.12.044]
[62]
Khare D, Godbole NM, Pawar SD, et al. Calcitriol [1, 25[OH] 2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur J Nutr 2013; 52(4): 1405-15.
[http://dx.doi.org/10.1007/s00394-012-0449-7]
[63]
Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 46(1): 110-8.
[http://dx.doi.org/10.1016/j.jaci.2020.04.006]
[64]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2019; 180(7): 1-11.https://dx.doi.org/10.1001%2Fjamainternmed.2020.0994
[65]
Dancer RCA, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015; 70(7): 617-24.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206680]
[66]
Thickett DR, Moromizato T, Litonjua AA, et al. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respir Res 2015; 2(1): e000074.
[http://dx.doi.org/10.1136/bmjresp-2014-000074]
[67]
Parekh D, Dancer RCA, Scott A, et al. Vitamin D to prevent lung injury following esophagectomy-a randomized placebo-controlled trial. Crit Care Med 2018; 46(12): e1128-35.
[http://dx.doi.org/10.1097/CCM.0000000000003405]
[68]
Kong J, Zhu X, Shi Y, et al. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol Endocrinol 2013; 27(12): 2116-25.
[http://dx.doi.org/10.1210/me.2013-1146]
[69]
Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017; 21(1): 234.
[http://dx.doi.org/10.1186/s13054-017-1823-x]
[70]
Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012; 2012256294
[http://dx.doi.org/10.1155/2012/256294]
[71]
Tomaschitz A, Pilz S, Ritz E, et al. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta 2010; 411(17-18): 1354-60.
[http://dx.doi.org/10.1016/j.cca.2010.05.037]
[72]
Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020; 63(3): 364-74.
[http://dx.doi.org/10.1007/s11427-020-1643-8]
[73]
Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep 2017; 16(5): 7432-8.
[http://dx.doi.org/10.3892/mmr.2017.7546]
[74]
de Haan K, Groeneveld AB, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care 2014; 18(6): 660.
[http://dx.doi.org/10.1186/s13054-014-0660-4]
[75]
Gomes TL, Fernandes RC, Vieira LL, et al. Low vitamin D at ICU admission is associated with cancer, infections, acute respiratory insufficiency, and liver failure. Nutrition 2019; 60: 235-40.
[http://dx.doi.org/10.1016/j.nut.2018.10.018]
[76]
Amrein K, Zajic P, Schnedl C, et al. Vitamin D status and its association with season, hospital and sepsis mortality in critical illness. Crit Care 2014; 18(2): R47.
[http://dx.doi.org/10.1186/cc13790]
[77]
Quraishi SA, Bittner EA, Blum L, McCarthy CM, Bhan I, Camargo CA Jr. Prospective study of vitamin D status at initiation of care in critically ill surgical patients and risk of 90-day mortality. Crit Care Med 2014; 42(6): 1365-71.
[http://dx.doi.org/10.1097/CCM.0000000000000210]
[78]
Martucci G, McNally D, Parekh D, et al. Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths. Crit Care 2019; 23(1): 200.
[http://dx.doi.org/10.1186/s13054-019-2472-z]
[79]
Amrein K, Schnedl C, Holl A, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA 2014; 312(15): 1520-30.
[http://dx.doi.org/10.1001/jama.2014.13204]
[80]
Ginde AA, Brower RG, Caterino JM, et al. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early high-dose vitamin D3 for critically ill vitamin D–deficient patients. N Engl J Med 2019; 381(26): 2529-40.
[http://dx.doi.org/10.1056/NEJMoa1911124]
[81]
McNally JD. Vitamin D as a modifiable risk factor in critical illness: questions and answers provided by observational studies. J Pediatr (Rio J) 2014; 90(2): 99-101.
[http://dx.doi.org/10.1016/j.jped.2013.12.002]
[82]
Miri M, Kouchek M, Rahat Dahmardeh A, Sistanizad M. Effect of high-dose vitamin D on duration of mechanical ventilation in ICU patients. Iran J Pharm Res 2019; 18(2): 1067-72.
[83]
Leclair TR, Zakai N, Bunn JY, et al. Vitamin D supplementation in mechanically ventilated patients in the medical intensive care unit. JPEN J Parenter Enteral Nutr 2019; 43(8): 1037-43.
[http://dx.doi.org/10.1002/jpen.1520]
[84]
Han JE, Jones JL, Tangpricha V, et al. High dose Vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J Clin Transl Endocrinol 2016; 4: 59-65.
[http://dx.doi.org/10.1016/j.jcte.2016.04.004]
[85]
NICE Clinical Knowledge Summary and guidance. Vitamin D deficiency in adults - treatment and prevention 2018. Available from:https://cks.nice.org.uk/vitamin-d-deficiency-in-adults-treatment-and-prevention
[86]
NICE Evidence summary Covid-19 rapid evidence summary: vitamin D for Covid-19 2020 2020. Available from: www.nice.org.uk/guidance/es28
[87]
Martineau AR, Forouhi NG. Vitamin D for COVID-19: a case to answer? Lancet Diabetes Endocrinol 2020; 8(9): 735-6.
[http://dx.doi.org/10.1016/S2213-8587(20)30268-0]
[88]
Torjesen I. Covid-19: Public health agencies review whether vitamin D supplements could reduce risk. BMJ 2020; 369: m2475.
[http://dx.doi.org/10.1136/bmj.m2475]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy